CORRECTIONS TO FIRST PRINTING OF
Olver, P.J., *Equivalence, Invariants, and Symmetry*,

Last modified: October 1, 2017

*** On back cover, line 17–18, change
prospective geometry
to
projective geometry

*** page xv, add to acknowledgements
Elvis Bejko, Joe Benson, Jeongoo Cheh, Faruk Güngor, Joseph Malkoun, Oleg Morozov, Juha Pohjanpelto, Jessica Senou, Francis Valiquette

*** page 22, Theorem 1.28, line 3, change
. . . all \(t, s \in \mathbb{R} \) where the equation is defined.
to
. . . all \(t, s \in V \) where \(V \subset \mathbb{R}^2 \) is a connected open subset of the \((t, s)\) plane containing \((0, 0)\) consisting of points where the equation is defined.

*** page 32, line 12-13, change
an (necessarily unique)
to
a (necessarily unique)

*** page 32, line before Definition 2.1, change
structure
to
structure

*** page 36, line before Example 2.9, change
\(GL(2) \)
to
\(GL(2, \mathbb{C}) \).

*** page 39, Example 2.13, change the first two occurrences of
\(PSL(n, \mathbb{R}) \)
to
\(PGL(n, \mathbb{R}) \).
*** Also append to the last sentence

\[
\text{PSL}(n, \mathbb{R}) = \text{SL}(n, \mathbb{R})/\{ \pm 1 \}
\]
is equal to the connected component of \(\text{PGL}(n, \mathbb{R}) \) containing the identity.

*** page 51, equation (2.14), change

\[C^k_{ij} = -C^k_{ij} \]
to

\[C^k_{ji} = -C^k_{ij} \]

*** page 55, lines 4–5, change

\[G_H = \{ g|gHg^{-1} \subset H \} \] has Lie algebra

to

\[G_H = \{ g|gHg^{-1} \subset H \} \] is a normal subgroup with Lie algebra

*** page 61, line 31, change

there is a scalar function \(h_v(t) \) such that

to

there is a function \(h_v: \mathbb{R}^k \to \mathbb{R}^k \) such that

*** page 65, Example 2.80, line 8, change

\[v(HF) = 0 \]
to

\[v(H) = 0. \]

*** page 73, line 9, change

\[
\begin{pmatrix}
a^{-1} da & a^{-1}(a db - b da) \\
0 & 1
\end{pmatrix}
\]
to

\[
\begin{pmatrix}
a^{-1} da & a^{-1} db \\
0 & 0
\end{pmatrix}
\]

*** page 85, equation (3.18), change

\[1 + th_v(x) + \frac{1}{2}t^2v(h_v) + \cdots \]
to

\[1 + th_v(x) + \frac{1}{2}t^2[v(h_v) + h_v^2] + \cdots \]

*** page 87, equation (3.21), change

\[\sigma([v, w]) = \tilde{w}(\sigma(v)) - \tilde{v}(\sigma(w)) \]
to

\[\sigma([v, w]) = \tilde{v}(\sigma(w)) - \tilde{w}(\sigma(v)) \]
In order to formulate a general theorem governing the existence of relative invariants for sufficiently regular group actions, we consider the extended group action (3.15) on the bundle $E = M \times U$ and its dual version $(x, v) \mapsto (g \cdot x, \mu(g, x)^{-T})$ on the dual bundle $E^* = X \times U^*$. The key remark is that there is a one-to-one correspondence between relative invariants of weight μ and linear absolute invariants of the dual action. Specifically, a linear function $J(x, v) = \sum_{\alpha=1}^{n} R_\alpha(x) v^\alpha$ is an invariant of the dual action on E^* if and only if the vector-valued function $\hat{R}(x) = (R_1(x), \ldots, R_q(x))^T$ is a relative invariant of weight μ. Therefore, we need only produce a sufficient number of linear invariants of the extended action. Moreover, if $J(x, v)$ is any invariant of the extended group action, then it is not hard to prove that its linear Taylor polynomial is also an invariant, and hence provides a relative invariant for the multiplier representation. Thus, the only question is how many independent relative invariants can be constructed in this manner.

I do not know a general theorem that counts the number of relative invariants of multiplier representations that do not satisfy the hypotheses of Theorem 3.36 to

A general theorem that counts the number of relative invariants of multiplier representations in all cases can be found in the recent paper by M. Fels and the author, “On relative invariants”, Math. Ann. 308 (1997), 701–732.

$\mathbf{v}_{-} = a_1 \frac{\partial}{\partial a_0} + 2a_2 \frac{\partial}{\partial a_1} + \cdots + (n-1)a_{n-1} \frac{\partial}{\partial a_{n-2}} + na_n \frac{\partial}{\partial a_{n-1}},$

$\mathbf{v}_{0} = -na_0 \frac{\partial}{\partial a_0} - (n-2)a_1 \frac{\partial}{\partial a_1} + \cdots + (n-2)a_{n-1} \frac{\partial}{\partial a_{n-1}} + na_n \frac{\partial}{\partial a_n},$

$\mathbf{v}_{+} = na_0 \frac{\partial}{\partial a_1} + (n-1)a_1 \frac{\partial}{\partial a_2} + \cdots + 2a_{n-2} \frac{\partial}{\partial a_{n-1}} + a_{n-1} \frac{\partial}{\partial a_n}$

to

$\mathbf{v}_{-} = na_1 \frac{\partial}{\partial a_0} + (n-1)a_2 \frac{\partial}{\partial a_1} + \cdots + 2a_{n-1} \frac{\partial}{\partial a_{n-2}} + a_n \frac{\partial}{\partial a_{n-1}},$

$\mathbf{v}_{0} = na_0 \frac{\partial}{\partial a_0} + (n-2)a_1 \frac{\partial}{\partial a_1} + \cdots + (2-n)a_{n-1} \frac{\partial}{\partial a_{n-1}} - na_n \frac{\partial}{\partial a_n},$

$\mathbf{v}_{+} = a_0 \frac{\partial}{\partial a_1} + 2a_1 \frac{\partial}{\partial a_2} + \cdots + (n-1)a_{n-2} \frac{\partial}{\partial a_{n-1}} + na_{n-1} \frac{\partial}{\partial a_n}$.
*** page 108, line 24, change
\[\cot \theta \neq a \]
to \[\cot t \neq a \]

*** page 110, Theorem 4.6, line 2, change
r-dimensional orbits
to s-dimensional orbits

*** page 113, line 7, change
\[\bar{z}_0 = (\bar{x}_0, \bar{u}_0^{(n)}) = (x_0, \bar{f}(x_0)) \]
to \[\bar{z}_0 = (\bar{x}_0, \bar{u}_0^{(n)}) = (x_0, \bar{f}^{(n)}(x_0)) \]

*** page 119, equation (4.31), change
\[\sum_{\# J \geq 0} \]
to \[\sum_{\# J = 0}^{n} \]

*** page 119, equation (4.32), change
\[D_i. \]
to \[D_i^{(n)}, \]

and add the following sentence:
where \(D_i^{(n)} \) denotes the order \(n \) truncation of the \(i \)th total derivative, i.e., the summation in (4.18) is just over \(0 \leq \# J \leq n \).

*** page 120, second line after equation (4.35), change
The Lie algebra (4.14)
to The Lie algebra (4.35)

*** page 124, first displayed equation, add subscript \(i \) to \(Q \) in first summation
\[\omega = \sum_{i=1}^{p} Q_i(x, u^{(n)}) \, dx^i + \sum_{\alpha=1}^{q} \sum_{\# J \leq n} P_{\alpha}^{J}(x, u^{(n)}) \, du_{J}^{\alpha} \]
*** page 126, line 12, change

\((\Psi^{(n)})^* \theta\)

to

\(\Psi^* \theta\)

*** page 142, line 28, change

\(s_0 = 1, s_1 = 2, \ldots, s_{r-3} = s_{r-2} = r - 1\)

to

\(s_0 = 2, s_1 = 3, \ldots, s_{r-3} = s_{r-2} = r - 1\)

*** page 144, line 10, change

\(a^\nu \xi^i_{\mu} \)

to

\(A^\nu \xi^i_{\mu} \)

*** page 148, equation (5.15), change

\(v_0 = x \frac{\partial}{\partial x} - \frac{n}{2} u \frac{\partial}{\partial u}, \quad v_+ = x^2 \frac{\partial}{\partial x} - n xu \frac{\partial}{\partial u}, \)

to

\(v_0 = x \frac{\partial}{\partial x} + \frac{n}{2} u \frac{\partial}{\partial u}, \quad v_+ = x^2 \frac{\partial}{\partial x} + n xu \frac{\partial}{\partial u}, \)

*** page 159, lines 5, 15 & 18, change

\(d_{n+1}K_1 \land \cdots \land d_{n+1}K_r\)

to

\(d_{n+1}[DK_1] \land \cdots \land d_{n+1}[DK_r]\)

*** page 171, lines 20 & -8, change

\(n + 2\)

to

\(n + 1\)

*** page 171, line -7 to -3, delete sentence

Moreover, if the stable ... have order at most \(n + 1\).

*** page 173, Example 5.52, line 2, after “... via the standard representation”, add

\((x, y, u) \mapsto (\alpha x + \beta y, \gamma x + \delta y, u), \text{ where } \alpha \delta - \beta \gamma = 1\)

*** page 188, line -2, change

\(\log x = h(u/x)\)

to

\(\log x = h(u/x^m)\)
H-reduced equationsymmetry reduced equation $\Delta/H = 0$ admits the corresponding
normalizer subgroup $G_H = \{g | g \cdot H \cdot g^{-1} \subset H\}$ as a symmetry group.

to
H-reduced equation $\Delta/H = 0$ admits the quotient group G_H/H, where $G_H = \{g | g \cdot H \cdot g^{-1} \subset H\}$ is the normalizer subgroup, as a symmetry group.

$\eta\partial_y + \zeta\partial_u + \zeta y\partial_v$
to
$\eta\partial_y + \zeta\partial_v + \zeta y\partial_v$

$\mathbf{v} = \partial_y$
to
$\mathbf{v} = \partial_v$

(1 + u^2_x)$^{3/2}$
to
(1 + u^2_x)$^{3/2}$

(1 + $r^2\theta^2_r$)$^{3/2}$
to
(1 + $r^2\theta^2_r$)$^{3/2}$

Alternatively, $x = w_{uu}/w_u$, where w is an arbitrary solution . . .
to
Alternatively, $w = x_{uu}/x_u$ is an arbitrary solution . . .

$y = f(x)$
to
$w = f(x)$

y
to
w
*** page 201, equation (6.61), change

\[
\begin{vmatrix}
\xi_1 & \varphi_1^1 & \cdots & \varphi_1^{r-1} \\
\xi_2 & \varphi_2^1 & \cdots & \varphi_2^{r-1} \\
\vdots & \vdots & \ddots & \vdots \\
\xi_r & \varphi_r^1 & \cdots & \varphi_r^{r-1}
\end{vmatrix}
\]

\[= 0.\]

to

\[
\begin{vmatrix}
\xi_1 & \varphi_1^1 & \cdots & \varphi_1^{r-2} \\
\xi_2 & \varphi_2^1 & \cdots & \varphi_2^{r-2} \\
\vdots & \vdots & \ddots & \vdots \\
\xi_r & \varphi_r^1 & \cdots & \varphi_r^{r-2}
\end{vmatrix}
\]

\[= 0.\]

*** page 213, equation (6.84), change all p’s to f’s:

\[
\eta(x) = \left| f^n(x) \right|^{(1-n)/(2n)} \exp \left\{ \int_x^y f^{n-1}(y) \, dy \right\}.
\]

(6.84)

*** page 218, line -2, change

\[f^k(x) = W^k(x)\]

to

\[f^k(x) = (-1)^k W^k(x)\]

*** page 226, line 6, change

\[P(t, x, u^{(2n)})\]

to

\[R(t, x, u^{(2n)})\]

*** page 231, lines -4 & -1, change

\[E(\mathcal{L})\]

to

\[\overline{E(\mathcal{L})}\]

*** page 238, Exercise 7.26, delete the sentence

Determine the conservation laws associated with the point symmetries found in Exercise 6.16.

since the precise connection between symmetries and conservation laws has not been discussed in this book. (See, however, [186].)
However, I do not know ... I. Anderson, [7].

\[(x, v_y, v_{yy}, \ldots)\]
to
\[(y, v_y, v_{yy}, \ldots)\]

\[a_4 = 0\]
to
\[a_4 = a_5 = 0\]

\[\bar{a}_6 \omega^3 = a_6 \omega^3\]
to
\[\bar{a}_6 \omega^3 = a_6 \omega^3\]

\[\tilde{\alpha}^\kappa = \sum_k z_j^\kappa(x) \theta^j\]
to
\[\tilde{\alpha}^\kappa = \sum_j z_j^\kappa(x) \theta^j\]

\[\sum_{k=1}^r z_j^\kappa \theta^j\]
to
\[\sum_{j=1}^m z_j^\kappa \theta^j\]

\[\sum_{i=1}^p z_i^\kappa \theta^i\]
to
\[\sum_{i=1}^m z_i^\kappa \theta^i\]
*** page 339, line 6, delete first arc length

*** page 341, line -3, change

I_4
to

I_5

*** page 349, line -12, change

$\alpha^1 - T^1_12 \theta^1 \wedge \theta^2 - T^1_13 \theta^1 \wedge \theta^3$
to

$\alpha^1 - T^1_12 \theta^2 - T^1_13 \theta^3$

*** page 367, line 10, change

manifolds M
to

manifolds M and \overline{M}

*** page 368, equation (11.30), change

$= T \omega^1 \wedge \omega^2 \wedge \omega^3 = T \Omega.$
to

$= T \omega^1 \wedge \omega^2 \wedge \omega^3.$

*** page 372, lines 13–16, change

However, I do not know any naturally occurring examples exhibiting this phenomenon, and, moreover, the prolongation procedure to be discussed below will handle this (remote) possibility as well.

to

However, the prolongation procedure to be discussed below will handle this possibility as well; an example is the equivalence problem for a parabolic evolution equation analyzed in [69].

*** page 375, line 5, change

(12.3)
to

(12.1)

*** page 394, lines 16 & 21, change

(11.6)
to

(11.7)
*** page 394, line 22, change

vector S

to

matrix S

*** page 395, equation (12.52), change

$\varpi = \alpha + S \theta$, or explicitly, $\varpi^i = \alpha^i + \sum_{j=1}^m S_j^i \theta^j$

to

$\varpi = \alpha - S \theta$, or explicitly, $\varpi^i = \alpha^i - \sum_{j=1}^m S_j^i \theta^j$

*** page 406, equation (12.73), change

$Q_p \hat{D}_x Q_{pp} 6Q_{uu}$

to

$Q_p \hat{D}_x Q_{pp} + 6Q_{uu}$

*** page 411, lines 12–13, change

$c(x, y, \varphi(x, y)) \frac{\partial \varphi}{\partial x} = a(x, y, \varphi(x, y))$,

c(x, y, \varphi(x, y)) \frac{\partial \varphi}{\partial y} = b(x, y, \varphi(x, y))$.

to

$c(x, y, \varphi(x, y)) \frac{\partial \varphi}{\partial x} = -a(x, y, \varphi(x, y))$,

c(x, y, \varphi(x, y)) \frac{\partial \varphi}{\partial y} = -b(x, y, \varphi(x, y))$.

*** page 423, equation (14.4), change

$\Phi(t, w)$

to

$\Phi(t, s)$

*** page 425, lines 3–6, change

There is, however, a four-parameter group action obtained by including the additional generator $z \partial_y$, whose associated one-parameter group $(x, y, z) \mapsto (x, y + \mu z, z)$ can be recovered from the previous group transformations by taking commutators.

to

Moreover, one cannot include these vector fields in a finite-dimensional Lie algebra, since $[v_2, v_3] = v_4 = z \partial_y$, $[v_4, v_3] = v_5 = z^2 \partial_y$, and so on, hence the successive commutators span an infinite-dimensional Lie algebra of vector fields.
Relative invariants correspond to linear invariants $J(x, u) = R(x) \cdot u = \sum_{\alpha=1}^{q} R_{\alpha}(x) u^{\alpha}$ of the extended action, ... to

Relative invariants of the dual action on $E^{*} = X \times U^{*}$ correspond to linear invariants $J(x, u) = \sum_{\alpha=1}^{q} R_{\alpha}(x) u^{\alpha}$ of the extended action, ...

... the rank zero case in Theorem 4.24.

to

... the rank zero case in Theorem 4.18.

L
to

M

... restrictions of θ to U and V, so that

to

... restrictions of θ to U and \tilde{U}, so that

$a(1) \ltimes \mathbb{C}^{k}$
to

$\mathbb{C} \ltimes (\mathbb{C} \ltimes \mathbb{C}^{k})$

1.1
to

1.2

11

*** page 479, refs [37–38], change

Complètes
to
Complètes

*** page 479, refs [37–42], change

Gauthiers
to
Gauthier

*** page 483, reference [128], change

dx/dy
to
dy/dx

*** page 500, change

Galois, E., 3
to
Galois, E., 4

*** page 501, change

Morikawa, H., 217, [170–172]
to
Morikawa, H., 217, [170]
Morrey, C.B., Jr., 346, [171]
Mostow, G.D., 41, 61, [172]

*** page 504, change two entries

affine-invariant arc length, 339
to
affine-invariant arc length, 241, 339