Homework Assignment # 4

Exercise 4.1. Draw a picture of the complex plane with the complex solutions to \(z^6 = 1 \) marked. What is the exact formula (no trigonometric functions allowed) for the primitive sixth root of unity \(\zeta = \zeta_6 \)? Verify explicitly that \(1 + \zeta + \zeta^2 + \zeta^3 + \zeta^4 + \zeta^5 = 0 \). Explain this identity using vector addition for complex numbers.

Exercise 4.2. Explain why all the discrete Fourier coefficients in Example 11.22 are real. Can you state a general theorem?

Exercise 4.3. The discrete Fourier transform defines a linear function from the sample vector \(\mathbf{f} \) to its Fourier coefficients \(\mathbf{c} \) and so can be described by matrix multiplication. The reconstruction formula for is given by matrix inversion \(\mathbf{f} = \mathbf{F}^{-1} \mathbf{c} \). Find a formula for the Fourier matrix \(\mathbf{F} = \mathbf{F}_n \) such that \(\mathbf{c} = \mathbf{F} \mathbf{f} \). Write down the particular cases for \(\mathbf{F}_4 \) and \(\mathbf{F}_8 \) explicitly. Prove that

\[
\mathbf{F}^{-1} = n \mathbf{F}^\dagger,
\]

where \(\mathbf{F}^\dagger = \mathbf{F}^T \) is the Hermitian transpose of \(\mathbf{F} \), obtained by transposing \(\mathbf{F} \) and then applying complex conjugation to all entries.

Exercise 4.4. Each step of the Fast Fourier transform defines a linear transformation, and so is also given by matrix multiplication. For \(n = 2^r \) with \(r = 2, 3 \) write the Fourier transform matrix \(\mathbf{F}_n \) as a product of \(r \) “simpler ” matrices that represent the individual steps of the Fast Fourier transform.

Example 4.5. Let

\[
f(x) = \begin{cases}
-x, & 0 \leq x \leq \frac{1}{3}\pi, \\
 x - \frac{2}{3}\pi, & \frac{1}{3}\pi \leq x \leq \frac{4}{3}\pi, \\
 -x + 2\pi, & \frac{4}{3}\pi \leq x \leq 2\pi.
\end{cases}
\]

(a) Use MATLAB to construct the discrete Fourier coefficients for \(f(x) \) based on \(n = 128 \) data points.

(b) Graph the reconstructed function when using the data compression algorithm that retains only the 10 and 20 lowest frequency modes. Discuss what you observe.

Due: Friday, April 21

Second Midterm: Friday, May 5.

You will be allowed to use one 8” \(\times \) 11” sheet of notes.