Topics in Fourier Analysis:
DFT & FFT, Wavelets, Laplace Transform

by Peter J. Olver
University of Minnesota

1. Introduction.

In addition to their inestimable importance in mathematics and its applications,
Fourier series also serve as the entry point into the wonderful world of Fourier analy-
sis and its wide-ranging extensions and generalizations. An entire industry is devoted to
further developing the theory and enlarging the scope of applications of Fourier—inspired
methods. New directions in Fourier analysis continue to be discovered and exploited in
a broad range of physical, mathematical, engineering, chemical, biological, financial, and
other systems. In this chapter, we will concentrate on four of the most important variants:
discrete Fourier sums leading to the Fast Fourier Transform (FFT); the modern theory
of wavelets; the Fourier transform; and, finally, its cousin, the Laplace transform. In ad-
dition, more general types of eigenfunction expansions associated with partial differential
equations in higher dimensions will appear in the following chapters.

Modern digital media, such as CD’s, DVD’s and MP3’s, are based on discrete data,
not continuous functions. One typically samples an analog signal at equally spaced time
intervals, and then works exclusively with the resulting discrete (digital) data. The asso-
ciated discrete Fourier representation re-expresses the data in terms of sampled complex
exponentials; it can, in fact, be handled by finite-dimensional vector space methods, and
so, technically, belongs back in the linear algebra portion of this text. However, the insight
gained from the classical continuous Fourier theory proves to be essential in understand-
ing and analyzing its discrete digital counterpart. An important application of discrete
Fourier sums is in signal and image processing. Basic data compression and noise removal
algorithms are applied to the sample’s discrete Fourier coefficients, acting on the obser-
vation that noise tends to accumulate in the high frequency Fourier modes, while most
important features are concentrated at low frequencies. The first Section 2 develops the
basic Fourier theory in this discrete setting, culminating in the Fast Fourier Transform
(FFT), which produces an efficient numerical algorithm for passing between a signal and
its discrete Fourier coefficients.

One of the inherent limitations of classical Fourier methods, both continuous and
discrete, is that they are not well adapted to localized data. (In physics, this lack of
localization is the basis of the Heisenberg Uncertainty Principle.) As a result, Fourier-based
signal processing algorithms tend to be inaccurate and/or inefficient when confronting
highly localized signals or images. In the second section, we introduce the modern theory
of wavelets, which is a recent extension of Fourier analysis that more naturally incorporates

7/29/18 1 @ 2018 Peter J. Olver

multiple scales and localization. Wavelets are playing an increasingly dominant role in
many modern applications; for instance, the new JPEG digital image compression format
is based on wavelets, as are the computerized FBI fingerprint data used in law enforcement
in the United States.

The Laplace transform is a basic tool in engineering applications. To mathematicians,
the Fourier transform is the more fundamental of the two, while the Laplace transform
is viewed as a certain real specialization. Both transforms change differentiation into
multiplication, thereby converting linear differential equations into algebraic equations.
The Fourier transform is primarily used for solving boundary value problems on the real
line, while initial value problems, particularly those involving discontinuous forcing terms,
are effectively handled by the Laplace transform.

2. Discrete Fourier Analysis and the Fast Fourier Transform.

In modern digital media — audio, still images or video — continuous signals are
sampled at discrete time intervals before being processed. Fourier analysis decomposes the
sampled signal into its fundamental periodic constituents — sines and cosines, or, more
conveniently, complex exponentials. The crucial fact, upon which all of modern signal
processing is based, is that the sampled complex exponentials form an orthogonal basis.
The section introduces the Discrete Fourier Transform, and concludes with an introduction
to the Fast Fourier Transform, an efficient algorithm for computing the discrete Fourier
representation and reconstructing the signal from its Fourier coefficients.

We will concentrate on the one-dimensional version here. Let f(z) be a function
representing the signal, defined on an interval a < x < b. Our computer can only store its
measured values at a finite number of sample points a < zy <z <--- <z, <b. In the
simplest and, by far, the most common case, the sample points are equally spaced, and so

_b—a

r;=a+jh, 1=0,...,n, where h
n
indicates the sample rate. In signal processing applications, x represents time instead of
space, and the z; are the times at which we sample the signal f (z). Sample rates can be
very high, e.g., every 10-20 milliseconds in current speech recognition systems.

For simplicity, we adopt the “standard” interval of 0 < z < 27, and the n equally
spaced sample points!
2 4 23 2(n—1
zy, =0, xlz—w, x2:—7r, xj:ﬂ, .o :M. (2.1)
n n n n
(Signals defined on other intervals can be handled by simply rescaling the interval to have
length 27.) Sampling a (complex-valued) signal or function f(z) produces the sample

vector
T

£=(forfireeosfur) = (Flag)s fl@y)seens flan))T

! We will find it convenient to omit the final sample point x,, = 27 from consideration.

7/29/18 2 @ 2018 Peter J. Olver

Figure 1. Sampling e~ % and ¢”!* on n = 8 sample points.

where

n

f=1) =1 (27). (22)

Sampling cannot distinguish between functions that have the same values at all of the
sample points — from the sampler’s point of view they are identical. For example, the
periodic complex exponential function

f(z)=e'"* =cosnz + isinnz

has sampled values

219 219 -

j}-zf(ﬂ):exp(inﬂ):e%m:l for all 17=0,...,n—1,
n n

and hence is indistinguishable from the constant function ¢(x) = 1 — both lead to the

same sample vector (1,1,...,1)T. This has the important implication that sampling at n
equally spaced sample points cannot detect periodic signals of frequency n. More generally,
the two complex exponential signals

ikz

el (ktn)x and e

7/29/18 3 @ 2018 Peter J. Olver

are also indistinguishable when sampled. This has the important consequence that we
need only use the first n periodic complex exponential functions

folz) =1, fi(z) =e'", fo(z) = '™, fo_y(x) = e Diz (2.3)
in order to represent any 27 periodic sampled signal. In particular, exponentials e~ ¥ of

“negative” frequency can all be converted into positive versions, namely e! ("= by the
same sampling argument. For example,

i

e ' =cosx — isinz and eln—1)iz

=cos(n—1)x+ isin(n—1)z

have identical values on the sample points (2.1). However, off of the sample points, they
are quite different; the former is slowly varying, while the latter represents a high frequency
oscillation. In Figure 1, we compare e~ '% and e”'? when there are n = 8 sample values,
indicated by the dots on the graphs. The top row compares the real parts, cosx and cos 7 x,
while the bottom row compares the imaginary parts, sinx and — sin 7x. Note that both
functions have the same pattern of sample values, even though their overall behavior is
strikingly different.

This effect is commonly referred to as aliasing®. If you view a moving particle under
a stroboscopic light that flashes only eight times, you would be unable to determine which
of the two graphs the particle was following. Aliasing is the cause of a well-known artifact
in movies: spoked wheels can appear to be rotating backwards when our brain interprets
the discretization of the high frequency forward motion imposed by the frames of the
film as an equivalently discretized low frequency motion in reverse. Aliasing also has
important implications for the design of music CD’s. We must sample an audio signal at
a sufficiently high rate that all audible frequencies can be adequately represented. In fact,
human appreciation of music also relies on inaudible high frequency tones, and so a much
higher sample rate is actually used in commercial CD design. But the sample rate that was
selected remains controversial; hi fi aficionados complain that it was not set high enough
to fully reproduce the musical quality of an analog LP record!

The discrete Fourier representation decomposes a sampled function f(z) into a linear
combination of complex exponentials. Since we cannot distinguish sampled exponentials
of frequency higher than n, we only need consider a finite linear combination

n—1
f@) ~ p(x) = cg+cpel® e oo e, enTDiz = Z c et (2.4)
k=0

of the first n exponentials (2.3). The symbol ~ in (2.4) means that the function f(z) and
the sum p(z) agree on the sample points:
f(z;) = pl,). i=0,...,n—1 (2.5)

Therefore, p(x) can be viewed as a (complex-valued) interpolating trigonometric polynomial
of degree < n — 1 for the sample data f; = f(z;).

f In computer graphics, the term “aliasing” is used in a much broader sense that covers a
variety of artifacts introduced by discretization — particularly, the jagged appearance of lines
and smooth curves on a digital monitor.

7/29/18 4 @ 2018 Peter J. Olver

Remark: If f(z) is real, then p(z) is also real on the sample points, but may very well
be complex-valued in between. To avoid this unsatisfying state of affairs, we will usually
discard its imaginary component, and regard the real part of p(z) as “the” interpolating
trigonometric polynomial. On the other hand, sticking with a purely real construction
unnecessarily complicates the analysis, and so we will retain the complex exponential form
(2.4) of the discrete Fourier sum.

Since we are working in the finite-dimensional vector space C™ throughout, we may
reformulate the discrete Fourier series in vectorial form. Sampling the basic exponentials
(2.3) produces the complex vectors

elkxo,elkxl,elkl‘z,.

..,e“”“—1)T

wy, = (

. . . T
_ (1,62}“”/”,64}“”/”,...,62(n_1)k7”/n>

The interpolation conditions (2.5) can be recast in the equivalent vector form
f:COw0+Cl w1+ cte +C’I’L—1 wn—l' (2.7)

In other words, to compute the discrete Fourier coefficients c,...,c,_; of f, all we need
to do is rewrite its sample vector f as a linear combination of the sampled exponential
vectors wg,...,w,, _1-

Now, as with continuous Fourier series, the absolutely crucial property is the orthonor-
mality of the basis elements wy,...,w, ;. Were it not for the power of orthogonality,
Fourier analysis might have remained a mere mathematical curiosity, rather than today’s

indispensable tool.

Proposition 2.1. The sampled exponential vectors w, ...,w,,_; form an orthonor-
mal basis of C" with respect to the inner product

n—1
Y 1T =
j=0

Remark: The inner product (2.8) is a rescaled version of the standard Hermitian dot
product between complex vectors. We can interpret the inner product between the sample
vectors f, g as the average of the sampled values of the product signal f(x) g(x).

S|
S|

n—1
(f:g) = > f) glay), f,geC" (2.8)
j=0

Remark: As usual, orthogonality is no accident. Just as the complex exponentials
are eigenfunctions for a self-adjoint boundary value problem, so their discrete sampled
counterparts are eigenvectors for a self-adjoint matrix eigenvalue problem. Here, though,
to keep the discussion on track, we shall outline a direct proof.

Proof: The crux of the matter relies on properties of the remarkable complex numbers

2m 2m

¢, =e2™/m = cos — + isin—, where n=1223,.... (2.9)
n n
Particular cases include
G =—1, CSZ_%—F@L G =1, and C8:§+§i' (2.10)

7/29/18 5 @ 2018 Peter J. Olver

Ct
Figure 2. The Fifth Roots of Unity.

The nth power of ¢, is

CZLL — <627ri/n> n _ 627ri =1,
and hence (,, is one of the complex nth roots of unity: ¢, = /1. There are, in fact, n
different complex nth roots of 1, including 1 itself, namely the powers of (,:

2k 2k

ck = e2kmi/n — cog + isin —, k=0,....,n—1. (2.11)
n

Since it generates all the others, ¢, is known as the primitive nt" root of unity. Geometri-
cally, the nth roots (2.11) lie on the vertices of a regular unit n—gon in the complex plane;
see Figure 2. The primitive root ¢, is the first vertex we encounter as we go around the
n—gon in a counterclockwise direction, starting at 1. Continuing around, the other roots
appear in their natural order ¢2,¢3,...,¢"! and finishing back at (" = 1. The complex
conjugate of ¢, is the “last” nth root

L
G

The complex numbers (2.11) are a complete set of roots of the polynomial z" — 1,
which can therefore be factored:

2 =1=(z=1)(z= ¢z =) - (=G,

On the other hand, elementary algebra provides us with the real factorization

T, = = G = i, (212

1= (z—=1)A4+2z+22+ - + 2",
Comparing the two, we conclude that
Thz+224 - 42" = (2= ()= G) - (= 7.
Substituting z = ¢* into both sides of this identity, we deduce the useful formula

n, k=0,

(2.13)
0, 0<k<n.

L+ +GF+ - +<£"‘”’“={

7/29/18 6 @ 2018 Peter J. Olver

Since C;H'k = Cﬁ, this formula can easily be extended to general integers k; the sum is
equal to n if n evenly divides k£ and is 0 otherwise.

Now, let us apply what we’ve learned to prove Proposition 2.1. First, in view of (2.11),
the sampled exponential vectors (2.6) can all be written in terms of the ntP roots of unity:

wy = (1,8, C2F 3% =Ry T k=0,....n—1. (2.14)
Therefore, applying (2.12, 13), we conclude that
n—1 n—1
1 — 1 , L, k=l
wiw) ==y QR == G = 0<kl<n,
s =5, 2 ;0 0, k#L
which establishes orthonormality of the sampled exponential vectors. Q.E.D.

Orthonormality of the basis vectors implies that we can immediately compute the
Fourier coefficients in the discrete Fourier sum (2.4) by taking inner products:

n—1 n—1
1 —ikx; 1 —7
¢, = (fiw,) § f; eikz; =~ § fie ke = § ouLy (2.15)
j=0 j=0

In other words, the discrete Fourier coefficient c,, is obtained by averaging the sampled val-
ues of the product function f(z)e™1#*. The passage from a signal to its Fourier coefficients
is known as the Discrete Fourier Transform or DFT for short. The reverse procedure of
reconstructing a signal from its discrete Fourier coefficients via the sum (2.4) (or (2.7)) is
known as the Inverse Discrete Fourier Transform or IDFT. The Discrete Fourier Transform
and its inverse define mutually inverse linear transformations on the space C™.

Example 2.2. If n = 4, then (, = i. The corresponding sampled exponential

vectors 1 1 1 1
1 i -1 —i
w() = 1 9 wl = _1 9 w2 = 1 9 w3 = _1 9
1 —i —1 i
form an orthonormal basis of C* with respect to the averaged Hermitian dot product
Yo Wo
) _1 o — — o N O _ | Y
(viw) =1 (voWy + vy Wy + vy Wy + v3 W3), where v = , W=
Ua Wy
Us w3
Given the sampled function values
fozf(0)7 f1:f(%7r)a f2:f<7r)7 fng(%ﬂ)a
we construct the discrete Fourier representation
where
Co ; 0>:%(f0+f1+f2+f3>: 61:<f;w1>:i(f0_ifl_f2+if3>7
¢y = (fiw,) = %(fo —fitfo—fs), cg = (fiwy) = i(fo"’ ifi—fo—1ifs).

7/29/18 7 @ 2018 Peter J. Olver

\

2

Figure 3. The Discrete Fourier Representation of 27w x — z~.

We interpret this decomposition as the complex exponential interpolant

f(x) ~ p(x) =cyte e’ +eye?® fcgedt”

that agrees with f(x) on the sample points.
For instance, if
f(z) =2mx — 22,

then

fo =0, fi = T7.4022, f, = 9.8696, fy = 7.4022,

and hence

¢, = 6.1685, ¢, = —2.4674, ¢, = —1.2337, cq = —2.4674.

Therefore, the interpolating trigonometric polynomial is given by the real part of

p(z) = 6.1685 — 2.4674¢'® — 1.2337¢*'" — 2.4674¢>'7,

namely,
Re p(x) = 6.1685 — 2.4674 cosx — 1.2337 cos2x — 2.4674 cos 3.

(2.17)

(2.18)

In Figure 3, we compare the function, with the interpolation points indicated, and discrete
Fourier representations (2.18) for both n = 4 and n = 16 points. The resulting graphs point
out a significant difficulty with the Discrete Fourier Transform as developed so far. While
the trigonometric polynomials do indeed correctly match the sampled function values, their
pronounced oscillatory behavior makes them completely unsuitable for interpolation away

from the sample points.

However, this difficulty can be rectified by being a little more clever. The problem is
that we have not been paying sufficient attention to the frequencies that are represented in
the Fourier sum. Indeed, the graphs in Figure 3 might remind you of our earlier observation

7/29/18 8

@ 2018 Peter J. Olver

Figure 4. The Low Frequency Discrete Fourier Representation of 22 — 27 x.

that, due to aliasing, low and high frequency exponentials can have the same sample data,
but differ wildly in between the sample points. While the first half of the summands in
(2.4) represent relatively low frequencies, the second half do not, and can be replaced by
equivalent lower frequency, and hence less oscillatory exponentials. Namely, if 0 < k < %n,
then e~ %% and e' (%) have the same sample values, but the former is of lower frequency
than the latter. Thus, for interpolatory purposes, we should replace the second half of the
summands in the Fourier sum (2.4) by their low frequency alternatives. If n = 2m + 1 is

odd, then we take

px) = c_, e ™ h i de e Thegte e - e, e = Z ¢, e F7 (2.19)

k=—m
as the equivalent low frequency interpolant. If n = 2m is even — which is the most
common case occurring in applications — then
m—1
ﬁ(.’lﬁ) _ c_me—lmm+ e e_’m—f—co—f—cle‘m—i— +Cm_lel(m—1)m _ Z ckelkm
k=—m

(2.20)
will be our choice. (It is a matter of personal taste whether to use e~ or e!™T to
represent the highest frequency term.) In both cases, the Fourier coefficients with negative
indices are the same as their high frequency alternatives:

imax

C_p=Cpp = (Fiw,) =(f1w_y), (2.21)
where w_, = w, _, is the sample vector for e~ k% ~ el (n=k)@,
Returning to the previous example, for interpolating purposes, we should replace
(2.17) by the equivalent low frequency interpolant

p(z) = —1.2337e 21" — 2.4674e™ 1% 4 6.1685 — 2.4674¢'?, (2.22)

7/29/18 9 @ 2018 Peter J. Olver

with real part
Rep(z) = 6.1685 — 4.9348 cosxz — 1.2337 cos2x.

Graphs of the n = 4 and 16 low frequency trigonometric interpolants can be seen in Fig-
ure 4. Thus, by utilizing only the lowest frequency exponentials, we successfully suppress
the aliasing artifacts, resulting in a quite reasonable trigonometric interpolant to the given
function.

Remark: The low frequency version also serves to unravel the reality of the Fourier
representation of a real function f(z). Since w_, = w,, formula (2.21) implies that
c_j = C;, and so the common frequency terms

—ikx kx

c_pe€ +c, e =a,coskx + b, sinkx

add up to a real trigonometric function. Therefore, the odd n interpolant (2.19) is a real
trigonometric polynomial, whereas in the even version (2.20) only the highest frequency
—imz

termc_,, e produces a complex term — which is, in fact, 0 on the sample points.

Compression and Noise Removal

In a typical experimental signal, noise primarily affects the high frequency modes,
while the authentic features tend to appear in the low frequencies. Think of the hiss and
static you hear on an AM radio station or a low quality audio recording. Thus, a very
simple, but effective, method for denoising a corrupted signal is to decompose it into its
Fourier modes, as in (2.4), and then discard the high frequency constituents. A similar
idea underlies the Dolby® recording system used on most movie soundtracks: during
the recording process, the high frequency modes are artificially boosted, so that scaling
them back when showing the movie in the theater has the effect of eliminating much of
the extraneous noise. The one design issue is the specification of a cut-off between low
and high frequency, that is, between signal and noise. This choice will depend upon the
properties of the measured signal, and is left to the discretion of the signal processor.

A correct implementation of the denoising procedure is facilitated by using the una-
liased forms (2.19,20) of the trigonometric interpolant, in which the low frequency sum-
mands only appear when | k| is small. In this version, to eliminate high frequency compo-
nents, we replace the full summation by

g(z) =) ¢e't, (2.23)

where [< %(n + 1) specifies the selected cut-off frequency between signal and noise. The
2l 4+ 1 < n low frequency Fourier modes retained in (2.23) will, in favorable situations,
capture the essential features of the original signal while simultaneously eliminating the
high frequency noise.

In Figure 5 we display a sample signal followed by the same signal corrupted by adding
in random noise. We use n = 29 = 512 sample points in the discrete Fourier representation,
and to remove the noise, we retain only the 27 + 1 = 11 lowest frequency modes. In other
words, instead of all n = 512 Fourier coefficients ¢_y5¢,...,¢_1,¢9,¢1, ..., Cy55, We only
compute the 11 lowest order ones c_;,...,c5. Summing up just those 11 exponentials

7/29/18 10 @ 2018 Peter J. Olver

The Original Signal The Noisy Signal

:
-/ \ |
e

The Denoised Signal Comparison of the Two

Figure 5. Denoising a Signal.

produces the denoised signal ¢(z) = c¢_5e 5% + ... 4+ ¢, €1*. To compare, we plot both
the original signal and the denoised version on the same graph. In this case, the maximal
deviation is less than .15 over the entire interval [0, 27].

The same idea underlies many data compression algorithms for audio recordings, digi-
tal images and, particularly, video. The goal is efficient storage and/or transmission of the
signal. As before, we expect all the important features to be contained in the low frequency
constituents, and so discarding the high frequency terms will, in favorable situations, not
lead to any noticeable degradation of the signal or image. Thus, to compress a signal
(and, simultaneously, remove high frequency noise), we retain only its low frequency dis-
crete Fourier coefficients. The signal is reconstructed by summing the associated truncated
discrete Fourier series (2.23). A mathematical justification of Fourier-based compression
algorithms relies on the fact that the Fourier coefficients of smooth functions tend rapidly
to zero — the smoother the function, the faster the decay rate. Thus, the small high
frequency Fourier coefficients will be of negligible importance.

In Figure 6, the same signal is compressed by retaining, respectively, 2{ + 1 = 21
and 2] + 1 = 7 Fourier coefficients only instead of all n = 512 that would be required for
complete accuracy. For the case of moderate compression, the maximal deviation between
the signal and the compressed version is less than 1.5 x 10™* over the entire interval,
while even the highly compressed version deviates at most .05 from the original signal. Of
course, the lack of any fine scale features in this particular signal means that a very high
compression can be achieved — the more complicated or detailed the original signal, the

7/29/18 11 @ 2018 Peter J. Olver

The Original Signal Moderate Compression High Compression

Figure 6. Compressing a Signal.

more Fourier modes need to be retained for accurate reproduction.
The Fast Fourier Transform

While one may admire an algorithm for its intrinsic beauty, in the real world, the
bottom line is always efficiency of implementation: the less total computation, the faster
the processing, and hence the more extensive the range of applications. Orthogonality is
the first and most important feature of many practical linear algebra algorithms, and is the
critical feature of Fourier analysis. Still, even the power of orthogonality reaches its limits
when it comes to dealing with truly large scale problems such as three-dimensional medical
imaging or video processing. In the early 1960’s, James Cooley and John Tukey, [4],
discovered! a much more efficient approach to the Discrete Fourier Transform, exploiting
the rather special structure of the sampled exponential vectors. The resulting algorithm is
known as the Fast Fourier Transform, often abbreviated FFT, and its discovery launched
the modern revolution in digital signal and data processing, [2, 3].

In general, computing all the discrete Fourier coefficients (2.15) of an n times sampled
signal requires a total of n? complex multiplications and n? — n complex additions. Note
also that each complex addition

zrw=(zx+iy)+(u+iv)=(z+u)+i(y+v) (2.24)

generally requires two real additions, while each complex multiplication
zw=(z+iy)(u+ iv) = (zu—yv)+ i(zv+yu) (2.25)
requires 4 real multiplications and 2 real additions, or, by employing the alternative formula
zv+yu=(x+y)(u+v)—zu—yYv (2.26)

for the imaginary part, 3 real multiplications and 5 real additions. (The choice of formula
(2.25) or (2.26) will depend upon the processor’s relative speeds of multiplication and ad-
dition.) Similarly, given the Fourier coefficients c,, ..., ¢ reconstruction of the sampled

Y n—1>
signal via (2.4) requires n? —n complex multiplications and n? —n complex additions. As a

f In fact, the key ideas can be found in Gauss’ hand computations in the early 1800’s, but his
insight was not fully appreciated until modern computers arrived on the scene.

7/29/18 12 @ 2018 Peter J. Olver

result, both computations become quite labor intensive for large n. Extending these ideas
to multi-dimensional data only exacerbates the problem.

In order to explain the method without undue complication, we return to the original,
aliased form of the discrete Fourier representation (2.4). (Once one understands how the
FFT works, one can easily adapt the algorithm to the low frequency version (2.20).) The
seminal observation is that if the number of sample points

n=2m

is even, then the primitive mth root of unity ¢,, = %/1 equals the square of the primitive
nth root:

G = G-

We use this fact to split the summation (2.15) for the order n discrete Fourier coefficients
into two parts, collecting together the even and the odd powers of ¢*:

1
== (fot AG +HGH + o + £ G0
= o+ B LGy a G TR
FGE T (o foGa ™ F Gt o fo G) 2.27)
1

2 | m

T2 { ; (fo+ foln ¥+ faln?F + -+ —l—fzm—z@;(m_l)k)}—i—

—k
+Cn7 {%(f1+fsc7;’“+f5<7;2’“+ +f2m_1<n;<m—”’“)}~

Now, observe that the expressions in braces are the order m Fourier coefficients for the
sample data

£ = (f07f27f47---vf2m—2)T = (f(l'o)7f(1'2> f(934)7---af(932m—2>)T7
£° = (frFaifono oo omer)' = (F(0) F(5), F(@5), s (@ 1))

Note that f¢ is obtained by sampling f(z) on the even sample points Ty;, while £ is
obtained by sampling the same function f(x), but now at the odd sample points Ty;iq- In
other words, we are splitting the original sampled signal into two “half-sampled” signals
obtained by sampling on every other point. The even and odd Fourier coefficients are

1 N B e
o (ot Fa Gt £GP e o oo G),
T k=0,...,m—1. (2.29)
b= (LG + G+ o+ o G T0F),

Since they contain just m data values, both the even and odd samples require only m
distinct Fourier coefficients, and we adopt the identification

’ (2.28)

¢ =

CZ—i—m:CZ? CZ—l—m:Cz’ k:O,...,m—l. (230)

7/29/18 13 @ 2018 Peter J. Olver

Therefore, the order n = 2m discrete Fourier coefficients (2.27) can be constructed from a
pair of order m discrete Fourier coefficients via

c=3(ck+6 " k), k=0,...,n—1. (2.31)

Now if m = 2[is also even, then we can play the same game on the order m Fourier
coefficients (2.29), reconstructing each of them from a pair of order [discrete Fourier
coefficients — obtained by sampling the signal at every fourth point. If n = 2" is a power
of 2, then this game can be played all the way back to the start, beginning with the trivial
order 1 discrete Fourier representation, which just samples the function at a single point.
The result is the desired algorithm. After some rearrangement of the basic steps, we arrive
at the Fast Fourier Transform, which we now present in its final form.

We begin with a sampled signal on n = 2" sample points. To efficiently program
the Fast Fourier Transform, it helps to write out each index 0 < j < 27 in its binary (as
opposed to decimal) representation

J=Jr1Jr—s - J2J1Jo> where j, =0or1; (2.32)

the notation is shorthand for its r digit binary expansion

J=Jo+ 241 +4j, +8js+ - +27 14y

We then define the bit reversal map

10<j7"—1 Jr—g -+ J2J1 jo) =JoJ1J2 -+ Jr—2Jr_1- (2~33)

For instance, if r = 5, and j = 13, with 5 digit binary representation 01101, then p(j) = 22
has the reversed binary representation 10110. Note especially that the bit reversal map
p = p,. depends upon the original choice of r = log, n.

Secondly, for each 0 < k < r, define the maps

a(j) o 100621 -+ Jos

=Jr—1

for =4 j R I P

Brli) = s - s Liker -+ do = on(§) + 25, STt
(2.34)
In other words, a(j) sets the k" binary digit of j to 0, while £, (j) sets it to 1. In the
preceding example, a,(13) = 9, with binary form 01001, while 5,(13) = 13 with binary
form 01101. The bit operations (2.33,34) are especially easy to implement on modern

binary computers.

Given a sampled signal f,..., f,_;, its discrete Fourier coefficients c,...,c,_; are

computed by the following iterative algorithm:

) =0,...,n—1
0) _ (k1) _ 1 (F) —i (k) J= e ’
i =Fogy G = 3(Cay T) _ (2.35)
k=0,...,7m—1,
in which (k41 is the primitive 2871 root of unity. The final output of the iterative proce-
dure, namely

C. =

L=, j=0,...,n—1, (2.36)

7/29/18 14 @ 2018 Peter J. Olver

are the discrete Fourier coefficients of our signal. The preprocessing step of the algorithm,
where we define c(), produces a more convenient rearrangement of the sample values. The
subsequent steps successively combine the Fourier coefficients of the appropriate even and
odd sampled subsignals together, reproducing (2.27) in a different notation. The following
example should help make the overall process clearer.

Example 2.3. Consider the case » = 3, and so our signal has n = 23 = 8 sampled
values f, f1,..., f-. We begin the process by rearranging the sample values

&) = oo V=0 & =for & =f = fr A = fo = fo P = 1,
in the order specified by the bit reversal map p. For instance p(3) = 6, or, in binary
notation, p(011) = 110.

The first stage of the iteration is based on (, = —1. Equation (2.35) gives

(1)

o

0 0 1 0 0 1 0 0 1 0 0
A)) =), = B,) = -),
0 0 1 0 0 1 0 0 1 0 0
L+),) =3l =), o =3 + 7)o = de” =),
where we combine successive pairs of the rearranged sample values. The second stage of

the iteration has £ =1 with ¢, = i. We find

2 1 1 2 1 1 2 1 1 2 1 1
o) =3eg) +), o =36 — i), &Y =3 - &), &Y =3(a” + i),

icy icy
2 1 1 2 1 1 2 1 1 2 1 1
ci)— (cfl)-i-cé)), cé):%(cé)—lcg)), cé):%(cfl)—cé)), cg):%(cg)-l-lc(?)).

Note that the indices of the combined pairs of coefficients differ by 2. In the last step,
where £ = 2 and (g = ? (1+ i), we combine coefficients whose indices differ by 4 = 22;
the final output

¢y =cb’ = 3(ct” +), ey =cf” = 3(cf” —),

e = = (e +20-1)d), e =) =1 (e =2 -1)d),
ey =5 =3 () —ieg”), cs=c5 =3 () +icg?),

ey =c) =3 () =1 +1)c?), e =V =1 (P +20+1)dY),

is the complete set of discrete Fourier coefficients.

Let us count the number of arithmetic operations required in the Fast Fourier Trans-
form algorithm. At each stage in the computation, we must perform n = 2" complex
additions/subtractions and the same number of complex multiplications. (Actually, the
number of multiplications is slightly smaller since multiplications by +1 and + i are ex-
tremely simple. However, this does not significantly alter the final operations count.)
There are » = log, n stages, and so we require a total of rn = nlog,n complex addi-
tions/subtractions and the same number of multiplications. Now, when n is large, nlog, n
is significantly smaller than n?, which is the number of operations required for the direct
algorithm. For instance, if n = 2'% = 1,024, then n? = 1,048, 576, while nlog, n = 10,240
— a net savings of 99%. As a result, many large scale computations that would be in-
tractable using the direct approach are immediately brought into the realm of feasibility.

7/29/18 15 @ 2018 Peter J. Olver

This is the reason why all modern implementations of the Discrete Fourier Transform are
based on the FFT algorithm and its variants.

The reconstruction of the signal from the discrete Fourier coefficients cg,...,c,,_; is
speeded up in exactly the same manner. The only differences are that we replace ;! = ¢
by (,,, and drop the factors of % since there is no need to divide by n in the final result
(2.4). Therefore, we apply the slightly modified iterative procedure

j=0,...,n—1,

0) _ (k+1) _ (k) J (k)
fj = Ch(5) fj fak(J) +C2k+1f B1(j)’ k=0, 1, (2.37)
and finish with
fla)=f;=£", j=0,...,n—1. (2.38)
Example 2.4. The reconstruction formulae in the case of n = 8 = 23 Fourier
coefficients ¢, . . ., c-, which were computed in Example 2.3, can be implemented as follows.

First, we rearrange the Fourier coefficients in bit reversed order:

0 0 0 0 0 0 0 0
f(g):COv fl():C4v 2()2627 35)2667 ()_Clv EE):CEH é)zci’n 7()2677

Then we begin combining them in successive pairs:
fél) _ (0) + f(O) fl(l) _ 50) _ 1(0) 2(1) (0) + f(O) ?El) _ f2(0) _ f?EO)
1 0 0 1 0 0 1 0 0 1 0 0
i) ()—i—f(), é)zi)_é), 6() ()—l—f(), é):é)_fé)'
Next,
fé2) (1) + f(l), 1(2) _ 1(1) 4 (1), 2(2) _ él) _ 2(1), (2) f(l) if(l),
2 1 1 2 1 1 2 1 1 2 1
O R O ey Ry Ny RO

1J7
Finally, the sampled signal values are
flag) = 10 = 12 4 7, flay) = & =52 —f»
fla) =& =2+ 2+ i) £, flag) = £ = (P - L2 +1) 7,
o = 19 = 10+ 110, flog) = 1" = 137 = 1157,
flag) = f2 = 152 =21 —i) 1, flag) = A2 = i + 21— 1) /2.

3. Wavelets.

Trigonometric Fourier series, both continuous and discrete, are amazingly power-
ful, but they do suffer from one potentially serious defect. The basis functions e'** =
cos kx + i sinkx are spread out over the entire interval [—7, 7], and so are not well-suited
to processing localized signals — meaning data that are concentrated in a relatively small
regions. Indeed, the most concentrated data of all — a single delta function — has every
Fourier component of equal magnitude in its Fourier series and its high degree of localiza-
tion is completely obscured. Ideally, one would like to construct a system of functions that
is orthogonal, and so has all the advantages of the Fourier trigonometric functions, but, in

7/29/18 16 @ 2018 Peter J. Olver

01 (x) py() () 04 ()
Figure 7. The First Four Haar Wavelets.

addition, adapts to localized structures in signals. This dream was the inspiration for the
development of the modern theory of wavelets.

The Haar Wavelets

Although the modern era of wavelets started in the mid 1980’s, the simplest example
of a wavelet basis was discovered by the Hungarian mathematician Alfréd Haar in 1910,
[6]. We consider the space of functions (signals) defined the interval [0, 1], equipped with
the standard L? inner product

<ﬁﬁ=£f@ﬂ@w- (3.1)

This choice is merely for convenience, being slightly better suited to our construction than
[—m,m]or[0,27]. Moreover, the usual scaling arguments can be used to adapt the wavelet
formulas to any other interval.

The Haar wavelets are certain piecewise constant functions. The initial four are
graphed in The first is the box function

1, 0<z <,

3.2
0, otherwise, (3:2)

r(a) = olo) = {
known as the scaling function, for reasons that shall appear shortly. Although we are only
interested in the value of ¢(x) on the interval [0, 1], it will be convenient to extend it, and
all the other wavelets, to be zero outside the basic interval. Its values at the points of
discontinuity, i.e., 0,1, is not critical, but, unlike the Fourier series midpoint value, it will
be more convenient to consistently choose the left hand limiting value. The second Haar
function

1, 0<z<j,
o) =w(x) = -1, L<a<l, (33

0, otherwise,

7/29/18 17 @ 2018 Peter J. Olver

is known as the mother wavelet. The third and fourth Haar functions are compressed
versions of the mother wavelet:

1 1 3
1’ O<x§17 17 §<x§17
0, otherwise, 0, otherwise,

called daughter wavelets. One can easily check, by direct evaluation of the integrals, that
the four Haar wavelet functions are orthogonal with respect to the L? inner product (3.1):
(¢119;) =0 when i # j.

The scaling transformation x +— 2x serves to compress the wavelet function, while
the translation 2z +— 2x — 1 moves the compressed version to the right by a half a unit.
Furthermore, we can represent the mother wavelet by compressing and translating the
scaling function:

w(z) = p2z) —p(2x —1). (3.4)
It is these two operations of scaling and compression — coupled with the all-important
orthogonality — that underlies the power of wavelets.

The Haar wavelets have an evident discretization. If we decompose the interval (0, 1]
into the four subintervals

(0.3], (3:3] (3.3], (3.1], (3.5)
on which the four wavelet functions are constant, then we can represent each of them by

a vector in R* whose entries are the values of each wavelet function sampled at the left
endpoint of each subinterval. In this manner, we obtain the wavelet sample vectors

1 1 1 0
1 1 —1 0

V1 = 1) V2 = _1) V3 = O 9 V4 = 1 . (36)
1 -1 0 —1

Orthogonality of the vectors (3.6) with respect to the standard Euclidean dot product is
equivalent to orthogonality of the Haar wavelet functions with respect to the inner product
(3.1). Indeed, if

flx) ~ £=(f, fo, f3,fs) and g(x) ~ g= (91,99, 935 94)

are piecewise constant real functions that achieve the indicated values on the four subin-
tervals (3.5), then their L2 inner product

1
(f:9) :/0 f(z)g(x)dr = %(f191+f292+f393+f494) = %f'&

is equal to the averaged dot product of their sample values — the real form of the inner
product (2.8) that was used in the discrete Fourier transform.

Since the vectors (3.6) form an orthogonal basis of R*, we can uniquely decompose
any such piecewise constant function as a linear combination of wavelets

f(@) =c191(x) + capa(T) + c305(T) + cypy (),

7/29/18 18 @ 2018 Peter J. Olver

or, equivalently, in terms of the sample vectors,
f=cyvy+cyvy +egvy +c4vy.

The required coefficients
(fi91) f-v,

C = =
el v
are found using orthogonality. of the sample vectors Explicitly,
01:%(f1+f2+f3+f4)7 03:%(]01_]3):
o =5 (fi+fo—f5= fo), ¢y =5 (fs = fa)-

Before proceeding to the more general case, let us introduce an important analytical
definition that quantifies precisely how localized a function is.

Definition 3.1. The support of a function f(x), written supp f, is the closure of the
set where f(x) # 0.

Thus, a point will belong to the support of f(x), provided f is not zero there, or at
least is not zero at nearby points. More precisely:

Lemma 3.2. If f(a) # 0, then a € supp f. More generally, a point a € supp f if
and only if there exist a convergent sequence x,, — a such that f(x,) # 0. Conversely,
a & supp f if and only if f(z) =0 on an interval a — § < x < a + 0 for some § > 0.

Intuitively, the smaller the support of a function, the more localized it is. For example,
the support of the Haar mother wavelet (3.3) is suppw = [0,1] — the point =z = 0 is
included, even though w(0) = 0, because w(zx) # 0 at nearby points. The two daughter
wavelets have smaller support:

supp 5 = [0,1], supp ¢, = [3,1],

and so are twice as localized. An extreme case is the delta function, whose support is a
single point. In contrast, the support of the Fourier trigonometric basis functions is all of
R, since they only vanish at isolated points.

The effect of scalings and translations on the support of a function is easily discerned.

Lemma 3.3. Ifsupp f = |[a,b], and

at+d b+6
r r '

g(z) = f(roz—9), then suppg = { :

In other words, scaling x by a factor r compresses the support of the function by a
factor 1/r, while translating x translates the support of the function.

The key requirement for a wavelet basis is that it contains functions with arbitrarily
small support. To this end, the full Haar wavelet basis is obtained from the mother wavelet
by iterating the scaling and translation processes. We begin with the scaling function

o(z), (3.7)

7/29/18 19 @ 2018 Peter J. Olver

from which we construct the mother wavelet via (3.4). For any “generation” j > 0, we
form the wavelet offspring by first compressing the mother wavelet so that its support fits
into an interval of length 277,

w; o(z) = w(27), so that suppw; o = [0, 2771, (3.8)

and then translating w; ; so as to fill up the entire interval [0, 1] by 27 subintervals, each
of length 277, defining

w, 1 (7) = w; o(r — k) = w(2lx — k), where k=0,1,...27 — 1. (3.9)

Lemma 3.3 implies that suppw; , = [279k,277 (k+ 1)], and so the combined supports

of all the jth generation of wavelets is the entire interval: Uij:_olsupp w; = [0,1] . The
primal generation, j = 0, just consists of the mother wavelet

wo,o(l') = w(z).

The first generation, j7 = 1, consists of the two daughter wavelets already introduced as
5 and ¢,, namely

wy o(7) = w(2w), wy (7)) =w(2z —1).

The second generation, j = 2, appends four additional granddaughter wavelets to our
basis:

Wy () = w(dez), wyy(x) =wldz—1), wy,(x) =wldz—2), wys(r)=wlz—3).

The 8 Haar wavelets o, w o, Wy o, Wy 1, Wy o, Wa 1, Wy 5, Wy 5 are constant on the 8 subin-
tervals of length %, taking the successive sample values indicated by the columns of the
matrix

1 1 1 0 1 0 0 0
1 1 1 0 -1 0 0 0
1 1 -1 0 0 1 0 0
1 1 -1 0 0 -1 0 0
Ws = 1 -1 0 1 0 0 1 0 (3.10)
1 -1 0 1 0 0 -1 0
1 -1 0 -1 0 0 0 1
1 -1 0 -1 0 0 0 -1

Orthogonality of the wavelets is manifested in the orthogonality of the columns of Wj.
(Unfortunately, terminological constraints prevent us from calling Wy an orthogonal matrix
because its columns are not orthonormal!)

The nth stage consists of 2711 different wavelet functions comprising the scaling func-
tions and all the generations up to the nth : wy(z) = ¢(z) and w; ; (z) for 0 < j <n and
0 < k < 27. They are all constant on each subinterval of length 27771,

Theorem 3.4. The wavelet functions (), w; ,(z) form an orthogonal system with
respect to the inner product (3.1).

7/29/18 20 @ 2018 Peter J. Olver

Proof: First, note that each wavelet w; x(2) is equal to +1 on an interval of length
27971 and to —1 on an adjacent interval of the same length. Therefore,

(wjri9) :/0 w; (z) dz =0, (3.11)

since the +1 and —1 contributions cancel each other. If two different wavelets w; , and
w, ., With, say j < [, have supports which are either disjoint, or just overlap at a single
point, then their product w; ,(z) w, ,,(z) = 0, and so their inner product is clearly zero:

1
<wj,k;wl,m> = /0 ’U)%k(.’lﬂ') wl,m(x) dx = 0.

Otherwise, except in the case when the two wavelets are identical, the support of w, ,, is
entirely contained in an interval where w; ; is constant and so w; , (z) w, ,,(z) = £w, ,, ().

Therefore, by (3.11),
1

1
(w; 5wy) = /0 w; () wy,, (7)) de = + /0 Wy () dz = 0.

Finally, we compute

1 1
lol?= [do=1 JuglP= [werdi=z (312)

0 0
The second formula follows from the fact that |w; ,(x)| =1 on an interval of length 27/
and is 0 elsewhere. Q.E.D.

In direct analogy with the trigonometric Fourier series, the wavelet series of a signal
f(x) is given by

oo 29—

fl@) ~ coolx) + Y Z CipWj (3.13)

7=0 k=0

Orthogonality implies that the wavelet coefficients ¢y, ¢; ; can be immediately computed
using the standard inner product formula coupled with (3.12):

‘= ||90||2 /f

J j—1 —Jj
(Frw) 27 k42" ; 279 (k+1)
Cip= g =2 flx)de — 2 f(x)dx.
2

H wg,k H —Jk 2—Jk+2-i—1

(3.14)

The convergence properties of the wavelet series (3.13) are similar to those of Fourier series;
details can be found in [5, 14].

Example 3.5. In Figure 8, we plot the Haar expansions of the signal in the first plot.
The next plots show the partial sums over 5 =0,...,r with r = 2,3,4,5,6. We have used
a discontinuous signal to demonstrate that there is no nonuniform Gibbs phenomenon in
a Haar wavelet expansion. Indeed, since the wavelets are themselves discontinuous, they
do not have any difficult uniformly converging to a discontinuous function. On the other

7/29/18 21 @ 2018 Peter J. Olver

o~

Figure 8. Haar Wavelet Expansion.

hand, it takes quite a few wavelets to begin to accurately reproduce the signal. In the last
plot, we combine a total of 26 = 64 Haar wavelets, which is considerably more than would
be required in a comparably accurate Fourier expansion (excluding points very close to
the discontinuity).

Remark: To the novice, there may appear to be many more wavelets than trigono-
metric functions. But this is just another illusion of the magic show of infinite dimensional
space. The point is that they both form a countably infinite set of functions, and so could,
if necessary, but less conveniently, be numbered in order 1,2,3,.... On the other hand,
accurate reproduction of functions usually does require many more Haar wavelets. This
handicap makes the Haar system of less use in practical situations, and served to motivate
the search for a more sophisticated choice of wavelet basis.

Just as the discrete Fourier representation arises from a sampled version of the full
Fourier series, so there is a discrete wavelet transformation for suitably sampled signals.
To take full advantage of the wavelet basis, we sample the signal f(z) at n = 2" equally
spaced sample points z, = k/2", for k =0,...,n — 1, on the interval [0, 1]. As before, we
can identify the sampled signal with the vector

£ = (f(o) F@)s s f@n) = (forfrreeorfun)' €R™ (3.15)

Since we are only sampling on intervals of length 27", the discrete wavelet transform of our
sampled signal will only use the first n = 2" wavelets ¢(z) and w; ;(z) for j =0,...,r =1
and k = 0,...,2 — 1. Let w, ~ ¢(z) and W, ~ w; . (z) denote the corresponding
sampled wavelet vectors; all of their entries are either +1, —1, or 0. (When r = 3, so
n = 8, these are the columns of the wavelet matrix (3.10).) Moreover, orthogonality of
the wavelets immediately implies that the wavelet vectors form an orthogonal basis of R™
with n = 2. We can decompose our sample vector (3.15) as a linear combination of the

7/29/18 22 @ 2018 Peter J. Olver

sampled wavelets,

f=c,w

HMI

Z_ (3.16)

where, by our usual orthogonality formulae,

2" —1
B e =y 2
O w2 a
. k+2r—i=1 1 k+2779 -1 (3.17)
~ _<f?Wj,k:>_2j_T
k= Tw P > fi- X f
Wik i=k i=k+2r—i—1

These are the basic formulae connecting the functions f(x), or, rather, its sample vector
f, and its discrete wavelet transform consisting of the 2" coefficients ’C\O,ENC. The recon-

structed function
f(z) = Z Z (3.18)

<.

0
is constant on each subinterval of length 27", and has the same value

flx) = f(z;) = f(z;) = fis r,=2""i<w<w, =2""(i+1),
as our signal at the left hand endpoint of the interval. In other words, we are interpolating
the sample points by a piecewise constant (and thus discontinuous) function.

Modern Wawvelets

The main defect of the Haar wavelets is that they do not provide a very efficient means
of representing even very simple functions — it takes quite a large number of wavelets to
reproduce signals with any degree of precision. The reason for this is that the Haar
wavelets are piecewise constant, and so even an affine function y = ax + § requires many
sample values, and hence a relatively extensive collection of Haar wavelets, to be accurately
reproduced. In particular, compression and denoising algorithms based on Haar wavelets
are either insufficiently precise or hopelessly inefficient, and hence of minor practical value.

For a long time it was thought that it was impossible to simultaneously achieve the
requirements of localization, orthogonality and accurate reproduction of simple functions.
The breakthrough came in 1988, when, in her Ph.D. thesis, the Dutch mathematician In-
grid Daubechies produced the first examples of wavelet bases that realized all three basic
criteria. Since then, wavelets have developed into a sophisticated and burgeoning industry
with major impact on modern technology. Significant applications include compression,
storage and recognition of fingerprints in the FBI's data base, and the JPEG2000 image
format, which, unlike earlier Fourier-based JPEG standards, incorporates wavelet tech-
nology in its image compression and reconstruction algorithms. In this section, we will
present a brief outline of the basic ideas underlying Daubechies’ remarkable construction.

The recipe for any wavelet system involves two basic ingredients — a scaling function
and a mother wavelet. The latter can be constructed from the scaling function by a

7/29/18 23 @ 2018 Peter J. Olver

Figure 9. The Hat Function.

prescription similar to that in (3.4), and therefore we first concentrate on the properties of
the scaling function. The key requirement is that the scaling function must solve a dilation
equation of the form

p(x) = Z cp(2x — k) =cop(2x) + ¢ p2r — 1)+ --+ +c, 927 —p) (3.19)
k=0

for some collection of constants c, ..., ¢,- The dilation equation relates the function (z)
to a finite linear combination of its compressed translates. The coefficients ¢, .. ., ¢, are
not arbitrary, since the properties of orthogonality and localization will impose certain
rather stringent requirements.

Example 3.6. The Haar or box scaling function (3.2) satisfies the dilation equation
(3.19) with ¢, = ¢; = 1, namely

o(x) =p2x) + p(2z —1). (3.20)
We recommend that you convince yourself of the validity of this identity before continuing.

Example 3.7. Another example of a scaling function is the hat function

x, 0<x<1,
plr) =< 2—ux, 1<z <2, (3.21)
0, otherwise,

graphed in Figure 9, whose variants play a starring role in the finite element method,
[10,13]. The hat function satisfies the dilation equation

p(z) = 30(22) + o2z — 1) + 1 (22 — 2), (3.22)

which is (3.19) with ¢, = %, cg=1c= % Again, the reader should be able to check this
identity by hand.

N[—=

The dilation equation (3.19) is a kind of functional equation, and, as such, is not so
easy to solve. Indeed, the mathematics of functional equations remains much less well
developed than that of differential equations or integral equations. Even to prove that
(nonzero) solutions exist is a nontrivial analytical problem. Since we already know two
explicit examples, let us defer the discussion of solution techniques until we understand
how the dilation equation can be used to construct a wavelet basis.

7/29/18 24 @ 2018 Peter J. Olver

Given a solution to the dilation equation, we define the mother wavelet to be

p
2x—k:
ZO Cpr) (3.23)
¢, P(2x) —c, 12— 1) +c, 522 —2)+ -+ £cup(2z —p),

This formula directly generalizes the Haar wavelet relation (3.4), in light of its dilation
equation (3.20). The daughter wavelets are then all found, as in the Haar basis, by itera-
tively compressing and translating the mother wavelet:

w; () = w(2lx — k). (3.24)

In the general framework, we do not necessarily restrict our attention to the interval [0, 1]
and so 7 and k can, in principle, be arbitrary integers.

Let us investigate what sort of conditions should be imposed on the dilation coeffi-
cients ¢, ..., ¢, in order that we obtain a viable wavelet basis by this construction. First,
localization of the wavelets requires that the scaling function has bounded support, and
so p(x) = 0 when z lies outside some bounded interval [a,b]. If we integrate both sides of
(3.19), we find

/a o(x)dr = /_OO o(z)de = kgﬂ ¢ /_OO o2z — k) dz. (3.25)

Now using the change of variables y = 2x — k, with dz = % dy, we find

/ (2w Kyde = / " oy dy = / ' ola) da, (3.26)

— 0 — 00

where we revert to x as our (dummy) integration variable. We substitute this result back
b

into (3.25). Assuming that / o(x) dx # 0, we discover that the dilation coefficients must

satisfy
g+ - +c, =2 (3.27)

Example 3.8. Once we impose the constraint (3.27), the very simplest version of
the dilation equation is

p(x) =2¢(22) (3.28)

where ¢, = 2 is the only (nonzero) coefficient. Up to constant multiple, the only “solutions”
of the functional equation (3.28) with bounded support are scalar multiples of the delta
function d(x). Other solutions, such as ¢(z) = 1/x, are not localized, and thus not useful
for constructing a wavelet basis.

7/29/18 25 @ 2018 Peter J. Olver

The second condition we require is orthogonality of the wavelets. For simplicity, we
only consider the standard L2 inner product®

(fi9) :/_00 f(x) g(x)dx.

It turns out that the orthogonality of the complete wavelet system is guaranteed once we
know that the scaling function ¢(z) is orthogonal to all its integer translates:

(px);o(x—m)) = /_OO o(x) p(r —m)dr =0 for all m # 0. (3.29)
We first note the formula
(gp(2x—k);gp(2x—l)>z/_®o 0(x —k)p(2x —1)dz (3.30)

(p(@);p@+k—1))

N =

:%/_ng(x)gp(l‘-ﬁ-k—l)dx:

follows from the same change of variables y = 2x — k used in (3.26). Therefore, since ¢
satisfies the dilation equation (3.19),

(p(x);p(x—m)) = < Yogee—j)) o <p(2w—2m—k)> (3.31)

j=0 k=0

= Cjck<90(293—j);90(293—277”L—’€)>=1 > e (pl@)ip(a+j—2m—k)).
2
Jik=0 jik=0

If we require orthogonality (3.29) of all the integer translates of ¢, then the left hand side
of this identity will be 0 unless m = 0, while only the summands with 5 = 2m + k will be
nonzero on the right. Therefore, orthogonality requires that

2, m =0,
Z Com+k Ck =\ m £ 0 (3.32)

0<k<p—2m

The algebraic equations (3.27, 32) for the dilation coefficients are the key requirements for
the construction of an orthogonal wavelet basis.
For example, if we have just two nonzero coefficients ¢, ¢;, then (3.27, 32) reduce to

2 2

and so ¢, = ¢; = 1 is the only solution, resulting in the Haar dilation equation (3.20). If
we have three coefficients ¢, ¢, ¢y, then (3.27), (3.32) require

_ 22, 2 _ —
cotc+ecy =2, cpt+cl+c; =2, cyCqy = 0.

f In all instances, the functions have bounded support, and so the inner product integral can
be reduced to an integral over a finite interval where both f and g are nonzero.

7/29/18 26 @ 2018 Peter J. Olver

Thus either ¢, =0, ¢, = ¢; = 1, and we are back to the Haar case, or ¢y =0, ¢; = ¢, =1,
and the resulting dilation equation is a simple reformulation of the Haar case. In particular,
the hat function (3.21) does not give rise to orthogonal wavelets.

The remarkable fact, discovered by Daubechies, is that there is a nontrivial solution

for four (and, indeed, any even number) of nonzero coefficients ¢, ¢;, ¢y, c5. The basic
equations (3.27), (3.32) require
Co+ e +Cy+cy=2, Gt tcr=2, CoCy+cqc3 =0. (3.33)
The particular values
1+\/§ 3+\/§ 3—\/3 1—\/3 (334)
= "4 Q= =~ = , :

solve (3.33). These coefficients correspond to the Daubechies dilation equation

o(x) = L +4\/§ o(2x) + 3+4\/§ o2z —1) + & _4\/§ 2z —2) + ! _4\/3

o2z — 3).

(3.35)
A nonzero solution of bounded support to this remarkable functional equation will give
rise to a scaling function ¢(x), a mother wavelet

= 1 _4\/3 o(2x) — 3 _4\/§ ez —1)+ 3+4\/§ o(2x —2) — 1+4\/§

(;0(21. - 3)7

(3.36)
and then, by compression and translation (3.24), the complete system of orthogonal
wavelets w, ;. ().

Before explaining how to solve the Daubechies dilation equation, let us complete our
discussion of orthogonality. It is easy to see that, by translation invariance of the inner
product integral, since ¢(x) and ¢(z —m) are orthogonal whenever m # 0, so are p(z — k)
and p(z —[) for all k # . Next we seek to establish orthogonality of p(x —m) and w(z).
Combining the dilation equation (3.19) and the definition (3.23) of w, and then using
(3.29, 30), produces

w(x)

(w(z); p(z —m)) =< Yo (Wep e —4);) Cw(2w—2m—k)>

j=0 k=0

(=1 epjcp (922 = j) 1 0(22 — 2m — k))

(1) ¢y (9@ pa+ 5 —2m— k) = 5 3 (-1 e, o ses ol
k

where the sum is over all 0 < k < p such that 0 < 2m + k < p. Now, if p =2¢+ 1 is
odd, then each term in the final summation appears twice, with opposite signs, and hence
the result is always zero — no matter what the coefficients ¢y, ...,c, are! On the other
hand, if p = 2¢ is even, then orthogonality requires all ¢, = --- = ¢, = 0, and hence

7/29/18 27 @ 2018 Peter J. Olver

Figure 10. Approximating the Daubechies Wavelet.

¢(x) = 0 is completely trivial and not of interest. Indeed, the particular cases m = +gq
require ¢, = ¢, = 0; with this, setting m = + (¢ — 1) requires ¢, = ¢,—1 = 0, and so on.
Thus, to ensure orthogonality of the wavelet basis, the dilation equation (3.19) necessarily
has an even number of terms, meaning that p must be an odd integer, as it is in the Haar
and Daubechies versions (but not for the hat function). The proof of orthogonality of
the translates w(z — m) of the mother wavelet, along with all her wavelet descendants
w(2/x — k), relies on a similar argument, and the details are left as an exercise for the
reader.

Solving the Dilation Equation

Let us next discuss how to solve the dilation equation (3.19). The solution we are after
does not have an elementary formula, and we require a slightly sophisticated approach to
recover it. The key observation is that (3.19) has the form of a fixed point equation

¢ = Flp],

not in ordinary Euclidean space, but in an infinite-dimensional function space. With luck,
the fixed point (or, more correctly, fixed function) will be stable, and so starting with a
suitable initial guess ¢, (z), the successive iterates

(pn—l—l = F[(pn]

will converge to the desired solution: ¢, (x) — ¢(x). In detail, the iterative version of
the dilation equation (3.19) reads

p
Opar(x) = Z L, (22 — k), n=0,1,2,.... (3.37)
k=0

Before attempting to prove convergence of this iterative procedure to the Daubechies scal-
ing function, let us experimentally investigate what happens.

A reasonable choice for the initial guess might be the Haar scaling or box function
1, 0<t<1.

0, otherwise.

Po(x) = {

7/29/18 28 @ 2018 Peter J. Olver

In Figure 10, the subsequent iterates ¢, (), ©,(z), v (), p5(x), @,(z). There clearly ap-
pears to be convergence to some function ¢(z), although the final result looks a little
bizarre. Bolstered by this preliminary experimental evidence, we can now try to prove
convergence of the iterative scheme. This turns out to be true; a fully rigorous proof relies
on the Fourier transform, and can be found in [5].

Theorem 3.9. The functions converge ¢, () defined by the iterative functional
equation (3.37) converge uniformly to a continuous function ¢(x), called the Daubechies
scaling function.

Once we have established convergence, we are now able to verify that the scaling
function and consequential system of wavelets form an orthogonal system of functions.

Proposition 3.10. All integer translates p(x — k), for k € Z of the Daubechies
scaling function, and all wavelets w; ,(z) = w(2/x — k), j > 0, are mutually orthogonal

functions with respect to the L? inner product. Moreover, || ¢ ||* = 1, while || w; ;. [|> = 277.

Proof: As noted earlier, the orthogonality of the entire wavelet system will follow once
we know the orthogonality (3.29) of the scaling function and its integer translates. We use
induction to prove that this holds for all the iterates ¢, (z), and so, in view of uniform
convergence, the limiting scaling function also satisfies this property. We already know
that the orthogonality property holds for the Haar scaling function ¢,(z). To demonstrate
the induction step, we repeat the computation in (3.31), but now the left hand side is
(@ni1(®) ;0,11 (x —m)), while all other terms involve the previous iterate ¢, . In view of
the the algebraic constraints (3.32) on the wavelet coefficients and the induction hypoth-
esis, we deduce that (¢, (2);¢,,1(x —m)) = 0 whenever m # 0, while when m = 0,
| €nin I =l e, |17 Since || ¢, || =1, we further conclude that all the iterates, and hence
the limiting scaling function, all have unit L? norm. The proof of formula for the norms
of the mother and daughter wavelets is left as an exercise for the reader. Q.E.D.

In practical computations, the limiting procedure for constructing the scaling function
is not so convenient, and an alternative means of computing its values is employed. The
starting point is to determine its values at integer points. First, the initial box function
has values ¢,(m) = 0 for all integers m € Z except ¢,(1) = 1. The iterative functional
equation (3.37) will then produce the values of the iterates ¢, (m) at integer points m € Z.
A simple induction will convince you that ¢, (m) = 0 except for m = 1 and m = 2, and,
therefore, by (3.37),

343 1+¢§¢ _1-V3 3—¢§¢

()On—|—1(]'> - 4 Spn(l) + 4 n(2>7 (10n+1(2> - 4 Spn(l) + 4 n(2>7
since all other terms are 0. This has the form of a linear iterative system
vt — 4y (3.38)

with coefficient matrix

3+v3 1+V3

4 4
1-v3 3—-3
4 4

7/29/18 29 @ 2018 Peter J. Olver

A= and where v — (90”(1))

©,(2)

Figure 11. The Daubechies Scaling Function and Mother Wavelet.

Referring to [11; Chapter 9], the solution to such an iterative system is specified by
the eigenvalues and eigenvectors of the coefficient matrix, which are

14+v3 L -1
4

We write the initial condition as a linear combination of the eigenvectors
VO _ <<po(1)) _ <1) gy 1=VB
©o(2) 0 ! 2 2

1—+3 il—\/g
2

1+v3
<(’0<1)> = lim v(W =2v, = (1—2\/§>

gives the desired values of the scaling function:

_1-V3
2

The solution is

v = Ay — 9 Ay, —

Vy.

The limiting vector

143
= 1.366025.. . 0(2) = %f

p(m) =0, for all m #1,2.

With this in hand, the Daubechies dilation equation (3.35) then prescribes the function
values gp(%m) at all half integers, because when z = %m then 22—k = m—Fk is an integer.
Once we know its values at the half integers, we can re-use equation (3.35) to give its values
at quarter integers %m. Continuing onwards, we determine the values of ¢(z) at all dyadic
points, meaning rational numbers of the form x = m/2’ for m,j € Z. Continuity will
then prescribe its value at any other x € R since x can be written as the limit of dyadic
numbers z,, — namely those obtained by truncating its binary (base 2) expansion at the
nth digit beyond the decimal (or, rather “binary”) point. But, in practice, this latter step
is unnecessary, since all computers are ultimately based on the binary number system, and
so only dyadic numbers actually reside in a computer’s memory. Thus, there is no real
need to determine the value of ¢ at non-dyadic points.

¢(1) = —.366025... ,

(3.39)

7/29/18 30 @ 2018 Peter J. Olver

The preceding scheme was used to produce the graphs of the Daubechies scaling
function in Figure 11. It is continuous, but non-differentiable function — and its graph
has a very jagged, fractal-like appearance when viewed at close range. The Daubechies
scaling function is, in fact, a close relative of the famous example of a continuous, nowhere
differentiable function originally due to Weierstrass, [7, 8], whose construction also relies
on a similar scaling argument.

With the values of the Daubechies scaling function on a sufficiently dense set of dyadic
points in hand, the consequential values of the mother wavelet are given by formula (3.36).
Note that supp ¢ = suppw = [0,3]. The daughter wavelets are then found by the usual
compression and translation procedure (3.24).

The Daubechies wavelet expansion of a function whose support is contained inf [0, 1]
is then given by

o 27-1
f@) ~ o)+ D ejpw@). (3.40)
j=0 k=-2
The inner summation begins at k = —2 so as to include all the wavelet offspring w; ; whose

support has a nontrivial intersection with the interval [0, 1]. The wavelet coefficients ¢y, ¢;
are computed by the usual orthogonality formula

3
Co=<f;90>=/0 f(x) o(x) d,

277 (k+3) (3.41)

ep=(frw;) =2 / F()w, () di = / F(279 (& + k)) w(e) dr,

2-Jk
where we agree that f(x) = 0 whenever z < 0 or z > 1. In practice, one employs a
numerical integration procedure, e.g., the trapezoid rule, based on dyadic nodes to speed-
ily evaluate the integrals (3.41). A proof of completeness of the resulting wavelet basis
functions can be found in [5]. Compression and denoising algorithms based on retaining
only low frequency modes proceed as before, and are left as exercises for the reader to
implement.

Example 3.11. In Figure 12, we plot the Daubechies wavelet expansions of the same
signal for Example 3.5. The first plot is the original signal, and the following show the
partial sums of (3.40) over j = 0,...,r with r = 2,3,4,5,6. Unlike the Haar expansion,
the Daubechies wavelets do exhibit a nonuniform Gibbs phenomenon, where the expansion
noticeably overshoots near the discontinuity, [10], which can be observed at the interior
discontinuity as well as the endpoints, since the function is set to 0 outside the interval
[0,1]. Indeed, the Daubechies wavelets are continuous, and so cannot converge uniformly
to a discontinuous function.

! For functions with larger support, one should include additional terms in the expansion
corresponding to further translates of the wavelets so as to cover the entire support of the function.
Alternatively, one can translate and rescale x to fit the function’s support inside [0, 1].

7/29/18 31 @ 2018 Peter J. Olver

T

Figure 12. Daubechies Wavelet Expansion.

4. The Laplace Transform.

In engineering applications, the Fourier transform is often overshadowed by a close
relative. The Laplace transform plays an essential role in control theory, linear systems
analysis, electronics, and many other fields of practical engineering and science. How-
ever, the Laplace transform is most properly interpreted as a particular real form of the
more fundamental Fourier transform. When the Fourier transform is evaluated along the
imaginary axis, the complex exponential factor becomes real, and the result is the Laplace
transform, which maps real-valued functions to real-valued functions. Since it is so closely
allied to the Fourier transform, the Laplace transform enjoys many of its featured proper-
ties, including linearity. Moreover, derivatives are transformed into algebraic operations,
which underlies its applications to solving differential equations. The Laplace transform
is one-sided; it only looks forward in time and prefers functions that decay — transients.
The Fourier transform looks in both directions and prefers oscillatory functions. For this
reason, while the Fourier transform is used to solve boundary value problems on the real
line, the Laplace transform is much better adapted to initial value problems.

Since we will be applying the Laplace transform to initial value problems, we switch
our variable from z to t to emphasize this fact. Suppose f(¢) is a (reasonable) function
which vanishes on the negative axis, so f(t) = 0 for all t < 0. The Fourier transform of f

1s
-~ 1

fiy === [e an

since, by our assumption, its negative ¢t values make no contribution to the integral. The
Laplace transform of such a function is obtained by replacing ik by a real’ variable s,

T One can also define the Laplace transform at complex values of s, but this will not be required
in the applications discussed here.

7/29/18 32 @ 2018 Peter J. Olver

leading to -
F(s) = LIf ()] = / F(t)e st dt, (4.1)

where, in accordance with the standard convention, the factor of /27 has been omitted.
By allowing complex values of the Fourier frequency variable k, we may identify the Laplace
transform with v/27 times the evaluation of the Fourier transform for values of k = —1is
on the imaginary axis:

F(s)=V2rm f(—1is). (4.2)

Since the exponential factor in the integral has become real, the Laplace transform L takes
real functions to real functions. Moreover, since the integral kernel e~ *! is exponentially
decaying for s > 0, we are no longer required to restrict our attention to functions that
decay to zero as t — oo.

at

Example 4.1. Consider an exponential function f(t) = e®*, where the exponent «

is allowed to be complex. Its Laplace transform is

e 1
F(s)= / el gt = — (4.3)
0

S —«

Note that the integrand is exponentially decaying, and hence the integral converges, if and
only if Re (v — s) < 0. Therefore, the Laplace transform (4.3) is, strictly speaking, only
defined at sufficiently large s > Re a.. In particular, for an oscillatory exponential,

1 s+iw

Lle't] = P B provided s > 0.
—iw

Taking real and imaginary parts of this identity, we discover the formulae for the Laplace
transforms of the simplest trigonometric functions:

S w

ﬁ[COSWt] = m) ﬁ[smwt] = m . (44)
Two additional important transforms are
> —st 1 > —st 1 > —st 1
L[1] = e *tdt = —, L[t] = te”*'dt = — e *dt = —. (4.5)
0 s 0 s Jo s

The second computation relies on an integration by parts, making sure that the boundary
terms at s = 0, oo vanish.

Remark: In every case, we really mean the Laplace transform of the function whose
values are given for ¢ > 0 and is equal to 0 for all negative t. Therefore, the function 1 in
reality signifies the step function

1, t >0,
t) = 4.6
o={y oo (1.6
and so the first formula in (4.5) should more properly be written
1
Llo(t)] = 3 (4.7)

7/29/18 33 @ 2018 Peter J. Olver

However, in the traditional approach to the Laplace transform, one only considers the
functions on the positive t axis, and so the step function and the constant function are, from
this viewpoint, indistinguishable. However, once one moves beyond a purely mechanistic
approach, any deeper understanding of the properties of the Laplace transform requires
keeping this distinction firmly in mind.

Let us now pin down the precise class of functions to which the Laplace transform can
be applied.

Definition 4.2. A function f(t) is said to have exponential growth of order a if

| f(t)| < M e, for all t>t,, (4.8)
for some M > 0 and t, > 0.

Note that the exponential growth condition only depends upon the function’s behavior
for large values of t. If a < 0, then f is, in fact, exponentially decaying as x — oo. Since
et < et for a < b and all t > 0, if f(¢) has exponential growth of order a, it automat-
ically has exponential growth of any higher order b > a. All polynomial, trigonometric,
and exponential functions (with linear argument) have exponential growth. The simplest
example of a function that does not satisfy any exponential growth bound is f(t) = etz,
since it grows faster than any simple exponential e®?.

The following result guarantees the existence of the Laplace transform, at least for
sufficiently large values of the transform variable s, for a rather broad class of functions
that includes almost all of the functions that arise in applications.

Theorem 4.3. If f(t) is piecewise continuous and has exponential growth of order
a, then its Laplace transform F(s) = L] f(t)] is defined for all s > a.

Proof: The exponential growth inequality (4.8) implies that we can bound the inte-
grand in (4.1) by | f(t)e *t| < Mel@=5)t. Therefore, as soon as s > a, the integrand
is exponentially decaying as ¢ — oo, and this suffices to ensure the convergence of the
Laplace transform integral. Q.E.D.

Theorem 4.3 is an existential result, and of course, in practice, we may not be able to
explicitly evaluate the Laplace transform integral. Nevertheless, the Laplace transforms of
most common functions are not hard to find, and extensive lists have been tabulated, [9].
An abbreviated table of Laplace transforms can be found on the following page. Nowa-
days, the most convenient sources of transform formulas are computer algebra packages,
including MATHEMATICA and MAPLE.

According to [10; Theorem 8.15], when it exists, the Fourier transform uniquely spec-
ifies the function, except possibly at jump discontinuities where the limiting value must be
half way in between. An analogous result can be established for the Laplace transform.

Lemma 4.4. If f(t) and g(t) are piecewise continuous functions that are of expo-
nential growth, and L[f(t)] = L[g(t)] for all s sufficiently large, then f(t) = g(t) at all
points of continuity t > 0.

7/29/18 34 @ 2018 Peter J. Olver

Table of Laplace Transforms

ft) F(s)
1 1
¢ 1
" n!
t Py
i(t—c) e ¢
eozt 1
coswt sQ—iwz
sinwt -2 —th
e’ f(t) F(s—c)
o(t—rc) f(t—c) e *“F(s)
tf(t) —F"(s)
() s F'(s) = £(0)
F() s"F(s) = s"1 f(0) —
S"2F0) == FTR(0)
f(t)*g(t) F(s) G(s)

In this table, n is a non-negative integer, w is any real number, while ¢ > 0 is any
non-negative real number.

7/29/18 35 @ 2018 Peter J. Olver

In fact, there is an explicit formula for the inverse Laplace transform, which follows
from its identification, (4.2), with the Fourier transform along the imaginary axis. Under
suitable hypotheses, a given function F'(s) is the Laplace transform of the function f(t)
determined by the complex integral formula'

_ st . 4.9
5 F(s)e®tds, t>0 (4.9)

—ioo

f(t)

In practice, one hardly ever uses this complicated formula to compute the inverse Laplace
transform. Rather, one simply relies on tables of known Laplace transforms, coupled with
a few basic rules that will be covered in the following subsection.

The Laplace Transform Calculus
The first observation is that the Laplace transform is a linear operator, and so
LIf+g]=LIf]+L]g], Llcf]=cLlf], (4.10)

for any constant c¢. Moreover, just like its Fourier progenitor, the Laplace transform
converts calculus into algebra. In particular, differentiation turns into multiplication by
the transform variable, but with one additional term that depends upon the value of the
function at ¢ = 0.

Theorem 4.5. Let f(t) be continuously differentiable for t > 0 and have exponential
growth of order a. If L[f(t)] = F(s) then, for s > a,

LIF/()] = s F(s) — £(0). (4.11)
Proof: The proof relies on an integration by parts:
/ . > / —st _ —st Oo > —st
LIf'(t)] —/0 flt)e *tdt= f(t)e t_0+8/0 ft)ye *tdt

= lim f(t)e *" — f(0) + s F(s).

t— o0

The exponential growth inequality (4.8) implies that first term vanishes for s > a, and the

remaining terms agree with (4.11). Q.E.D.
Example 4.6. According to Example 4.1, the Laplace transform of the function
sinwt is w
Llsinwt] = —.
[sinwt] T

Its derivative is

—sinwt = wcoswt,

dt

T See [1,12] for details on complex integration. The stated formula doesn’t apply to all
functions of exponential growth. A more universally valid inverse Laplace transform formula is
obtained by shifting the complex contour to run from b — ioo to b+ ioo for some b > a, the order
of exponential growth of f.

7/29/18 36 @ 2018 Peter J. Olver

and therefore
ws

L t] =sLlsinwt] = ——=,
[weoswt] = s L[sinwt] T

since sinwt vanishes at ¢ = 0. The result agrees with (4.4). On the other hand,

— coswt = —wsinwt,
dt
and so
52 w?
L]l—wsinwt| = sL]coswt| - 1= ———-1=— —5——,
| | = sLleoswot] — 1= 57— -

again in agreement with the known formula.

Remark: The final term — f(0) in (4.11) is a manifestation of the discontinuity in f(¢)
at t = 0. Keep in mind that the Laplace transform only applies to functions with f(¢) =0
for all ¢ < 0, and so if f(0) # 0, then f(¢) has a jump discontinuity of magnitude f(0)
at t = 0. Therefore, by the calculus of generalized functions, its derivative f’(t) should
include a delta function term, namely f(0) §(0), which accounts for the additional constant
term in its transform. In the practical approach to the Laplace transform calculus, one
suppresses the delta function when computing the derivative f’(t). However, its effect
must reappear on the other side of the differentiation formula (4.11), and the upshot is the
extra term — f(0).

Laplace transforms of higher order derivatives are found by iterating the first order
formula (4.11). For example, if f € C2, then

L") =sLIf'(6)] = f'(0) = s> F(s) — s f(0) — f(0). (4.12)
In general, for an n times continuously differentiable function,
LIFM(#)] = s"F(s) = s" 71 f(0) = s"2f/(0) = -+ — f*7D(0). (4.13)

On the other hand, multiplying the function by t corresponds to differentiation of its
Laplace transform (up to a change of sign):

Lt ()] = — F'(s). (4.14)

The proof of this formula is left as an exercise for the reader.
Conversely, integration corresponds to dividing the Laplace transform by s, so

c [/Otf(f) dT} _F) (4.15)

S

Unlike the Fourier transform, there are no additional terms in the integration formula as
long as we start the integral at ¢ = 0. For instance,

n!
Sn+1 :

1 2
g[tz] = L[2t] = = and, more generally, L[t"] = (4.16)

There is also a shift formula, but with one important caveat. Since all functions must
vanish for ¢ < 0, we are only allowed to shift them to the right, a shift to the left would

7/29/18 37 @ 2018 Peter J. Olver

produce nonzero function values for some ¢t < 0. In general, the Laplace transform of the
function f(t — ¢) shifted to the right by an amount ¢ > 0, is

ﬁ[f(t—cﬂZ/Ooof(t—c)e‘“dt: Oof(t)e_s(t+c)dt (4.17)

0 00 00
= f(t)e= s+ dt—l—/ f(t)est+e) dt:e_“/ f(t)e stdt =e *C F(s).
—c 0 0

In this computation, we first used a change of variables in the integral, replacing ¢t — ¢ by
t; then, the fact that f(¢) = 0 for ¢ < 0 was used to eliminate the integral from —c to 0.
When using the shift formula in practice, it is important to keep in mind that ¢ > 0 and
the function f(¢ — ¢) vanishes for all ¢ < ¢. In the table, the factor o(t — ¢) is used to
remind the user of this fact.

1, b<t<e,
Example 4.7. Consider the square wave pulse f(t) = ' for some
0, otherwise,

0 < b < c. To compute its Laplace transform, we write it as the difference

f(t)=o(t=b)—a(t—c)
of shifted versions of the step function (4.6). Combining the shift formula (4.17) and the
formula (4.7) for the Laplace transform of the step function, we find

CLF®)] = Llo(t —b)] - Llo@t—c)] = — ¢ (4.18)

S

We already noted that the Fourier transform of the convolution product of two func-
tions is realized as the ordinary product of their individual transforms. A similar result
holds for the Laplace transform. Let f(t), g(t) be given functions. Since we are implicitly
assuming that the functions vanish at all negative values of ¢, their convolution product
reduces to a finite integral

h(t) = F(£) * g(t) = / f(t—7) g(r) dr. (4.19)

In particular h(t) = 0 for all ¢ < 0 also. Further, it is not hard to show that the convolution
of two functions of exponential growth also has exponential growth.

Theorem 4.8. If L] f(t)] = F(s) and L[g(t)] = G(s), then the convolution h(t) =
f(t) * g(t) has Laplace transform given by the product H(s) = F(s) G(s).

The proof of the convolution theorem for the Laplace transform proceeds along the
same lines as its Fourier transform version, [10; Theorem 8.13].

Applications to Initial Value Problems

The key application of the Laplace transform is to facilitate the solution of initial value
problems for linear, constant coefficient ordinary differential equations. As a prototypical
example, consider the second order initial value problem

d*u du du

= (0) = B, (4.20)

7/29/18 38 @ 2018 Peter J. Olver

in which a, b, c are constant. We will solve the initial value problem by applying the Laplace
transform to both sides of the differential equation. In view of the differentiation formulae
(4.11,12),

a(s*Llut)] — su(0) —a(0)) +b(sLlu(t)] —u(0)) + cLlu(t)] = L[f(t)].
Setting Llu(t)] = U(s) and L[f(t)] = F(s), and making use of the initial conditions, the
preceding equation takes the form
(as? +bs+c)U(s) = F(s)+ (as+b) a+ ap. (4.21)

Thus, by applying the Laplace transform, we have effectively reduced the entire initial
value problem to a single elementary algebraic equation! Solving for

F(s)+(as+b)a+ap
as?+bs+c

we then recover solution u(t) to the initial value problem by finding the inverse Laplace

transform of U(s). As noted earlier, in practice the inverse transform is found by suitably

massaging the answer (4.22) to be a combination of known transforms.

U(s) =

, (4.22)

Example 4.9. Consider the initial value problem

i+u=10e"3" u(0)=1, u(0)=2.
Taking the Laplace transform of the differential equation as above, we find
10 542 10

(s+1)U(s) —s—2= , and so U(s) =

+ .
s2+1 (s+3)(s?+1)
The second summand does not directly correspond to any of the entries in our table of
Laplace transforms. However, we can use the method of partial fractions to write it as a

sum
s+2 1 3—s 1 5

s2+1 +3+3+32+1 B 3+3+32+1
of terms appearing in the table. We conclude that the solution to our initial value problem
is

U(s) =

u(t) = e 2! + 5sint.

Of course, the last example is a problem that you can easily solve directly. The stan-
dard method learned in your first course on differential equations is just as effective in
finding the final solution, and does not require all the extra Laplace transform machin-
ery! The Laplace transform method is, however, particularly effective when dealing with
complications that arise in cases of discontinuous forcing functions.

Example 4.10. Consider a mass vibrating on a spring with fixed stiffness ¢ = 4.
Assume that the mass starts at rest, is then subjected to a unit force over time interval
%W < t < 2, after which it left to vibrate on its own. The initial value problem is

d? 1, lr<t<2nm,

0, otherwise,

7/29/18 39 @ 2018 Peter J. Olver

Taking the Laplace transform of the differential equation, and using (4.18), we find

e—Trs/Z — e—2ms e—Trs/Z — e—2ms

2 _ _
(s“+4)U(s) = . , and so U(s) = ST)
Therefore, by the shift formula (4.17)
u(t) =h(t—3m) —h(t—2m),

where h(t) is the function with Laplace transform

£l = 6 = s = (5~ 71)

(s244) 4\s s2+4

which has been conveniently rewritten using partial fractions. Referring to our table of
Laplace transforms,

0
+ i cos 2t, %
2

cos 2t,

I
—
~
N—
Il
N= = O

Note that the solution u(t) is only C! at the points of discontinuity of the forcing function.

Remark: A direct solution of this problem would proceed as follows. One solves
the differential equation on each interval of continuity of the forcing function, leading to
a solution on that interval depending upon two integration constants. The integration
constants are then adjusted so that the solution satisfies the initial conditions and is
continuously differentiable at each point of discontinuity of the forcing function. The details
are straightforward, but messy. The Laplace transform method successfully bypasses these
intervening manipulations.

Example 4.11. Consider the initial value problem

d*u 9 .

W"‘W u= f(1), u(0) = u(0) =0,
involving a general forcing function f(¢). Applying the Laplace transform to the differential
equation and using the initial conditions,

F(s)
2 2
U(s) = F dh U(s) = ———.
(s +w*)U(s) (s), and hence (s) 1
The right hand side is the product of the Laplace transform of the forcing function f(t)

and that of the trigonometric function k(t) = smwi

. Therefore, Theorem 4.8 implies that
the solution can be written as their convolution

ult) :f*k(t):/()tk(t—T)f(T)dT:/o

t Smwig f(r)dr. (4.23)

7/29/18 40 @ 2018 Peter J. Olver

where

sinwt £s0
k:(t):{ w ’

0, t<0.

The integral kernel k(¢ — 7) is known as the fundamental solution to the initial value
problem, and prescribes the response of the system to a unit impulse force that is applied
instantaneously at the time ¢ = 7. Note particularly that (unlike boundary value problems)
the impulse only affect the solutions at later times ¢ > 7. For initial value problems, the
fundamental solution plays a role similar to that of a Green’s function in a boundary
value problem. The convolution formula (4.23) can be viewed as a linear superposition of
fundamental solution responses induced by expressing the forcing function

0= [s)se-n)ar
0
as a superposition of concentrated impulses over time.

This concludes our brief introduction to the Laplace transform and a few of its many
applications to physical problems. More details can be found in almost all applied texts
on mechanics, electronic circuits, signal processing, control theory, and many other areas.

7/29/18 41 @ 2018 Peter J. Olver

References

Ahlfors, L., Complex Analysis, McGraw—Hill, New York, 1966.

Brigham, E.O., The Fast Fourier Transform, Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1974.

Briggs, W.L., Henson, V.E., The DFT. An Owner’s Manual for the Discrete Fourier
Transform; SIAM, Philadelphia, PA, 1995.

Cooley, J.W., and Tukey, J.W., An algorithm for the machine computation of
complex Fourier series, Math. Comp. 19 (1965), 297-301.

Daubechies, 1., Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.

Haar, A., Zur Theorie der orthogonalen Funktionensysteme, Math. Ann. 69 (1910),
331-371.

Hobson, E.W., The Theory of Functions of a Real Variable and the Theory of
Fourier’s Series, Dover Publ., New York, 1957.

Mandelbrot, B.B., The Fractal Geometry of Nature, W.H. Freeman, New York,
1983.

Oberhettinger, F., and Badii, L., Tables of Laplace Transforms, Springer-Verlag,
New York, 1973.

Olver, P.J., Introduction to Partial Differential Equations, Undergraduate Texts in
Mathematics, Springer—Verlag, New York, to appear.

Olver, P.J., and Shakiban, C., Applied Linear Algebra, Prentice—Hall, Inc., Upper
Saddle River, N.J., 2005.

Saff, E.B., and Snider, A.D., Fundamentals of Complexr Analysis, Third Ed.,
Prentice—Hall, Inc., Upper Saddle River, N.J., 2003.

Strang, G., and Fix, G.J., An Analysis of the Finite Element Method, Prentice—Hall,
Inc., Englewood Cliffs, N.J., 1973.

Walter, G.G., and Shen, X., Wawvelets and Other Orthogonal Systems, 2nd ed.,
Chapman & Hall/CRC, Boca Raton, F1, 2001.

7/29/18 42 @ 2018 Peter J. Olver

