Matrices: Type your matrix as follows:
Use **space** or **,** **;** **or return** after each row.

```
>> A = [4 5 6 -9;5 0 -3 6;7 8 5 0; -1 4 5 1]
```

or

```
>> A = [4,5,6,-9;5,0,-3,6;7,8,5,0;-1,4,5,1]
```

or

```
>> A = [ 4 5 6 -9
        5 0 -3 6
        7 8 5 0
      -1 4 5 1 ]
```

The output will be:

```
A =
 4  5  6  -9
 5  0  -3  6
 7  8  5  0
-1  4  5  1
```

You can identify an entry of a matrix by

```
>> A(2,3)
ans =
   -3
```

A colon : indicates all entries in a row or column

```
>> A(2,:)
ans =
  5  0 -3  6
```

```
>> A(:,3)
ans =
 6
-3
 5
 5
```

You can use these to modify entries

```
>> A(2,3) = 10
A =
 4  5  6  -9
 5  0 10  6
 7  8  5  0
-1  4  5  1
```
or to add in rows or columns

\[
>> \text{A}(5,:) = [0 \ 1 \ 0 \ -1]
\]

\[
\text{A} =
\begin{bmatrix}
4 & 5 & 6 & -9 \\
5 & 0 & 10 & 6 \\
7 & 8 & 5 & 0 \\
-1 & 4 & 5 & 1 \\
0 & 1 & 0 & -1
\end{bmatrix}
\]

or to delete them

\[
>> \text{A}(:,2) = []
\]

\[
\text{A} =
\begin{bmatrix}
4 & 6 & -9 \\
5 & 10 & 6 \\
7 & 5 & 0 \\
-1 & 5 & 1 \\
0 & 0 & -1
\end{bmatrix}
\]

Accessing Part of a Matrix:

\[
>> \text{A} = [4,5,6,-9;5,0,-3,6;7,8,5,0;-1,4,5,1]
\]

\[
\text{A} =
\begin{bmatrix}
4 & 5 & 6 & -9 \\
5 & 0 & -3 & 6 \\
7 & 8 & 5 & 0 \\
-1 & 4 & 5 & 1
\end{bmatrix}
\]

\[
>> \text{A}([1 \ 3],:)
\]

\[
\text{ans} =
\begin{bmatrix}
4 & 5 & 6 & -9 \\
7 & 8 & 5 & 0
\end{bmatrix}
\]

\[
>> \text{A}(:,2:4)
\]

\[
\text{ans} =
\begin{bmatrix}
5 & 6 & -9 \\
0 & -3 & 6 \\
8 & 5 & 0 \\
4 & 5 & 1
\end{bmatrix}
\]

\[
>> \text{A}(2:3,1:3)
\]

\[
\text{ans} =
\begin{bmatrix}
5 & 0 & -3 \\
7 & 8 & 5
\end{bmatrix}
\]
Switching two rows in a matrix:

```
>> A([3 1],:) = A([1 3],:)
A =
    7     8     5     0
    5     0    -3     6
    4     5     6    -9
   -1     4     5     1
```

The Zero matrix:

```
>> zeros(2,3)
an =
    0     0     0
    0     0     0

>> zeros(3)
an =
    0     0     0
    0     0     0
    0     0     0
```

Identity Matrix:

```
>> eye(3)
an =
    1     0     0
    0     1     0
    0     0     1
```

Matrix of Ones:

```
>> ones(2,3)
an =
    1     1     1
    1     1     1
```

Random Matrix:

```
>> A = rand(2,3)
A =
    0.9501    0.4860    0.4565
    0.2311    0.8913    0.0185
```

Note that the random entries all lie between 0 and 1.
Transpose of a Matrix:

```matlab
>> A = [4,5,6,-9;5,0,-3,6;7,8,5,0;-1,4,5,1]
A =
   4  5  6  -9
   5  0 -3   6
   7  8  5   0
  -1  4  5   1
```

```matlab
>> transpose(A)
ans =
   4  5  7  -1
   5  0  8   4
   6 -3  5   5
  -9  6  0   1
```

```matlab
>> A'
ans =
   4  5  7  -1
   5  0  8   4
   6 -3  5   5
  -9  6  0   1
```

Diagonal of a Matrix:

```matlab
>> diag(A)
ans =
   4
   0
   5
   1
```

Row vector:

```matlab
>> v = [1 2 3 4 5]
v =
   1  2  3  4  5
```

Column vector:

```matlab
>> v = [1;2;3;4;5]
v =
   1
   2
   3
   4
   5
```
or use transpose operation ‘

```matlab
>> v = [1 2 3 4 5]’
v =
   1
   2
   3
   4
   5
```

Forming Other Vectors:

```matlab
>> v = [1:5]
v =
   1    2    3    4    5
>> v = [10:-2:0]
v =
   10    8    6    4    2    0
>> v = linspace(0,1,6)
v =
   0   0.2000   0.4000   0.6000   0.8000   1.0000
```

Important: to avoid output, particularly of large matrices, use a semicolon ; at the end of the line:

```matlab
>> v = linspace(0,1,100);
gives a row vector whose entries are 100 equally spaced points from 0 to 1.
```

Size of a Matrix:

```matlab
>> A = [4 5 6 -9 7;5 0 -3 6 -2;7 8 5 0 5; -1 4 5 1 -9 ]
A =
   4    5    6   -9    7
   5    0   -3    6   -2
   7    8    5    0    5
  -1    4    5    1   -9
>> size(A)
ans =
   4    5
>> [m,n] = size(A)
m =
   4
n =
   5
```
Output Formats

The command `format` is used to change output format. The default is

```matlab
>> format short
>> pi
ans =
  3.1416
>> format long
>> pi
ans =
  3.14159265358979
>> format rat
>> pi
ans =
  355/113
```

This allows you to work in rational arithmetic and gives the “best” rational approximation to the answer. Let’s return to the default.

```matlab
>> format short
>> pi
ans =
  3.1416
```
Arithmetic operators

+ **Matrix addition.**

A + B adds matrices A and B. The matrices A and B must have the same dimensions unless one is a scalar (1 × 1 matrix). A scalar can be added to anything.

\[A = \begin{bmatrix} 4 & 5 & 6 & -9 \\ 5 & 0 & -3 & 6 \\ 7 & 8 & 5 & 0 \\ -1 & 4 & 5 & 1 \end{bmatrix} \]

\[B = \begin{bmatrix} 9 & 2 & 4 & -9 \\ 4 & 1 & -2 & -6 \\ 8 & 1 & 7 & 0 \\ -3 & -4 & 5 & 9 \end{bmatrix} \]

\[A + B = \begin{bmatrix} 13 & 7 & 10 & -18 \\ 6 & 4 & -5 & 0 \\ 15 & 9 & 12 & 0 \\ -4 & 0 & 10 & 10 \end{bmatrix} \]

- **Matrix subtraction.**

A - B subtracts matrix A from B. Note that A and B must have the same dimensions unless one is a scalar.

\[A = \begin{bmatrix} 4 & 5 & 6 & -9 \\ 5 & 0 & -3 & 6 \\ 7 & 8 & 5 & 0 \\ -1 & 4 & 5 & 1 \end{bmatrix} \]

\[B = \begin{bmatrix} 9 & 2 & 4 & -9 \\ 4 & 1 & -2 & -6 \\ 8 & 1 & 7 & 0 \\ -3 & -4 & 5 & 9 \end{bmatrix} \]

\[A - B = \begin{bmatrix} -5 & 3 & 2 & 0 \\ 4 & -4 & -1 & 12 \\ -1 & 7 & -2 & 0 \\ 2 & 8 & 0 & -8 \end{bmatrix} \]

* **Scalar multiplication**

\[3A - 4B = \begin{bmatrix} -24 & 7 & 2 & 9 \\ 11 & -16 & -1 & 42 \\ -11 & 20 & -13 & 0 \\ 9 & 28 & -5 & -33 \end{bmatrix} \]
* Matrix multiplication.

A*B is the matrix product of A and B. A scalar (a 1-by-1 matrix) may multiply anything. Otherwise, the number of columns of A must equal the number of rows of B.

```matlab
>> A * B
ans =
    116    70     3   -147
     3   -17    29     9
    111    51    47   -111
    32    15    28    -6
```

Note that two matrices must be compatible before we can multiply them.

* The order of multiplication is important!

```matlab
>> v = [1 2 3 4]
v =
    1     2     3     4
>> w = [1;2;3;4]
w =
     1
     2
     3
     4
>> v * w
ans =
    30
>> w * v
ans =
    1     2     3     4
    2     4     6     8
    3     6     9    12
    4     8    12    16
```

.* Array multiplication

A.*B denotes element-by-element multiplication. A and B must have the same dimensions unless one is a scalar.

A scalar can be multiplied into anything.

```matlab
>> a = [3 4 5 6 7 8 9]
a =
    3     4     5     6     7     8     9
>> b = [8 6 2 4 5 6 -1]
b =
    8     6     2     4     5     6    -1
```
>> a .* b
ans =
 24 24 10 24 35 48 -9

^ Matrix power.

C = A ^ n is A to the n-th power if n is a scalar and A is square. If n is an integer
greater than one, the power is computed by repeated multiplication.

>> A = [4 5 6 -9; 5 0 -3 6; 7 8 5 0; -1 4 5 1]
A =
 4 5 6 -9
 5 0 -3 6
 7 8 5 0
 -1 4 5 1

>> A ^ 3
ans =
 501 352 351 -651
 451 169 -87 174
 1103 799 533 -492
 445 482 413 -182

^ Array power.

C = A .^ B denotes element-by-element powers. A and B must have the same dimen-
sions unless one is a scalar. A scalar can go in either position.

>> A = [8 6 2 4 5 6 -1]
A =
 8 6 2 4 5 6 -1

>> A .^ 3
ans =
 512 216 8 64 125 216 -1

Length of a Vector, Norm of a Vector, Dot Product

>> u = [8 -7 6 5 4 -3 2 1 9]
u =
 8 -7 6 5 4 -3 2 1 9

>> length(u)
ans =
 9
>> norm(u)
ans =
 16.8819
>> v = [9 -8 7 6 -4 5 0 2 -4]
v =
 9 -8 7 6 -4 5 0 2 -4
>> dot(u,v)
ans =
 135
>> u'*v
ans =
 135

Complex vectors:
>> u = [2-3i, 4+6i,-3,+2i]
u =
 2.0000- 3.0000i 4.0000+ 6.0000i -3.0000 0+ 2.0000i
>> conj(u)
ans =
 2.0000+ 3.0000i 4.0000- 6.0000i -3.0000 0- 2.0000i

Hermitian transpose:
>> u'
ans =
 2.0000+ 3.0000i
 4.0000- 6.0000i
 -3.0000
 0- 2.0000i
>> norm(u)
ans =
 8.8318
>> dot(u,u)
ans =
 78
>> sqrt(ans)
ans =
 8.8318
>> u'*u
ans =
 78
Solving Systems of Linear Equations

The best way of solving a system of linear equations

\[A \mathbf{x} = \mathbf{b} \]

in MATLAB is to use the backslash operation \ (backwards division)

\[\begin{array}{c}
>> A = [1 2 3;-1 0 2;1 3 1] \\
A = \\
1 2 3 \\
-1 0 2 \\
1 3 1 \\
\end{array} \]

\[\begin{array}{c}
>> b = [1; 0; 0] \\
b = \\
1 \\
0 \\
0 \\
\end{array} \]

\[\begin{array}{c}
>> x = A \backslash b \\
x = \\
0.6667 \\
-0.3333 \\
0.3333 \\
\end{array} \]

The backslash is implemented by using Gaussian elimination with partial pivoting. An alternative, but less accurate, method is to compute inverses:

\[\begin{array}{c}
>> B = \text{inv}(A) \\
B = \\
0.6667 -0.7778 -0.4444 \\
-0.3333 0.2222 0.5556 \\
0.3333 0.1111 -0.2222 \\
\end{array} \]

or

\[\begin{array}{c}
>> B = A \wedge (-1) \\
B = \\
0.6667 -0.7778 -0.4444 \\
-0.3333 0.2222 0.5556 \\
0.3333 0.1111 -0.2222 \\
\end{array} \]

\[\begin{array}{c}
>> x = B * b \\
x = \\
0.6667 \\
-0.3333 \\
0.3333 \\
\end{array} \]
Another method is to use the command rref:

To solve the following system of linear equations:

\[
\begin{align*}
 x_1 + 4x_2 - 2x_3 + 3x_4 &= 2 \\
 2x_1 + 9x_2 - 3x_3 - 2x_4 &= 5 \\
 x_1 + 5x_2 - x_4 &= 3 \\
 3x_1 + 14x_2 + 7x_3 - 2x_4 &= 6
\end{align*}
\]

we form the augmented matrix:

>> A = [1,4,-2,3,2; 2,9,-3,-2,5; 1,5,0,-1,3; 3,14,7,-2,6]
A =
1 4 -2 3 2
2 9 -3 -2 5
1 5 0 -1 3
3 14 7 -2 6

>> rref(A)
ans =
1.0000 0 0 0 -5.0256
0 1.0000 0 0 1.6154
0 0 1.0000 0 -0.2051
0 0 0 1.0000 0.0513

The solution is: \(x_1 = -5.0256, \ x_2 = 1.6154, \ x_3 = -0.2051, \ x_4 = 0.0513 \).

Case 1: Infinitely many solutions:

>> A = [-2 2 -2; 1 -1 1; 2 -2 2]
A =
-2 2 -2
1 -1 1
2 -2 2

>> b = [-8; 4; 8]
b =
-8
4
8

>> A \ b
Warning: Matrix is singular to working precision.
ans =
∞
∞
∞

MATLAB is unable to find the solutions;
In this case, we can apply \texttt{rref} to the augmented matrix.

\[
\begin{bmatrix}
-2 & 2 & -2 & -8 \\
1 & -1 & 1 & 4 \\
2 & -2 & 2 & 8
\end{bmatrix}
\]

You can use \texttt{rrefmovie} to see each step of Gaussian elimination.

\[
\begin{bmatrix}
1 & -1 & 1 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
Conclusion: There are infinitely many solutions since row 2 and row 3 are all zeros.

Case 2: No solutions:

```matlab
>> A = [-2 1; 4 -2]
A =
   -2    1
    4   -2
>> b = [5; -1]
b =
    5
   -1
>> A \ b
Warning: Matrix is singular to working precision.
ans =
   Inf
   Inf
>> C = [A b]
C =
   -2    1    5    4   -2   -1
>> rref(C)
ans =
   1.0000  -0.5000    0
   0     0    1.0000
```

Conclusion: Row 2 is not all zeros, and the system is incompatible.
Important: If the coefficient matrix A is rectangular (not square) then $A \backslash b$ gives the least squares solution (relative to the Euclidean norm) to the system $A x = b$. If the solution is not unique, it gives the least squares solution x with minimal Euclidean norm.

```
>> A = [1 1; 2 1; -5, -1]
A =
    1    1
    2    1
   -5   -1
>> b = [1;1;1]
b =
   1
   1
   1
>> A \ b
ans =
   -0.5385
    1.7692
```

If you want the least squares solution in the square case, one trick is to add an extra equation $0 = 0$ to make the coefficient matrix rectangular:

```
>> A = [-2 2 -2;1 -1 1; 2 -2 2]
A =
   -2    2   -2
    1   -1    1
    2   -2    2
>> b=[-8;4;8]
b =
   -8
    4
    8
>> A \ b
Warning: Matrix is singular to working precision.
ans =
   ∞
   ∞
   ∞
>> A(:,4) = 0
A =
   -2    2   -2
    1   -1    1
    2   -2    2
   0    0    0
```
b(4) = 0

b =
 -8
 4
 8
 0

A \ b

Warning: Rank deficient, rank = 1 tol = 2.6645e-15.

ans =
 4.0000
 0
 0
 0
Functions

Functions are vectors! Namely, a vector x and a vector y of the same length correspond to the sampled function values (x_i, y_i).

To plot the function $y = x^2 - .5x$ first enter an array of independent variables:

```matlab
>> x = linspace(0,1,25)
>> y = x.^2 - .5 *x;
>> plot(x,y)
```

The plot shows up in a new window. To plot in a different color, use

```matlab
>> plot(x,y,'r')
```

where the character string 'r' means red. Use the helpwindow to see other options.

To plot graphs on top of each other, use `hold on`.

```matlab
>> hold on
>> z = exp(x);
>> plot(x,z)
>> plot(x,z,'g')
```

`hold off` will stop simultaneous plotting. Alternatively, use

```matlab
>> plot(x,y,'r',x,z,'g')
```

Surface Plots

Here x and y must give a rectangular array, and z is a matrix whose entries are the values of the function at the array points.

```matlab
>> x =linspace(-1,1,40); y = x;
>> z = x’ * (y.^2);
>> surf(x,y,z)
```

Typing the command

```matlab
>> rotate3d
```

will allow you to use the mouse interactively to rotate the graph to view it from other angles.