
Puzzle Programs

! This document contains two sections: Generator and Noisy, which correspond to
the folders in the solving algorithm folder. Although there are two additional folders
called Egg and Synthetic, each contains nearly the same code with different smoothing
parameters, interference thresholds, segmentation thresholds, etc. Each section is
organized into main and called programs. The main program is the program that the
user must use to generate or solve a puzzle. The called programs are called in the main
program, so the user will never directly run these programs. If a program is italicized,
then either it was found online or Rob’s Macalester students wrote it.

I. Generator

A. Main Program
! !

PuzzleGenerator.mPuzzleGenerator.m

Input None. The user will be asked a series of questions,
where the user must enter the number of pieces, edge
style, and puzzle shape

Function Generates the puzzle

Output Puzzle with discretized edges in the form of a cell array.
This output may be inputted into NoisySolver.m or
Synthetic Solver.

B. Called Programs
!

voronoisphere.m Generates a spherical Voronoi diagram.

CurvyEdge.m
Generates a curvy shaped puzzle edge given four
points from the Voronoi diagram. The output is a
discretized Bezier curve that forms the puzzle edge

JigsawEdge.m
Generates a curvy shaped puzzle edge given four
points from the Voronoi diagram. The output is a
discretized Bezier curve that forms the puzzle edge

II. ! ! Noisy

A. Main Program
!

NoisySolver.mNoisySolver.m

Input Synthetically generated puzzle from the program
PuzzleGenerator.m. After generating a synthetic puzzle,
you can solve the puzzle by entering:
NoisySolver(puzzle)

Function Scrambles the puzzle, detects matching edges, and
assembles matching edges together

Output Fully assembled puzzle, which is in the form of a cell
array

B. Called Programs

scrambler3d.m Scrambles the pieces by performing a rigid
transformation to each puzzle piece.

KappaSegmentation.m Partitions the signature wrt the kappa axis.

compareEgg3DEXP.m Calculates the similarity score between two puzzle
edges’ signatures.

PutTogetherAdvanced2.m Assembles two edges together and determines whether
the edges are outdented or indented

AssemblyRevise.m

Assemblies the matching edges using the seed
methodology. A piece is selected as the seed and all of
its matching edges are assembled to it. Sequentially, the
seeds of the original piece will become the new seed.
The seed methodology is an effort to avoid sub puzzle
assembly

UpdateSolution.m Called directly after AssemblyRevise.m in order to
detect inadvertent matches

PutTogetherAdvanced.m Assembles matching edges together

! C. Called by Called Programs

compsig.m Computes signature curve of each puzzle piece

estimateRigidTransform.m Computes rigid transformation matrix to assemble two
matching edges together

HausdorffDist.m Calculates the Hausdorff distance between two
assembled edges in order to detect false positive
matches

InterferenceDetection.m Calculates the surface area of overlap and space
between two assembled edges

Noise.m Adds noise to each puzzle piece

RotatePiece.m Assembles two matching edges together by using the
rigid transformation matrix from
estimateRigidTransform.m

Smoother.m Smooths a noisy puzzle piece

SmootherSegments.m Smooths each puzzle edge and signature, which insures
that each edge has a uniform number of points. Note:
the degree of smoothing is very minimal

