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Abstract. Given a Lie group acting on a manifold, our aim is to analyze the evolution
of differential invariants under invariant submanifold flows. The constructions are based on
the equivariant method of moving frames and the induced invariant variational bicomplex.
Applications to integrable soliton dynamics, and to the evolution of differential invariant
signatures, used in equivalence problems and object recognition and symmetry detection
in images, are discussed.

1. Introduction.

Let G be a transformation group acting smoothly on an m-dimensional manifold M .
By an invariant submanifold flow , we mean a G-invariant evolutionary partial differential
equation

∂S

∂t
= Φ[S]

governing the motion of p-dimensional submanifolds S ⊂ M . Invariance requires that G
is a symmetry group of the partial differential equation, [46]: if S(t) is any solution and

g ∈ G any fixed group transformation, then S̃(t) = g · S(t) is another solution. General
classification results for invariant evolution equations can be found in [47, 52].

Invariant curve flows, where p = 1, and surface flows, where p = 2, arise in an impres-
sive range of applications, including geometric optics, [6], elastodynamics, [33], computer
vision, [52, 53, 58, 60, 62], visual tracking and control, [43], vortex dynamics, [25, 32],
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interface motions, [62], thermal grooving, [7], and elsewhere. A celebrated example is the
Euclidean invariant curve shortening flow, [20, 21], in which a plane curve moves in its
normal direction in proportion to its curvature. In computer vision, Euclidean curve short-
ening and its equi-affine counterpart have been successfully applied to image denoising and
segmentation, [52, 59, 60]. In three dimensional space, Euclidean-invariant curve flows in-
clude the integrable vortex filament flow, [25, 32], while mean curvature and Willmore
flows of surfaces have been the subject of extensive analysis and applications, [5, 13].

Given an invariant submanifold flow, a key issue is to track the induced evolution of
its basic geometric invariants — curvature, torsion and the like. While a number of partic-
ular examples have been worked out by direct computation, e.g., in [20, 39, 40, 41], many
cases of interest have yet to appear in the literature, owing in part to the complexity of the
required calculations. Therefore, it is worth developing general, practical computational
tools to facilitate this often tedious task. Mansfield and van der Kamp, [34], have already
proposed applying the equivariant moving frame methods developed by the author and
many collaborators, cf. [15, 49], to this issue. Their approach focusses on the differential
invariant syzygies. The present paper takes a direct approach, applying computational
tools developed in [29] for handling the G–invariant variational bicomplex. Certain in-
variant differential operators used in the analysis of invariant variational problems also
play a key role here.

Any submanifold flow — invariant or otherwise — naturally splits into tangential and
normal components. As far as the extrinsic properties of the submanifold are concerned,
the tangential component is irrelevant, in that it only induces a reparametrization. On
the other hand, tangential flows do affect the evolution of differential invariants as the
points move around within the submanifold. Our computational techniques are designed
to handle any desired combination of tangential and normal evolution. In practice, there
are two principal variants: Flows with no tangential components will be called normal

flows , keeping in mind that the “normal direction” is specified not by an underlying metric
(indeed, G need not act isometrically or conformally), but rather by the (or, more correctly,
a) moving frame induced by the transformation group. Normal flows play the predominant
role in engineering, computer vision, and most geometric applications.

Alternatively, one can require that the flow be intrinsic, meaning that it preserves
the group-adapted (co)frame as the submanifold evolves. In the case of curves, a flow is
intrinsic if and only if it preserves arc length. Remarkably, in many classical geometries,
certain basic intrinsic curve flows induce integrable, soliton evolutions for the differen-
tial invariants. The prototypical example is the Euclidean–invariant vortex filament flow
studied by Hasimoto, [25, 31, 32]. The curvature and torsion invariants of the evolving
filament satisfy an integrable dynamical system, which can be mapped to the completely
integrable nonlinear Schrödinger equation, [1]. This led Lamb, [30], to draw attention
to the surprisingly common, but still poorly understood connection between invariant
curve flows and integrable soliton dynamics; since then, many other examples have been
found, [4, 10, 12, 14, 22, 24, 28, 35, 36, 37, 42, 54, 56]. By “integrable” we shall mean
that the evolution equation possesses a recursion operator, [44], inducing an infinite hi-
erarchy of higher order symmetries. As we will see, the invariant variational bicomplex
provides a natural candidate that turns out to be the recursion operator in many examples.
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However, not all induced differential invariant evolutions are integrable, and, at present,
we do not understand the general conditions on the group action and invariant curve
flow needed to guarantee integrability. Extensions to surface evolutions can be found in
[9, 11, 16, 17, 38, 54].

As a consequence of the Cartan solution to the equivalence problem for submanifolds
under group actions, [47], the differential invariant signature associated with a submani-
fold, [8], was proposed as a general, mathematically rigorous method for object recognition
in the presence of symmetry groups. For example, the signature of a plane curve under
Euclidean transformations is the curve parametrized by its curvature invariant and the
derivative of curvature with respect to arc length. Several numerical experiments involv-
ing the effect of the curve shortening flow on the differential invariant signature were
conducted, with encouraging results. However, to date there has been no systematic effort
to investigate the behavior of the induced signature flow, and our first task is to show how
the induced signature flow follows from the differential invariant evolution, in preparation
for subsequent analysis and applications.

2. The Invariant Variational Bicomplex.

We begin by quickly reviewing the basics of prolonged group actions on submanifold
jets, moving frames and the induced invariant variational bicomplex. Basic references
include [46, 47] for jets, contact forms, and prolonged Lie group actions, [2, 63] for the
variational bicomplex, [15, 49, 50] for the equivariant approach to moving frames, and [29]
for the moving frame construction of the invariant variational bicomplex. For simplicity, we
will only deal with finite-dimensional Lie group actions in this paper, although the general
ideas can be straightforwardly adapted to infinite-dimensional pseudo-group actions using
more recent extensions of the moving frame technology, [51].

LetG be an r-dimensional Lie group, acting smoothly on am-dimensional manifoldM .
We will study the induced action on p-dimensional submanifolds S ⊂M . For 0 ≤ n ≤ ∞,
let Jn = Jn(M, p) denote the nth order (extended) jet bundle for such submanifolds, [47].
The action of G on M naturally prolongs to an action on Jn. Since the prolonged group
actions are all mutually compatible under projection Jn → Jk, we will avoid explicit
reference to the order of prolongation, and just use g · z(n) for the action of g ∈ G on the
jet z(n) ∈ Jn, rather than the more traditional notation g(n) · z(n).

Let† ρ : Jn → G be a right-equivariant‡ moving frame, meaning that ρ(g · z(n)) =
ρ(z(n)) · g−1 for all g ∈ G and all z(n) ∈ Jn. Moving frames require freeness and regularity
of the prolonged group action, and are explicitly constructed by a normalization process
based on the choice of a compatible cross-section Kn ⊂ Jn to the group orbits. Specifically,
given z(n) ∈ Jn, we set g = ρ(z(n)) to be the unique group element such that g · z(n) ∈ Kn,

† All maps, differential forms, differential functions, etc., need only be locally defined; thus,
the domain of ρ is typically a suitable open subset of Jn.

‡ All classical moving frames, [23], are left-equivariant, and can be obtained by composing

ρ with the group inversion map g 7−→ g
−1. We choose to concentrate on the right-equivariant

version to (slightly) simplify some of the required calculations.
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where defined. Compatibility of moving frames under the jet space projections allows us
to also suppress the order in the notation of ρ.

We use ι to denote the invariantization process induced by the moving frame. The
invariantization of a differential form Ω is the unique differential form ι(Ω) that agrees
with Ω when restricted to the cross-section. Invariantization defines an (exterior) algebra
morphism that projects differential functions and forms on Jn to invariant differential
functions and forms.

Calculations take place in local coordinates. Let (x, u) = (x1, . . . , xp, u1, . . . , uq) be
local coordinates onM . Viewing the x’s as independent variables and the u’s as dependent
variables, we let uαJ = ∂#Ju/∂xJ be the usual induced local coordinates on Jn. Invarianti-
zation of the jet coordinate functions produces the fundamental differential invariants :

Hi = ι(xi), IαJ = ι(uαJ ), α = 1, . . . , q, #J ≥ 0. (2.1)

These naturally split into two classes: The r = dimG combinations of fundamental differ-
ential invariants appearing in the cross-section equations are constant, and known as the
phantom differential invariants . The remainder, called the basic differential invariants ,
form a complete system of functionally independent differential invariants.

Separating the local coordinates (x, u) on M into independent and dependent vari-
ables naturally splits the differential one-forms on J∞ into horizontal forms , spanned by
dx1, . . . , dxp, and vertical forms , spanned by the basic contact one-forms

θαJ = duαJ −

p∑

i=1

uαJ,i dx
i, α = 1, . . . , q, #J ≥ 0. (2.2)

Let πH and πV denote the projections mapping one-forms on J∞ to their horizontal and
vertical (contact) components, respectively. The induced splitting d = dH + dV of the
differential into horizontal and vertical components results in the variational bicomplex . In
particular, if F (x, u(n)) is any differential function, its horizontal and vertical differentials
are

dH F =

p∑

i=1

(DiF ) dx
i, dV F = DF (θ) =

∑

α,J

∂F

∂uαJ
DJθ

α =
∑

α,J

∂F

∂uαJ
θαJ , (2.3)

in which Di = Dxi denote the total derivative operators with respect to the independent
variables, DJ = Dj1

· · · Djk
are the higher order total derivatives, θ = (θ1, . . . , θq)T is

the column vector containing the order zero contact forms, while DF = (DF,1, . . . ,DF,q)
is the Fréchet derivative or formal linearization of the differential function F .

We will employ our moving frame to invariantize the variational bicomplex as follows.
First, let

̟i = ωi + ηi = ι(dxi), where ωi = πH(̟i), ηi = πV (̟
i), i = 1, . . . , p, (2.4)

denote the invariantized horizontal one-forms . Their horizontal components ω1, . . . , ωp

form, in the language of [47], a contact-invariant coframe for the prolonged group action,
while η1, . . . , ηp supply “contact corrections” that make the one-forms ̟1, . . . , ̟p fully
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G-invariant. The corresponding dual invariant total differential operators D1, . . . ,Dp are
defined so that

dH F =

p∑

i=1

(DiF )̟
i, dH Ω =

p∑

i=1

̟i ∧ DiΩ, (2.5)

for any differential function F and, more generally, differential form Ω, on which the Di

act via Lie differentiation. Finally, let

ϑαJ = ι(θαJ ), α = 1, . . . , q, #J ≥ 0, (2.6)

be the invariantized basis contact forms .

As in the usual, non-invariant bicomplex construction, the decomposition of invariant
one-forms on J∞ into invariant horizontal and invariant contact components induces a
decomposition of the differential. However, now d = dH + dV + dW splits into three
constituents, where dH adds an invariant horizontal form, dV adds a invariant contact
form, while dW replaces an invariant horizontal one-form with a combination of wedge

products of two invariant contact forms. In other words, if we let Ω̃r,s denote the space
of differential forms of degree r + s spanned by wedge products of r invariant horizontal
one-forms (2.4) and s invariant contact one-forms (2.6), then

dH : Ω̃r,s −→ Ω̃r+1,s, dV : Ω̃r,s −→ Ω̃r,s+1, dW : Ω̃r,s −→ Ω̃r−1,s+2. (2.7)

The resulting invariant variational quasi-tricomplex is characterized by the formulae

d2H = 0, dH dV + dV dH = 0,

d2W = 0, dV dW + dW dV = 0,
d2V + dH dW + dW dH = 0. (2.8)

Fortunately, the third, anomalous component dW plays no role in the applications con-
sidered here; in particular, dW F = 0 for any differential function F .

Example 2.1. Euclidean geometry of plane curves : Consider the usual action

y = x cosφ− u sinφ+ a, v = x cosφ+ u sinφ+ b, (2.9)

of the r = 3 − dimensional planar Euclidean group SE(2) ≃ SO(2) ⋉ R
2 acting on plane

curves C ⊂M = R
2. To expedite the computations, we will assume the curves are, at least

locally, given as the graphs of functions u = f(x). Extending the ensuing analysis to arbi-
trarily parametrized curves is straightforward; indeed, while the resulting invariants have
more complicated formulae, their algebraic and differential interrelationships are exactly
the same.

The prolonged group transformations

vy =
sinφ+ ux cosφ

cosφ− ux sinφ
, vyy =

uxx
(cosφ− ux sinφ)

3
, etc., (2.10)

are found by implicit differentiation. The classical Euclidean moving frame, [23], relies on
the coordinate cross-section K1 = {x = u = ux = 0} ⊂ J1, resulting in the normalization
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equations y = 0, v = 0, vy = 0. Solving these for the group parameters g = (φ, a, b) yields

the right-equivariant† moving frame

φ = − tan−1 ux , a = −
x+ uux√
1 + u2x

, b =
xux − u√
1 + u2x

. (2.11)

The fundamental differential invariants (2.11) are obtained by substituting the moving
frame formulas (2.11) into the transformed coordinates (2.10), leading to

H = ι(x) = 0, I0 = ι(u) = 0, I1 = ι(ux) = 0, (2.12)

I2 = ι(uxx) = κ =
uxx

(1 + u2x)
3/2

, I3 = ι(uxxx) = κs, I4 = ι(uxxxx) = κss + 3κ3,

and so on. In particular, H, I0, I1 are the phantom invariants, while I2 = κ is the Euclidean
curvature. To obtain the invariant differential forms, we substitute the moving frame
formulae (2.11) into

dy = (cosφ) dx− (sinφ) du = (cosφ− ux sinφ) dx− (sinφ) θ,

where θ = du − ux dx is the order 0 contact one-form. This results in the invariantized
horizontal one-form

̟ = ι(dx) = ω + η =
√
1 + u2x dx+

ux√
1 + u2x

θ, (2.13)

which is a combination of the contact-invariant arc length form ω = ds and the contact
correction η. The dual invariant differential operator

D = Ds = (1 + u2x)
−1/2Dx (2.14)

is the usual arc length derivative, and can be employed to generate the higher order
differential invariants. In a similar fashion, we construct the invariantized contact forms

ϑ =
θ√

1 + u2x
, ϑ1 =

(1 + u2x) θx − uxuxxθ

(1 + u2x)
2

, . . . . (2.15)

3. Recurrence.

Let v1, . . . ,vr be a basis for the infinitesimal generators of our transformation group.
We prolong each infinitesimal generator to Jn. For conciseness, we will retain the same
notation vκ for the prolonged vector fields which, in local coordinates, take the form

vκ =

p∑

i=1

ξiκ(x, u)
∂

∂xi
+

q∑

α=1

n∑

j=#J=0

ϕα
J,κ(x, u

(j))
∂

∂uαJ
, κ = 1, . . . , r. (3.1)

† Actually, this moving frame is only locally equivariant, since there remains an ambiguity of
π in the prescription of the rotation angle. For simplicity (and in accord with most treatments of
this example), we shall ignore this technicality, referring to [48] for a detailed discussion.
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The coefficients ϕα
J,κ = vκ(u

α
J ) can be successively constructed by Lie’s recursive prolon-

gation formula, [46, 47]:

ϕα
Ji,κ = Diϕ

α
J,κ −

p∑

j=1

uαJj Diξ
j
κ. (3.2)

A straightforward induction establishes the explicit version, first written down by the
author in [45]:

ϕα
J,κ = DJQ

α
κ +

p∑

i=1

ξiκ u
α
J,i, where Qα

κ = ϕα
κ −

p∑

i=1

ξiκ u
α
i (3.3)

are the components of the characteristic of vκ.

Given a moving frame, by a recurrence relation, we mean an equation that expresses
an invariantly differentiated invariant in terms of the basic differential invariants (2.1).
Strikingly, all such relations are consequences of a single universal recurrence formula that
governs the differentials of all invariantized differential functions and forms on J∞.

Theorem 3.1. If Ω is any differential form on J∞, then

d ι(Ω) = ι(dΩ) +

r∑

κ=1

νκ ∧ ι[vκ(Ω)], (3.4)

where ν1, . . . , νr are the invariantized Maurer–Cartan forms dual to the infinitesimal gener-

ators v1, . . . ,vr, while vκ(Ω) denotes the Lie derivative of Ω with respect to the prolonged

infinitesimal generator vκ.

The invariantized Maurer–Cartan forms ν1, . . . , νr are obtained by pulling back the
usual dual Maurer–Cartan forms µ1, . . . , µr on G by the moving frame map: νκ = ρ∗µκ.
Details would take us too far afield, [29], but, fortunately, are superfluous thanks to the
following wonderful result that allows us to directly compute them:

Lemma 3.2. Let I1 = ι(z1), . . . , Ir = ι(zr) be the phantom differential invariants

stemming from our cross-section. Then the corresponding phantom recurrence formulae

0 = dIς = dι(zς) = ι(dzς) +
r∑

κ=1

νκ ∧ ι[vκ(zς)], ς = 1, . . . , r, (3.5)

can be uniquely solved for the invariantized Maurer–Cartan forms ν1, . . . , νr.

Having solved the linear system (3.5) for ν1, . . . , νr, we then decompose the resulting
invariantized Maurer–Cartan forms into their invariant horizontal and contact components:

νκ = γκ + εκ, where γκ =

p∑

i=1

Rκ
i ̟

i, εκ =
∑

α,J

Sκ,J
α ϑαJ , (3.6)

where Rκ
i , S

κ,J
α are certain differential invariants. The Rκ

i will be called theMaurer–Cartan

invariants , [26, 27, 50]. In the case of curves, the Rκ
i appear as the entries of the Frenet–

Serret matrix Dρ(x, u(n)) · ρ(x, u(n))−1, assuming G ⊂ GL(N) is a matrix Lie group, [23].
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Substituting (3.6) back into the universal formula (3.4) produces a complete system of
explicit recurrence relations for all the differentiated invariants and invariant differential
forms.

In particular, successively setting Ω to be each of the jet coordinate functions xi, uαJ ,
results in the recurrence formulae for the fundamental differential invariants (2.1):

dHi = ι(dxi) +
r∑

κ=1

νκ ι[vκ(x
i)] = ̟i +

r∑

κ=1

ι(ξiκ) ν
κ,

dIαJ = ι(duαJ ) +

r∑

κ=1

νκ ι[vκ(u
α
J )] = ι

(
p∑

i=1

uαJi dx
i + θαJ

)
+

r∑

κ=1

ι(ϕα
J,κ) ν

κ

=

p∑

i=1

IαJi̟
i + ϑαJ +

r∑

κ=1

ι(ϕα
J,κ) ν

κ.

(3.7)

In view of (3.6), the coefficient of ̟i in (3.7) yields the recurrence relations

DiH
j = δji +

r∑

κ=1

Rκ
i ι(ξ

i
κ), DiI

α
J = IαJi +

r∑

κ=1

Rκ
i ι(ϕ

α
J,κ), (3.8)

where δji is the usual Kronecker delta. Owing to the functional independence of the basic
(non-phantom) differential invariants, these formulae, in fact, serve to completely charac-
terize the structure of the non-commutative differential algebra of differential invariants,
[15, 50]. Similarly, the contact components in (3.7) yield the vertical recurrence formulae

dV H
i =

r∑

κ=1

ι(ξiκ) ε
κ, dV I

α
J = ϑαJ +

r∑

κ=1

ι(ϕα
Kκ) ε

κ, (3.9)

while dW Hi = dW IαJ = 0.

Next, the recurrence formulae (3.4) for the derivatives of the invariant horizontal forms
are

d̟i = d[ι(dxi)] = ι(d2xi) +

r∑

κ=1

νκ ∧ ι[vκ(dx
i)]

=
r∑

κ=1

νκ ∧ ι

(
p∑

k=1

Dkξ
i
κ dx

k +

q∑

α=1

∂ξiκ
∂uα

θα

)

=
r∑

κ=1

p∑

k=1

ι
(
Dkξ

i
κ

)
νκ ∧̟k +

r∑

κ=1

q∑

α=1

ι

(
∂ξiκ
∂uα

)
νκ ∧ ϑα.

(3.10)

The resulting two-form can be decomposed into three basic constituents, belonging, re-
spectively, to the invariant summands Ω̃2,0

⊕Ω̃1,1
⊕Ω̃0,2. In view of (3.6), the terms in

(3.10) involving wedge products of two horizontal forms, i.e., in Ω̃2,0, yield

dH̟
i = −

∑

j<k

Y i
jk̟

j ∧̟k, where Y i
jk =

r∑

κ=1

p∑

j=1

[
Rκ

k ι(Djξ
i
κ)−Rκ

j ι(Dkξ
i
κ)
]

(3.11)
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are called the commutator invariants , since combining (3.11) with (2.5) produces the com-
mutation formulae for the invariant differential operators:

[Dj ,Dk ] =

p∑

i=1

Y i
jk Di = −

p∑

i=1

Y i
kj Di. (3.12)

Next, the terms in (3.10) involving wedge products of a horizontal and a contact form yield

dV ̟
i =

r∑

κ=1

[
q∑

α=1

ι

(
∂ξiκ
∂uα

)
γκ ∧ ϑα +

p∑

k=1

ι(Dkξ
i
κ) ε

κ ∧̟k

]
. (3.13)

Finally, the remaining terms, involving wedge products of two contact forms, provide the
formulas for the anomalous third component of the differential:

dW ̟i =

r∑

κ=1

q∑

α=1

ι

(
∂ξiκ
∂uα

)
εκ ∧ ϑα. (3.14)

In a similar fashion, we derive the recurrence formulae (3.4) for the differentiated invariant
contact forms:

dϑαJ = d[ι(θαJ )] = ι(dθαJ ) +

r∑

κ=1

νκ ∧ ι[vκ(θ
α
J )] = ι

(
p∑

i=1

dxi ∧ θαJi

)
+

r∑

κ=1

νκ ∧ ι(ψα
Jκ),

(3.15)
where

ψα
Jκ = vκ(θ

α
J ) = dϕα

Jκ −

p∑

i=1

[
ϕα
Jiκ dx

i + uαJi dξ
i
κ

]
= dV ϕ

α
Jκ −

p∑

i=1

uαJi dV ξ
i
κ (3.16)

are known as the vertical prolongation coefficients of the vector field vκ. For our purposes,
we only require the component of (3.15) that involves invariant horizontal forms:

dH ϑαJ =

p∑

i=1

̟i ∧ ϑαJi +
r∑

κ=1

γκ ∧ ι(ψα
Jκ), (3.17)

Since†

dH ϑ =

p∑

i=1

̟i ∧ Di ϑ (3.18)

for any contact form ϑ, we deduce the recurrence formulae

Diϑ
α
J = ϑαJi +

r∑

κ=1

Rκ
i ι(ψ

α
Jκ) (3.19)

† Warning : The analogous formula is not valid for horizontal forms.
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for the invariant (Lie) derivatives of the invariant contact forms. The latter can induc-
tively be solved to express the higher order invariantized contact forms as certain invariant
derivatives of those of order 0:

ϑαJ =

q∑

β=1

Eα
J,β(ϑ

β) = Eα
J (ϑ), (3.20)

in which ϑ = (ϑ1, . . . , ϑq)T denotes the column vector containing the order zero invari-
antized contact forms, while Eα

J = (Eα
J,1, . . . , E

α
J,q) are certain invariant differential opera-

tors of order #J .

In view of (3.9, 20), if K = K(. . .Hi . . . IαJ . . .) is any differential invariant, we can
write its invariant vertical derivative in the form

dV K =

p∑

i=1

∂K

∂Hi
dV H

i +
∑

α,J

∂K

∂IαJ
dV I

α
J = AK(ϑ) =

q∑

α=1

AK,α(ϑ
α), (3.21)

in which AK = (AK,1, . . . ,AK,q) is a row vector of invariant differential operators. We
view (3.21) as the invariant version of the vertical differentiation formula dV F = DF (θ),
cf. (2.3), which motivates the following terminology.

Definition 3.3. The invariant linearization of a differential invariant K is the in-
variant differential operator AK that satisfies dV K = AK(ϑ).

Remark : In [29], AK was called the Eulerian operator associated with K owing to
its appearance in the differential invariant form of the Euler–Lagrange equations for an
invariant variational problem.

Similarly, we combine (3.6, 13, 20) to produce formulae

dV ̟
i =

p∑

j=1

q∑

α=1

Bi
jα(ϑ

α) ∧̟j =

p∑

j=1

Bi
j(ϑ) ∧̟

j (3.22)

for the vertical differentials of the invariant horizontal forms, in which Bi
j = (Bi

j1, . . . ,B
i
jq)

is a family of p2 row-vector-valued invariant differential operators, known, collectively, as
the invariant Hamiltonian operator complex , again stemming from its role in the invariant
calculus of variations. (See [55] for the original, non-invariant version.)

Example 2.1. (continued) The vector fields

v1 = ∂x, v2 = ∂u, (3.23)

v3 = −u ∂x + x ∂u + (1 + u2x) ∂ux
+ 3uxuxx ∂uxx

+ (4uxuxxx + 3u2xx) ∂uxxx
+ · · · ,

form a basis for the prolonged infinitesimal generators of the planar Euclidean group ac-
tion on R

2. To establish the recurrence formulae, the initial step is to determine the
invariantized Maurer–Cartan forms ν1, ν2, ν3 dual to the generators (3.23), by solving the
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phantom recurrence relations

0 = dH = dι(x) = ι(dx) + ν1 ι[v1(x)] + ν2 ι[v2(x)] + ν3 ι[v3(x)] = ̟ + ν1,

0 = dI0 = dι(u) = ι(ux dx+ θ) + ν1 ι[v1(u)] + ν2 ι[v2(u)] + ν3 ι[v3(u)] = ϑ+ ν2,

0 = dI1 = dι(ux) = ι(uxx dx+ θx) + ν1 ι[v1(ux)] + ν2 ι[v2(ux)] + ν3 ι[v3(ux)]

= κ̟ + ϑ1 + ν3.

Therefore,
ν1 = −̟, ν2 = −ϑ, ν3 = −κ̟ − ϑ1. (3.24)

The Maurer–Cartan invariants

R1 = −1, R2 = 0, R3 = −κ = −I2. (3.25)

can then be read off as the coefficients of the invariant horizontal one-form ̟. Substituting
(3.24) into the higher order recurrence relations

dIk = dι(uk) = ι(uk+1 dx+ θk) + ν1 ι[v1(uk)] + ν2 ι[v2(uk)] + ν3 ι[v3(uk)]

= Ik+1̟ + ϑk − ι(ϕk
3)(κ̟ + ϑ1),

will prescribe their invariant horizontal differentials

dH Ik = (DIk)̟ =
(
Ik+1 − ι(ϕk

3) κ
)
̟.

In particular,

DI2 = I3, DI3 = I4 − 3I32 , DI4 = I5 − 10I22I3, (3.26)

and so on. These can be iteratively solved to produce the explicit formulae

I2 = κ, I3 = κs, I4 = κss + 3κ3, I5 = κsss + 19κ2κs, (3.27)

for the normalized differential invariants. Similarly,

dV I2 = ϑ2, dV I3 = ϑ3 − 3κ2ϑ1, dV I4 = ϑ4 − 10κκsϑ1. (3.28)

We next use (3.19) and (3.25) to compute the arc length derivatives of the invariant
contact forms

Dϑk = ϑk+1 +R1 ι(ψk,1) +R2 ι(ψk,2) +R3 ι(ψk,3) = ϑk+1 − ι(ψk,1)− κ ι(ψk,3), (3.29)

where the vertical prolongation coefficients ψk,ν = vν(θk) are given by

ψk,1 = ψk,2 = 0, while

ψ0,3 = v3(θ) = ux θ,

ψ1,3 = v3(θx) = 2ux θx + uxx θ,

ψ2,3 = v3(θxx) = 3uxθxx + 3uxx θx + uxxx θ,

and so on. In particular,

Dϑ = ϑ1,

Dϑ1 = ϑ2 − κ2ϑ,

Dϑ2 = ϑ3 − 3κ2ϑ1 − κκsϑ,

Dϑ3 = ϑ4 − 6κ2ϑ2 − 4κκsϑ1 − (κκss + 3κ4)ϑ,
(3.30)
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which can be recursively solved for

ϑ1 = Dϑ,

ϑ2 = (D2 + κ2)ϑ,

ϑ3 = (D3 + 4κ2D + 3κκs)ϑ,

ϑ4 = (D4 + 10κ2D2 + 15κκsD + 4κκss + 3κ2s + 9κ4)ϑ.
(3.31)

Substituting the latter formulae into (3.28) yields

dV κ = dV I2 = (D2 + κ2)ϑ, dV κs = dV I3 = (D3 + κ2D + 3κκs)ϑ,

dV I4 = (D4 + 10κ2D2 + 5κκsD + 4κκss + 3κ2s + 9κ4)ϑ,
(3.32)

and hence, in view of (3.27),

dV κss = dV I4 − 9κ2 dV κ = (D4 + κ2D2 + 5κκsD + 4κκss + 3κ2s)ϑ.

Thus, we deduce the following invariant linearization operators:

Aκ = D2 + κ2, Aκs
= D3 + κ2D + 3κκs,

Aκss
= D4 + κ2D2 + 5κκsD + 4κκss + 3κ2s,

(3.33)

etc. In fact, one can recursively construct the higher order operators starting with Aκ via

Aκn
= D · Aκn−1

+ κκn, (3.34)

where κn = Dnκ; this will be proved below. Finally, specializing (3.10) and using (3.24),
we find

d̟ = d[ι(dx)] = ι(d2x) + ν1 ∧ ι[v1(dx)] + ν2 ∧ ι[v2(dx)] + ν3 ∧ ι[v3(dx)]

= (−κ̟ − ϑ1) ∧ (−ϑ) = −κϑ ∧̟ + ϑ1 ∧ ϑ.

The first summand in the final expression is dV ̟ (the second is dW ̟), and hence the
invariant Hamiltonian operator is

B = −κ. (3.35)

Formula (3.34) is, in fact, a special case of the following result.

Lemma 3.4. If K is any differential invariant, then

ADjK
= Dj · AK −

p∑

i=1

(DiK)Bi
j. (3.36)

Proof : First, we have

dH dV K = dH
[
AK(ϑ)

]
=

p∑

j=1

̟j ∧ DjAK(ϑ).
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On the other hand, according to (2.8), (3.22),

dH dV K = − dV dHK = − dV




p∑

j=1

(DjK)̟j




= −

p∑

j=1

[
dV(DjK) ∧̟j + (DjK) dV ̟

j
]

= −

p∑

j=1

[
ADjK

(ϑ) +

p∑

i=1

(DiK)Bi
j(ϑ)

]
∧̟j.

Comparison of the individual coefficients of ̟j completes the proof. Q.E.D.

Formula (3.36) is reminiscent of the recursive prolongation formula (3.2) for vector field
coefficients. In the case of curves, the analogy is exact, and one can establish an explicit
“prolongation formula”, as in (3.3), for the invariant linearization operators associated
with the higher order differential invariants.

Corollary 3.5. For p = 1–dimensional submanifolds (curves), given a differential

invariant K,

ADnK = Dn · RK + (Dn+1K)D−1B, (3.37)

for all n ≥ 0, where

RK = AK − (DK)D−1B (3.38)

will be called the characteristic operator associated with the differential invariant K.

Remark : The non-local terms (involving D−1) in (3.37) cancel out, and so ADnK is
an honest differential operator.

Proof : The case n = 0 is a tautology. We then use induction on n and (3.36) to check

ADn+1K = D · ADnK − (Dn+1K)B = D
[
Dn · RK + (Dn+1K)D−1B

]
− (Dn+1K)B

= Dn+1 · RK + (Dn+2K)D−1B,

establishing the induction step. Q.E.D.

Strikingly, the characteristic operator RK will reappear in the following section as
the recursion operator for certain integrable nonlinear evolution equations arising from
invariant curve flows. Unfortunately, there does not appear to be any counterpart to
this explicit formula for higher dimensional submanifolds, e.g., surfaces. The difficulty
stems from the non-commutativity of the invariant differential operators coupled with the
fact that the Hamiltonian operator complex is not, in general, a total Jacobian. On the
other hand, recursion operators for higher dimensional evolution equations are also more
involved, [18, 57, 19]. An intriguing question is whether the Fokas–Santini formalism can
be adapted to the present framework.

13



4. Invariant Submanifold Flows.

In this section, we shift our attention to invariant submanifold flows. Let us single
out the m = p+ q invariant one-forms

̟1, . . . , ̟p, ϑ1, . . . , ϑq (4.1)

consisting of the invariant horizontal forms (2.4) and the order 0 invariant contact forms
(2.6). Each is a linear combination of the coordinate one-forms dx1, . . . , dxp, du1, . . . , duq

on M , whose coefficients are certain (n + 1)st order differential functions, where n is the
order of the underlying moving frame.

Let S ⊂M be a p-dimensional submanifold. Evaluating the coefficients of (4.1) on the
submanifold jet (x, u(n+1)) = jn+1S|z produces a basis for the cotangent space T∗M |z of
the ambient manifold, which we continue to denote by (4.1). By construction, the resulting
coframe is equivariant under the action of G on S ⊂M .

Warning : The resulting moving coframe forms are not obtained by simply pulling
back the one-forms (4.1) to S; the latter are sections of its cotangent bundle T∗S → S,
whereas our construction produces a basis for the sections of the larger vector bundle
T∗M → S. Indeed, any pulled-back contact form automatically vanishes on S itself. As a
result, the one-forms ϑα span the tangent annihilator bundle (TS)⊥ ⊂ T∗M at each point
of S.

Let t1, . . . , tp,n1, . . . ,nq, denote the corresponding dual tangent vectors, which form
a G–equivariant basis of the bundle TM → S, or frame on S. Since the contact forms
annihilate the tangent space to S, the vectors t1, . . . , tp form a basis for the tangent
bundle TS, while n1, . . . ,nq form a basis for the complementary G–equivariant normal

bundle NS → S induced by the moving frame. In geometrical situations, they can be
identified with the classical moving frame vectors, [23].

Example 4.1. Let us return to the case of planar Euclidean curves C ⊂ M = R
2.

According to Example 2.1, the invariant coframe (4.1) is

̟ =
dx+ ux du√

1 + u2x
=
√

1 + u2x dx+
ux√
1 + u2x

θ, ϑ =
du− ux dx√

1 + u2x
=

θ√
1 + u2x

. (4.2)

The corresponding dual frame vectors satisfy 〈 t ;̟ 〉 = 〈n ;ϑ 〉 = 1, 〈n ;̟ 〉 = 〈 t ;ϑ 〉 = 0,
and hence

t =
1√

1 + u2x

(
∂

∂x
+ ux

∂

∂u

)
, n =

1√
1 + u2x

(
−ux

∂

∂x
+

∂

∂u

)
, (4.3)

are the usual (right-handed) Euclidean frame vectors — the unit tangent and unit normal.

In general, let

V = V |S= VT +VN =

p∑

j=1

Ij tj +

q∑

α=1

Jα nα (4.4)
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be a section of the bundle TM → S, where VT ,VN denote, respectively, its tangential and
normal components, while Ij , Jα are differential functions, depending on the submanifold
jets. We will, somewhat imprecisely, refer to V as a vector field , even though it is only
defined on S. Any such vector field generates a submanifold flow:

∂S

∂t
= V|S(t). (4.5)

The flow (4.5) constitutes an nth order system of partial differential equations, where n
refers to the maximum order among our moving frame and the coefficients Ij , Jα. As-
suming local existence and uniqueness, a solution S(t) to the submanifold flow equations
(4.5) defines a smoothly varying family of p-dimensional submanifolds of M . On the other
hand, one typically expects singularities to appear if the flow is continued for a sufficiently
long time.

A submanifold flow (4.5) is called G-invariant if G is a symmetry group of the partial
differential equation. A general characterization of invariant submanifold flows is readily
established.

Lemma 4.2. The vector field V generates an invariant submanifold flow if and only

if its coefficients Ij = 〈V ;̟j 〉, Jα = 〈V ;ϑα 〉, are differential invariants.

The tangential components VT do not affect the extrinsic geometry of the subman-
ifold, but only affect its internal parametrization. Thus, if we are only interested in the
images of S(t) under the flow, and not their underlying parametrizations, we can set
VT = 0 without loss of generality. Therefore, the normal component

VN =

q∑

α=1

Jαnα (4.6)

serves to characterize the same invariant submanifold flow asV, modulo reparametrization.
We will say that the vector field VN generates a normal flow , since it only moves the
submanifold in its G-equivariant normal direction — as prescribed by the moving frame.

Example 4.3. The most well-studied are the Euclidean-invariant curve and surface
flows. A plane curve flow is generated by a vector field of the form

V = I t+ J n or, equivalently, VN = J n, (4.7)

if we are not concerned about the tangential component’s effect on the parametrization.
Here, n denotes (one of the two) Euclidean normals to the curve; by convention, we use
the inwards normal n when the curve is closed. Particular cases include:

(i) V = n: this induces the geometric optics or grassfire flow, [6, 59];

(ii) V = κn: this generates the celebrated curve shortening flow, [20, 21], used to great
effect in image processing, [52, 59];

(iii) V = κ1/3 n: the induced flow is equivalent, modulo reparametrization, to the equi-
affine invariant curve shortening flow, also effective in image processing, [3, 52, 59];
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(iv) V = κs n: this flow induces the modified Korteweg–deVries equation for the curvature
evolution, and is the simplest of a large number of soliton equations arising in
geometric curve flows, [12, 22, 37];

(v) V = κss n: this flow models thermal grooving of metals, [7].

A second important class are the invariant curve flows that preserve arc length,
[12, 37]. When p = 1, there is only one independent invariant horizontal one-form

̟ = ω + η = ds+ η, (4.8)

whose horizontal component ω = ds can be identified with the G-invariant arc length
element. Invariance requires that the Lie derivative V(ω) vanishes on the submanifold,
which (because Lie derivatives preserve the contact ideal) implies the following:

Lemma 4.4. The curve flow induced by

V = I t+

q∑

α=1

Jα nα, where I = 〈V ;̟ 〉, Jα = 〈V ;ϑα 〉, (4.9)

preserves arc length if and only if the Lie derivative V(̟) is a contact form.

Submanifolds of dimension p ≥ 2 do not have distinguished parametrizations to play
the role of the arc length parameter; this is because the invariant horizontal forms are
almost never exact on the submanifold. On the other hand, the Lie derivative condition
can be straightforwardly mimicked.

Definition 4.5. The invariant submanifold flow induced by V is called intrinsic if
V(̟i) ≡ 0 for all i = 1, . . . , p.

Lemma 4.6. If the vector field V defines an intrinsic flow, then it commutes with

the invariant differentiations:
[
V,Di

]
= 0 for i = 1, . . . , p.

Proof : For one-forms α, β, we will write α ≡ β if α−β is a contact form. This implies
that α and β assume the same value when pulled back to a submanifold S. If F is any
differential function, then, by (2.5),

p∑

i=1

Di(V(F ))̟i = dH (V(F )) ≡ d(V(F )) = V(dF ) ≡ V( dH F ) = V

(
p∑

i=1

Di(F )̟
i

)

=

p∑

i=1

(
V
[
Di(F )

]
̟i +Di(F )V(̟i)

)
≡

p∑

i=1

V
[
Di(F )

]
̟i,

because V is assumed to be intrinsic. Q.E.D.

Lemma 4.7. If V is an intrinsic flow, and A is any invariant differential operator,

then V A(ϑ) = A(V ϑ) for any invariant contact form ϑ.
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Proof : Since V preserves the contact ideal, by Cartan’s formula for the Lie derivative,

0 ≡ V(ϑ) = V dϑ+ d(V ϑ) ≡ V

(
p∑

i=1

̟i ∧ Di(ϑ)

)
+

p∑

i=1

Di(V ϑ)̟i

≡

p∑

i=1

[
−V Di(ϑ) +Di(V ϑ)

]
̟i,

whence V Di(ϑ) = Di(V ϑ) for all i = 1, . . . , p. The general result follows by itera-
tion. Q.E.D.

Let us establish explicit conditions for a submanifold flow to be intrinsic. We apply
Cartan’s formula, along with Lemma 4.6 to compute

V(̟i) = V d̟i + d(V ̟i)

= V


−

∑

j<k

Y i
jk̟

j ∧̟k +

p∑

j=1

q∑

α=1

Bi
jα(ϑ

α) ∧̟j + dW ̟i


+ dIi

≡

p∑

j,k=1

Y i
jk I

k̟j +

p∑

j=1

q∑

α=1

Bi
jα(J

α)̟j +

p∑

j=1

DjI
i̟j ,

where we used Lemma 4.7 on the middle summation, and the final expression omits all
contact components. This implies:

Theorem 4.8. The flow induced by the vector field (4.4) is intrinsic if and only if

DjI
i +

p∑

k=1

Y i
jkI

k +

q∑

α=1

Bi
jα(J

α) = 0. (4.10)

In particular, for curve flows generated by (4.9), there are no commutator invariants,
and so the condition (4.10) guaranteeing arc length preservation reduces to

DI = −B(J) = −

q∑

α=1

Bα(J
α), (4.11)

where D is the arc length derivative, while B = (B1, . . . ,Bq) is the invariant Hamiltonian

operator , defined by (3.22), which, in the case of curves, becomes

dV ̟ = B(ϑ) ∧̟ =

q∑

α=1

Bα(ϑ
α) ∧̟. (4.12)

Example 4.9. For the Euclidean group action on plane curves, in view of (3.35),
the condition that a curve flow generated by the vector field V = I t + J n be intrinsic is
that

DI = κJ. (4.13)
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Most of the curve flows listed in Example 4.3 have non-local intrinsic counterparts owing
to the non-invertibility of the arc length derivative operator on κJ . One exception is the
modified Korteweg-deVries flow, where J = κs, with I = 1

2 κ
2. In general, the normal flow

induced by VN = J n has a local intrinsic version if and only if E(κJ) = 0, where E is the
invariantized Euler–Lagrange operator, [29].

5. Evolution of Invariants.

A key issue appearing in many applications is to determine the time evolution of
differential invariants as the submanifold S(t) varies according to an invariant submanifold
flow (4.5). In this section, we derive general formulas that answer this question.

Let us first look at the case when the vector field V generates an intrinsic flow. Let
K be any differential invariant. Its time variation under the submanifold flow induced by
V is found by computing the Lie derivative:

V(K) = V dK = V

(
AK(ϑ) +

p∑

i=1

DiK ̟i

)
= AK(J) +

p∑

i=1

IiDiK,

where J = (J1, . . . , Jq)T , and we used Lemma 4.7.

Theorem 5.1. If the submanifold flow (4.5) is intrinsic, and K is any differential

invariant, then

∂K

∂t
= V(K) = AK(J) +

p∑

i=1

Ii DiK. (5.1)

The summation on the right hand side of (5.1) is exactly the tangential evolution of
K due to the reparametrization:

p∑

i=1

IiDiK =

p∑

i=1

(DiK)V ̟i = V dHK.

Thus, we immediately deduce the corresponding result for normal flows, obtained by elim-
inating the tangential component:

Theorem 5.2. If the submanifold flow (4.5) is normal, and K is any differential

invariant, then
∂K

∂t
= V(K) = AK(J). (5.2)

Example 5.3. For any of the Euclidean invariant normal plane curve flows Ct = J n

listed in Example 4.3, we have, according to (3.33),

∂κ

∂t
= (D2 + κ2) J,

∂κs
∂t

= (D3 + κ2D + 3κκs) J,

∂κss
∂t

= (D4 + κ2D2 + 5κκsD + 4κκss + 3κ2s) J.

(5.3)
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For instance, for the grassfire flow J = 1, and so

∂κ

∂t
= κ2,

∂κs
∂t

= 3κκs,
∂κss
∂t

= 4κκss + 3κ2s. (5.4)

The first equation immediately implies finite time blow-up at a caustic for a convex initial
curve segment, where κ > 0. For the curve shortening flow, J = κ, and

∂κ

∂t
= κss + κ3,

∂κs
∂t

= κsss + 4κ2κs,
∂κss
∂t

= κssss + 5κ2 κss + 8κκ2s, (5.5)

thereby recovering formulas used in Gage and Hamilton’s analysis, [20]; see also Mikula
and Ševčovič, [39, 40, 41]. Finally, for the mKdV flow, J = κs,

∂κ

∂t
= κsss + κ2κs,

∂κs
∂t

= κssss + κ2κss + 3κκ2s ,

∂κss
∂t

= κsssss + κ2 κsss + 9κκsκss + 3κ3s.

(5.6)

Warning : Normal flows do not preserve arc length, and so the arc length parameter
s will vary in time. Or, to phrase it another way, time differentiation ∂t and arc length
differentiation D = Ds do not commute — as can be observed in the preceding examples.
Thus, one must be very careful not to interpret the resulting evolutions (5.4–6) as par-
tial differential equations in the usual sense. Rather, one should regard the differential
invariants κ, κs, κss, . . . as satisfying an infinite-dimensional dynamical system of coupled
ordinary differential equations. Later we will see how the potentially infinite hierarchy
of ordinary differential equations can be closed off at a finite order through the use of
signatures.

Turning our attention to the intrinsic, arc length preserving curve flow, the compli-
cation alluded to in the preceding paragraph does not arise because, by Lemma 4.6, time
differentiation now commutes with arc length differentiation. Substituting (4.11) in the
formula (5.1):

Theorem 5.4. Under an arc-length preserving flow,

κt = Rκ(J) where Rκ = Aκ − κs D
−1B (5.7)

is the characteristic operator (3.38) associated with κ. More generally, the time evolution

of κn = Dnκ is given by arc length differentiation:

∂κn
∂t

= Rκn
(J) = DnRκ(J). (5.8)

In this case arc length is preserved, and hence the arc length and time derivatives
commute. Thus, unlike (5.2), the arc-length preserving flow (5.7) is of the more usual
analytical form. However, there is a complication in that the term

κs D
−1B(J) = κs

∫
B(J) ds (5.9)
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may very well be nonlocal , and so (5.7) is, in general, an integro-differential equation.
Note that any integration constant appearing in (5.9) just adds in a multiple of κs, which
represents the arc length preserving tangential flow κt = κs that just serves to translate
the arc length parameter: s 7→ s + c and so can be effectively ignored. Also, on a closed
curve, the integral in (5.9) need not be periodic in s, and so one may not be able to
continuously assign a uniquely determined evolution along the entire curve — although,
by the preceding remarks, all such evolutions only differ by an overall translation of the
arc length parameter by an integer multiple of the total length of the curve.

In certain situations, (5.7) turns out to be a well-known local integrable evolution
equation, and the characteristic operator R is its recursion operator!

Example 5.5. In the case of Euclidean plane curves, the evolution of the curvature
is given by

κt = Rκ(J), (5.10)

where

Rκ = Aκ − κsD
−1B = D2 + κ2 + κsD

−1 · κ = D2
s + κ2 + κsD

−1
s · κ (5.11)

is the modified Korteweg-deVries recursion operator, [46]. In particular, for the mKdV
flow, J = κs, and (5.10) becomes

κt = Rκ(κs) = κsss +
3
2 κ

2κs,

which is the modified Korteweg-deVries equation, and R is its recursion operator. On the
other hand, for the grassfire flow, J = 1, and so

κt = Rκ(1) = κ2 + κsD
−1
s κ.

For the curve shortening flow, J = κ, and so

κt = Rκ(κ) = κss + κ3 + κsD
−1
s κ2.

Finally, for the thermal grooving flow, J = κss and so

κt = Rκ(κss) = κssss + κ2κss + κsD
−1
s κκss.

As noted above, the induced curvature flow (5.10) is local if and only if E(κJ) = 0, where
E is the invariantized Euler operator or variational derivative, [46]. Clearly not all these
local curvature flows will be integrable.

Example 5.6. Let us treat a different example. Consider the action

(x, u) 7−→ (αx+ βu+ a, γ x+ δu+ b), αδ − βγ = 1, (5.12)

of the equi-affine group SA(2) = SL(2) ⋉ R
2 on plane curves C ⊂ R

2. Applications to
computer vision can be found, for instance, in [3, 8, 52, 58]. According to [15, 23, 29],
the classical equi-affine moving frame arises from the choice of coordinate cross-section
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x = u = ux = 0, uxx = 1, uxxx = 0. The fundamental differential invariant is the
equi-affine curvature

κ = ι(uxxxx) =
uxxuxxxx − 5

3 u
2
xxx

u8/3xx

. (5.13)

All higher order differential invariants are obtained by invariant differentiation with respect
to the invariant arc length form

̟ = ι(dx) = ω + η, where ω = ds = u1/3xx dx, η =
uxxx
3u5/3xx

θ, (5.14)

with dual invariant differential operator D = u−1/3
xx Dx being the equi-affine arc length

derivative. Applying our computational algorithm, but suppressing the details, we obtain

dV κ = Aκ(ϑ), dV ̟ = B(ϑ) ∧̟,

where
Aκ = D4 + 5

3
κD2 + 5

3
κsD + 1

3
κss +

4
9
κ2, B = 1

3
D2 − 2

9
κ.

The characteristic operator is

Rκ = Aκ − κsD
−1B = D4 + 5

3 κD
2 + 4

3 κsD + 1
3 κss +

4
9 κ

2 + 2
9 κsD

−1
s · κ. (5.15)

A general equi-affine invariant curve flow takes the form

Ct = I t+ J n, (5.16)

where t,n are, respectively, the equi-affine tangent and normal directions, [23]. The equi-
affine curve shortening flow, [3, 59], is the normal flow with I = 0, J = 1. Under this flow,
the equi-affine curvature and its derivative evolves according to

∂κ

∂t
= Aκ(1) =

1
3 κss +

4
9 κ

2,
∂κs
∂t

= Aκs
(1) = DAκ(1)− κsB(1) =

1
3 κsss +

10
9 κκs.

(5.17)
A second example is the intrinsic (arc-length preserving) flow with J = κs. In this case,
the curvature evolution arises from the characteristic operator:

κt = R(κs) = κ5s +
5
3
κκsss +

5
3
κsκss +

5
9
κ2κs,

which is the integrable Sawada–Kotera equation, [61]. In this case, the characteristic
operatorR is closely related to, but not the same as the Sawada–Kotera recursion operator,
which is given by the following formula, [10]:

R̂ = R · (D2 + 1
3 κ+ 1

3 κsD
−1). (5.18)

Example 5.7. In the case of space curves C ⊂ R
3, under the Euclidean group

G = SE(3) = SO(3)⋉R
3, there are two generating differential invariants, the curvature κ

and torsion τ . According to [29], the relevant moving frame formulae are

dV κ = Aκ(ϑ), dV τ = Aτ (ϑ), dV ̟ = B(ϑ) ∧̟,
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where ϑ = (ϑ1, ϑ2)
T is the column vector containing the order 0 invariant contact forms,

while the invariant linearization and Hamiltonian operators are:

Aκ =
(
D2

s + (κ2 − τ2), −2τDs − τs
)
,

Aτ =

(
2τ

κ
D2

s +
3κτs − 2κsτ

κ2
Ds +

κτss − κsτs + 2κ3τ

κ2
,

1

κ
D3

s −
κs
κ2
D2

s +
κ2 − τ2

κ
Ds +

κsτ
2 − 2κττs
κ2

)
,

B =
(
−κ, 0

)
.

Thus, under an intrinsic flow with normal component VN = J n1 + K n2, the curvature
and torsion evolve via

(
κt
τt

)
= R

(
J
K

)
, where R =

(
Rκ

Rτ

)
=

(
Aκ

Aτ

)
−

(
κs
τs

)
D−1B

is the complete characteristic operator. In particular, the flow with J = 0, K = κ induces
the vortex filament flow (

κt
τt

)
= R

(
0
κ

)

which is integrable and can be mapped to the nonlinear Schrödinger equation via the
Hasimoto transformation, [25, 32, 37]. Similarly, the flow with J = κs, K = κ τ , maps to
the integrable complex modified Korteweg-deVries equation in the nonlinear Schrödinger
hierarchy.

6. Signature Evolution.

In the preceding section, we showed how to directly determine the time evolution of
differential invariants under an invariant submanifold flow. With this in hand, we are
able to find differential equations governing the evolution of their differential invariant
signatures, [8, 49]. A particularly important case is the behavior of the signature under
invariant smoothing, e.g., the Euclidean-invariant curve shortening flow. The methods are
completely general, but, for brevity, we will only discuss the case of signatures of plane
curves in this section.

For a plane curve C ⊂ R
2, the differential invariant signature is the curve Σ ⊂ R

2

parametrized by the first two differential invariants, i.e., (κ, κs). The signature curve
uniquely prescribes the original curve up to a group transformation. Thus, it provides an
effective means of object recognition and symmetry detection, [8].

Suppose that, locally, the signature is given as the graph of a function

κs = Φ(κ). (6.1)

For the moment we ignore singularities. Also, the curve is assumed to have at most
discrete symmetries, and so the signature does not degenerate to a point. Once we know the
functional dependence (6.1) between κ and κs, the relations for the higher order derivatives
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follow. For instance,

κss = Φκ(κ) κs = Φ(κ) Φκ(κ),

κsss = Φ(κ)2 Φκκ(κ) + Φ(κ) Φκ(κ)
2,

κssss = Φ(κ)3 Φκκκ(κ) + 4Φ(κ)2 Φκ(κ) Φκκ(κ) + Φ(κ) Φκ(κ)
3

(6.2)

and so on.

Now suppose we have a parametrized family of curves C(t) evolving according to an
invariant curve flow, which will be taken in normal form (4.6). (The signature is inde-
pendent of reparametrization, and this avoids the nonlocalities introduced in the intrinsic
form.) Our goal is to determined the induced signature curve flow, Σ(t). We assume that
the family of signatures is, locally, given by

κs = Φ(t, κ). (6.3)

Applying the chain rule and (3.36), we find

∂Φ

∂t
=
∂κs
∂t

−
∂Φ

∂κ

∂κ

∂t
= Aκs

(J)− Φκ Aκ(J) =
(
D − Φκ

)
Aκ(J)− κs B(J). (6.4)

Thus, to specify the time evolution of the signature function Φ, we replace the derivatives
of κ appearing in (6.4) by their expressions (6.1–2).

Example 6.1. Consider the Euclidean signature curve, parameterized by the cur-
vature and its derivative with respect to arc length. First, let’s look at the grassfire flow.
Substituting (5.4) into the signature flow equation (6.4), we find

∂Φ

∂t
= 3κκs − κ2

∂Φ

∂κ
= 3κΦ− κ2

∂Φ

∂κ
, (6.5)

which is a first order linear transport equation, and hence easily solved by the method of
characteristics. For the curve shortening flow, we substitute (5.5) into (6.4) and then use
(6.2), whence

∂Φ

∂t
= κsss + 4κ2κs − (κss + κ3)

∂Φ

∂κ
= Φ2 Φκκ + ΦΦ2

κ + 4κ2Φ− (ΦΦκ + κ3) Φκ

= Φ2 Φκκ − κ3Φκ + 4κ2Φ,

(6.6)

leading to an nonlinear parabolic equation for Φ(t, κ) that has the flavor of a one-dimen-
sional porous medium equation, [64]. Finally, for the modified Korteweg-deVries flow with
(5.6),

∂Φ

∂t
= κssss + κ2κss + 3κκ2s − (κsss + κ2κs)Φκ (6.7)

= Φ3 Φκκκ + 4Φ2 Φκ Φκκ + ΦΦ3
κ + κ2ΦΦκ + 3κΦ2 − (Φ2 Φκκ +ΦΦ2

κ + κ2Φ)Φκ

= Φ3 Φκκκ + 3Φ2 Φκ Φκκ + 3κΦ2.
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Example 6.2. The equi-affine signature curve is parametrized by κ, κs, where κ
denotes the equi-affine curvature (5.13) and s the equi-affine arc length (5.14). According
to Example 5.6, under the equi-affine curve shortening flow Ct = n, the fundamental equi-
affine differential invariants evolve according to (5.17). Therefore, applying the preceding
algorithm, we conclude that the equi-affine signature κs = Φ(κ) evolves according to

∂Φ

∂t
= Aκs

(1)− Φκ Aκ(1) =
1
3
κsss +

10
9
κκs − Φκ

(
1
3
κss +

4
9
κ2
)

= 1
3

(
Φ2 Φκκ + ΦΦ2

κ

)
+ 10

9
κΦ− Φκ

(
1
3
ΦΦκ + 4

9
κ2
)

= 1
3
Φ2 Φκκ + 10

9
κΦ− 4

9
κ2Φκ,

(6.8)

again of porous medium type.

Further analysis of signature flows, including space curves and surfaces, and applica-
tions to image processing, tracking and control, will be discussed elsewhere.
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[5] Bobenko, A.I., and Schöder, P., Discrete Willmore flow, in: International Conference
on Computer Graphics and Interactive Techniques, J. Fujii, ed., Assoc. Comput.
Mach., New York, NY, 2005.

[6] Born, M., and Wolf, E., Principles of Optics, Fourth Edition, Pergamon Press, New
York, 1970.

[7] Broadbridge, P., and Tritscher, P., An integrable fourth-order nonlinear evolution
equation applied to thermal grooving of metal surfaces, IMA J. Appl. Math. 53

(1994), 249–265.

[8] Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., and Haker, S., Differential
and numerically invariant signature curves applied to object recognition, Int. J.
Computer Vision 26 (1998), 107–135.
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