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It is shown how Cartan’s method of equivalence may be used to obtain the Cartan form for an
r th-order particle Lagrangian on the line by solving the standard equivalence problem under
contact transformations on the jet bundle J "+ * for k>r — 1.

I. INTRODUCTION

This is the second in a series of papers investigating dif-
ferent aspects of the Cartan equivalence problem for higher-
order variational problems. In Pt. L' it was shown how each
of the basic Lagrangian equivalence problems, in any num-
ber of independent and dependent variables, could be formu-
lated as a Cartan equivalence problem, and a fundamental
reduction theorem, demonstrating that the equivalence
problem for an r th-order Lagrangian could always be re-
duced to the minimal-order jet bundle J ", was proved. In
this paper, we will be exclusively concerned with 7 th-order
variational problems in one independent and one dependent
variable,

ZLlul =J L(x,u‘")dx. (1.1)
£

The Lagrangian L depends analytically on the coordinates
(x,u'”) = (x,u,u,,...,u,) on the jet bundle J"'=J"(R,R).
Here, the coordinate u; represents the jth-order derivative of
the single dependent variable u with respect to the single
independent variable x, so u; = D/, u, where D, denotes the
total derivative operator. We will be interested in properties
of the functional (1.1) that are preserved under change of
variables, which we take to mean general contact transfor-
mations. In the language of Pt. 1,' we are dealing with the
standard equivalence problem for the particle Lagrangian
(1.1) under the pseudogroup of contact transformations.
The contact ideal on J', denoted # (7, plays a key role; it is
generated by the contact forms

(1.2)

According to Bicklund’s theorem, L2 a transformation
V.J " J " will preserve the contact ideal # *” if and only if it
is the prolongation of a contact transformation W:J ' —J ' of
the first-order jet bundle, a fact that will play an important
role in our discussion.

An important invariant one-form associated to the func-
tional (1.1) is the so-called Cartan form,’

JaL

i+j

0, =du; —u;, , dx, 0<j<r
2

Oc=Ldx+ 3 S (~DY(5
4]

i=1j=

)-0,._,. (1.3)
It is well known that the Cartan form encodes both the

Euler-Lagrange equations for (1.1), and that it plays an
important role in the formulation of Noether’s theorem re-
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lating symmetries and conservation laws. It also figures
prominently in the implementation of field theory via the
Hamilton—Jacobi equation, which is used to deduce the exis-
tence of strong minimizers.*> Note that ® lives on the jet
bundle J>"~ !, which reflects the fact that the Euler-Lan-
grange equations for a nondegenerate r th-order Lagrangian
are of order 2r. We will see that the Cartan form remains
invariant under contact transformations of the Lagrangian
(1.1),i.e., if one Lagrangian is mapped to another via a con-
tact transformation, then the corresponding Cartan forms
are mapped to each other by the appropriate prolongation of
the same contact transformation. (We remark that the Car-
tan form is not invariant under the more general operations
of transforming and adding a total divergence to the Lagran-
gian. This explains why we consider the standard equiv-
alence problem and not the divergence equivalence problem
in this paper.)

A powerful construction that produces the invariants
(functions and differential forms) associated with such a
variational problem is Cartan’s Method of Equivalence,** a
general method for determining if two exterior differential
systems generated by one-forms are equivalent under a
change of variables belonging to a prescribed pseudogroup.
It has been observed by Gardner’ that, in the first-order case
(r = 1), the Cartan form is part of an invariant adapted co-
frame obtained by formulating and solving the equivalence
problem for (1.1) as a Cartan equivalence problem onJ ' In
the higher-order case (r> 1), it is not true that the Cartan
form can be recovered by solving the equivalence problem on
J". This had led some researchers, such as Shadwick,’ to
suggest that one should study the equivalence problem for
r th-order variational problems on jet bundles J " * ¥ where k
is sufficiently large so as to yield the Cartan form (i.e.,
k>r — 1), but otherwise arbitrary.

In the first paper in this series,’ it was shown how to
formulate the equivalence problem for the Lagrangian (1.1)
as a Cartan equivalence problem on the space of (r + k)-jets
for any k>0. Moreover, we found that each of these poten-
tially different equivalence problems, on the different bun-
dles J"* %, k>0, are really the same problem, in that they all
encode the same equivalence problem, and hence must have
isomorphic solutions. Let us begin by recalling the basic de-
finition and theorem on the equivalence of Lagrangians un-
der point transformations."'
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Definition 1: Two r th-order Lagrangians are said to be
(r + k)-standard equivalent, k>0, if and only if there is a
contact map V:J "+ ¥~ J"* ¥ such that

V*{L dx} = Ldxmod £+, (1.4)

Theorem 1: Two  th-order Lagrangians are (r + k)-
standard equivalent if and only if they are r-standard equiva-
lent.

From this point of view, one does not gain anything as
far as the ultimate solution to the equivalence problem is
concerned by increasing the order of the jet bundle to serve
as the base space, and, for simplicity, may as well solve the
problem on the minimal-order jet bundle, viz. J'. On the
other hand, since the Cartan form (1.3) clearly involves
(2r — 1)st-order derivatives of u, it cannot arise as an invar-
iant one-form if one solves the equivalence problem on a jet
bundle of order r + k for any k <r — 1. For a first-order
Lagrangian, this does not present any difficulties, as
1 = r = 2r — 1; however, for higher-order Lagrangians, dif-
ficulties arise since r <27 — 1. For example, Cartan’s solu-
tion to the second-order particle Lagrangian equivalence
problem'® does not lead to the Cartan form, as he imple-
ments the solution to this problem on the jet bundle J 2, while
the relevant Cartan form lives on the bundle J>.

A resolution of this apparent contradiction has been
proposed in Ref. 1, where it was argued that the solution to
the r th-order equivalence problem will lead to a purely r th-
order differential form, which can be obtained from the Car-
tan form ®. by replacing all derivatives of order greater
than 7 by the associated “derivative covariants,” which are
certain universal r th-order functions that can be construct-
ed from the Lagrangian and its derivatives, with the remark-
able property that they transform precisely like the higher-
order derivatives of u. In a subsequent paper in this series, we
hope to illustrate explicitly this point in the case of a second-
order Lagrangian, but for now we will content ourselves
with this rather general statement, and refer the reader to
Ref. 1 for the details on this point. See also remarks in Sec.
1.

1l. THE CARTAN FORM

Our goal now is to prove the main result, that by setting
up the equivalence problem for the variational problem
(1.1) as a Cartan equivalence problem on J’* k  where
k>r — 1, one obtains, after several iterations of Cartan’s re-
duction procedure, the Cartan form ® given by (1.3) as
part of an adapted coframe. We will not attempt to make the
complete reduction here (this is too hard to do for general r
and k), but will discuss the second-order case in more detail
in a future publication.

We begin by recalling how the standard equivalence
problem for 7 th-order Lagrangians was encoded in terms of
certain differential one-forms on the jet bundle J’*+*. The
base coframe is given by the one-forms

0o, 6150, &1, wo=Ldx, 2.1)

where the ¢, are the contact forms givenin (1.2). We assem-
ble these into a column vector 8, = (6,,0,,...,0, , «_,) ", and

To=du,
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use Ny = (05,00,70) " = (04s0 15050, 1 1 _ 1:00:T5) T to denote
the complete column vector of coframe elements.

Given any non-negative integer m<r + k, we define a
{1(r+ k +3)(r + k) + m + 2}-dimensional matrix Lie
group G ™. It consists of all lower triangle matrices of the
form

A 0 O
g={B 1 0} (2.2)
C D E

where A = (Aj’f) is an invertible (r + k) X (r + k) lower
triangular matrix, D and E are scalars, E #0, and
B = (B,B,,..B,, ;) and C=(C,,C,,..,C, ,) are row
vectors, with

B= (B,,B,,..,B,,,0,...,0). (2.3)

Notethat G C G ™ for/ < m.In Pt. 1,' we showed how the
structure groups G ™ can be used to encode our equivalence
problem in Cartan form.

Theorem 2: Let r> 1, k>0, and let 2<m<r + k. Two
rth-order Langrangians L and L are (r+ k)-standard
equivalent under the pseudogroup of contact transforma-
tions if and only if there is a diffeomorphism W:J "+ * . J "+ %
that satisfies

¥* (M) = g Nos (2.4)
where m, and ) are the respective coframes associated with
the two Lagrangians and g is a G "”-valued function on
Jrk

According to Bicklund’s theorem,'” since any transfor-
mation preserving the contact ideal on J " * ¥ is the prolonga-
tion of a contact transformation on J!, we could take the
minimal value of m = 2 to encode the equivalence problem;
however, as we shall see, this would not lead us directly to
the Cartan form. (The cases m = 1 and m = 0 will further
restrict the allowable change of variables to the pseudo-
groups of point and fiber-preserving transformations, re-
spectively.) The case r = 1 is special, since it can be shown
that equivalence of first-order Lagrangians under contact
transformations automatically reduces to equivalence under
point transformations,”'""'?> so m = 1 anyway. From here
on, we will leave this case aside as it is already well under-
stood.

The main result to be proved in this paper can now be
stated as follows:

Theorem 3: Let L be an » th-order Lagrangian for r>2.
The Cartan form ®@, given by (1.3), appears naturally
among the invariant adapted coframe elements resulting
from an application of the Cartan method of equivalence to
the equivalence problem (2.4) on the jet bundle J "+ * under
the structure group G ™ provided k>r — 1 and m>r.

Proof: The restrictions on k and m both follow from the
ultimate form (1.3) for the Cartan form ®.; more on this
later. To prove the general result, it suffices to start with the
largest of the possible structure groups, so we assume that we
are workinginJ "+ k>r — 1, and using the structure group
G * In accordance with the Cartan algorithm, we begin
by lifting the problem toJ "+ * X G "% and usem = g~ ",
ie.,
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g A 0 0\"'/6,
ol=lB 1 0 @y b
s C D E o

as our lifted coframe. (The exponent — 1 in the group ele-
ment parametrization is introduced solely for computational
convenience.) In particular,

(2.5)

r+k—1
w=Ldx+ Z Z6,
=0

j=

(2.6)

where the coefficients Z; are the entries of the row vector

Z= —BA~" 2.7)

In the first loop of the algorithm implementing Cartan’s
method of equivalence,®”® we are supposed to compute the
exterior derivatives of the lifted coframe and rewrite the re-
sult in terms of the right-invariant one-forms on the struc-
ture group G " * ¥, i.e., the entries of the matrix differential
g~ !-dg, and the lifted coframe elements y. It turns out that,
for the purposes of recovering the Cartan form, we need only
look at the formulas for the differential dw, and so we will
concentrate on this single component of the structure equa-
tions throughout. Using (2.5) and (2.6), we find that

r+k—1

S (Bisi N0+ TwAO, + TimA6;)
i=0

do =

+ T*rhow,

where T, T, T*, are certain torsion coefficients, depending
on the group parameters and the base coframe, and where
the B, are the right-invariant one-forms on the structure
group G “* % corresponding to the group parameters B;.
After performing an obvious Lie algebra compatible absorp-
tion of torsion,”® we are left with the structure equation
r+k—1 _

y B CHONG + TH*r Ao,

i=0
where the B ji k) are congruent modulo the lifted coframe
to the right-invariant one-forms ;. Thus we readily deduce
that only the coefficient

T*= —(E/L)Z, .,

is essential torsion. Clearly, G "+ * acts on the essential tor-
sion coefficient T * by translation, and we can normalize this
torsion coefficient to O by setting Z, , , = 0, or, equivalently,
by setting B, . , = 0. Thus, at this stage, the algorithm auto-
matically tells us to reduce the structure group to the sub-
group G HE— D,

Thanks to the reduction theorem for the Cartan equiv-
alence problem,”® we know that the reduced problem with
the same base coframe (2.1) and reduced structure group
G "+ %=1 hag the same set of solutions as the original equiv-
alence problem. We proceed to analyze this reduced equiv-
alence problem. Since k>r— 1>1, a second Lie algebra
compatible absorption of torsion in the recomputed struc-
ture equation for de will yield

r+ k-2
do= |
i

dw =

BUH VNG, +Tr i 6, k1 No,
=0
where the B ("~ %" are congruent modulo the lifted co-
frame to the right-invariant one-forms 8,. Again, G "+ %~ "
acts on the essential torsion coefficient
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T =—(A3/0Z,

by translation, and we can normalize the torsion coefficient
to O by setting Z, , , _, =0, or, equivalently, B, ., _, =0,
further reducing to the structure group G " +% -2,

Clearly, this procedure continues until the derivatives of
the Lagrangian L start contributing to the essential torsion
in de. This will occur when we have reduced our original
problem to an equivalence problem with the same base co-
frame (2.1), and reduced structure group G ”. We now in-
dicate how the above analysis changes at this point. After Lie
algebra compatible absorption of torsion, we find

r—1
do= % B2 N6, +Tr6, No

i=0
as before, but where the essential torsion is now given by
r+1
rr= Ao (z - aL).
L du,
The structure group G " still acts on the essential torsion by
translation, but there is an additional inhomogeneous term.

Consequently, we can normalize this torsion coefficient to 0
by setting

JaL
L= 2.8)
du, (
Now, plugging (2.8) into the formula (2.6) for w (with ear-
lier normalizations Z, , | = -+~ = Z, _ , = 0 also taken into

account) has the effect of (a) reducing the structure group
to G "~ U, just as before, and (b) to incorporate the inhomo-
geneity, changing the base coframe so as to replace our origi-
nal one-form w, = L dx by the new one-form

JL

u"

This new base coframe element constitutes our first “ap-
proximation” to the Cartan form. The corresponding lifted
one-form coincides with (2.6) taking (2.8) into account,
ie.,

of PV =Ldx+

(du,_, — u, dx).

r—1
a)=de+aL 6, + > Z6,_,.
Jdu i=1

We continue our reduction procedure by again recom-
puting the basic structure equation and reabsorbing. Now
we find

r—2
do= Y BUAPNG +T*  6,_ Ao+,
i=0
where the dots stand for other essential torsion terms that we
will try not to deal with here. As usual, we normalize the
torsion coefficient

A’
= - (-2o 5050
L du,__, du,

to O by setting

JL D, aL .
Ju

r

Now we have reduced the structure group to G~ 2, and
also modified the base coframe so as to replace w§ ™"’ by
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w(()rAz)zdeq_g_Lgr_'_(ajL _D, §7L) 6, .,
r—1 r

giving the next approximation to the Cartan form.
Clearly, we can continue in this manner, and a simple

inductive argument will show that we end up normalizing all
the entries of the vector Z, cf. (2.7), as

r—1
Zﬁ=2(—DQ(éM>,i=Lwn
= 9

Ui,

u,

(2.9)

The structure group has finally been reduced to G ©, which
consists of all invertible matrices of the form (2.2) with
B = 0. Substituting all the normalizations (2.9) into (2.6),
we see that the base coframe element replacing e, is now the
Cartan form (1.3). Moreover, since the corresponding row
of the structure group matrix consists of all Os save for a 1 in
the diagonal position, the Cartan form ®. is invariant under
contact transformations (for the standard equivalence prob-
lem), and will be part of the invariant adapted coframe re-
sulting from the full implementation of the Cartan algo-
rithm. The general reduction theorem completes the proof of
Theorem 3.

lil. DISCUSSION

We now return to a more detailed discussion of our ini-
tial formulation of the equivalence problem. What we have
shown is that, if we formulate the basic Lagrangian equiv-
alence problem on the jet bundle J " * for k>r — 1, and use
the group G ™ for m>r as our structure group, then the
Cartan reduction procedure will naturally lead us to the Car-
tan form as discussed in Sec. I1. There are two obvious objec-
tions to this formulation: First, according to the reduction
theorem of Ref. 1, we are really working on too high an order
jet bundle, and second, according to Bécklund’s theorem, we
are using too large a structure group. Let us discuss the latter
difficulty first.

As was presented in Pt. I,' Bicklund’s theorem? tells us
that any contact transformation on J"* ¥ is just the prolon-
gation of a contact transformation on the first jet bundle J .
In particular, the base transformation of the independent
variable x depends on at most first-order derivatives of u,
X = @(x,u,u,), so the pull back ¥*(dx) = dg will only in-
volve the form dx and the first two contact forms 6,6,. This
means that the structure group will naturally reduce to a
subgroup of the group G *, and we could have begun our
reduction procedure with G ¥ as the starting structure
group without losing anything as far as the final solution to
our equivalence problem is concerned. However, it is easy to
see that, for r>3, the G® equivalence problem can never
lead to the Cartan form ®. as an adapted invariant coframe
element. Indeed, in this case the lifted coframe element cor-
responding to the base form w, just depends on the first two
contact forms:

©=w,+ B,6 + B0, (3.1)

Barring prolongation, the Cartan reduction algorithm will
eventually normalize the group parameters B,, B,, to be cer-
tain combinations of the Lagrangian and its derivatives,
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leading to an adapted coframe element of the same form
(3.1). If r>3, this cannot be the Cartan form (1.3) since it
does not involve enough contact forms!

We seem to be left with a paradox: If we reduce the
equivalence problem using the larger structure group G ™
for m>r, we are naturally led to the Cartan form, whereas if
we reduce using the more reasonable structure group G *,
which mathematically encodes the same equivalence prob-
lem, we cannot obtain the Cartan form directly. This state of
affairs appears to be contradictory, especially considering
that all these problems are the same, and must therefore lead
to the same necessary and sufficient conditions for equiv-
alence of the two variational problems. The resolution of the
difficulty is to realize that the Cartan solution to the G
equivalence problem will lead to additional adapted invar-
iant coframe elements that will be certain particular linear
combinations of the contact forms alone. Since any linear
combination of invariant one-forms, whose coeflicients are
scalar invariants, is itself an invariant one-form, we conclude
that the Cartan form (1.3) must appear in this version of the
equivalence problem, but in disguised form. Namely, we de-
duce that there is an invariant one-form of the form

w*=w,+ B¥0 + B0,

where B ¥ and B ¥ will be certain combinations of L and its
derivatives. Moreover, there exist additional invariant one-
forms that are certain combinations of contact forms

oF = VZOA;;G,',

with the property that @ is the sum of these component
pieces,

Oc=0*+ Y 1,0}, (3.2)
where the I; are either constants, or, perhaps, invariants of
the problem. Thus the Cartan form does appear as an invar-
iant one-form for the G ¥, but in the disguised form (3.2),
not directly as an adapted coframe element. (In a subsequent
paper, we will illustrate this point in some special cases. ) It
would be interesting to find the formulas for the “reduced”
invariant one-form w* and determine its geometric or ana-
lytic significance for the original Lagrangian.

However, as we have demonstrated, the Cartan form
appears much more directly if we “artificially” expand the
original structure group to be G ** (or even just G ")
even though we know that this is ultimately not necessary for
the solution of the equivalence problem. A key lesson of this
exercise appears to be that the use of different (larger) struc-
ture groups to encode the self-same equivalence problem can
lead to different adapted coframe elements, even though all
the different possible invariant coframes must be related to
each other according to a formula like (3.2).

There is another way to interpret our results. We could
begin the entire reduction procedure by using the reducea
structure group G ‘*’ initially, as would be warranted by the
form of the contact transformations. However, we would
need to compensate by replacing our original base coframe
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element w, = L dx by a slightly different one-form having
the form
r+k—1

@o=Ldx+ Y 4,6,
=0

where the coefficients 4,:/ "+ *— R are arbitrary, to be deter-
mined during the course of the application of Cartan’s meth-
od. However, as the reader can verify, these two approaches
are essentially the same and lead to the same conclusion.

The second difficulty with our original formulation is
that we were forced to use a higher-order jet bundle, namely,
J*~1 than is really necessary for solving the equivalence
problem. Indeed, if we do solve the Cartan equivalence prob-
lem on the minimal-order jet bundle J’, then, barring pro-
longation, we will be led to a complete set of r th-order invar-
iants and invariant one-forms. How does the Cartan form
arise here? The answer is provided by the “derivative covar-
iants,” which are certain combinations of the Lagrangian
and its derivatives of u. (See Ref. 1 for the details.) If we
replace all the derivatives of u of order higher than r that
appear in the Cartan form (1.2) by their corresponding de-
rivative covariants, we will be led to a purely 7 th-order one-
form, which incorporates all the transformation properties
of the Cartan form, even though the explicit formula for it
will be quite a bit more complicated than (1.3). (For in-
stance, it will depend nonlinearly on the Lagrangian.) Thus
there is purely rth-order invariant one-form that corre-
sponds to the Cartan form, and hence will appear in the
equivalence problem on J’, either directly as an adapted co-
frame element, or more probably, in disguised form similar
to (3.2).

In a subsequent paper in this series, we will illustrate all
these matters with a concrete problem-—the equivalence
problem for a second-order particle Lagrangian. Also, we
hope to extend these techniques to higher dimensional La-

906 J. Math. Phys., Vol. 30, No. 4, April 1989

grangians, where the nonuniqueness of the Cartan form be-
comes an issue, >
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