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Abstract. A recursive algorithm for the equivariant method of moving frames, for
both finite-dimensional Lie group actions and Lie pseudo-groups, is developed and illus-
trated by several examples of interest. The recursive method enables one avoid unwieldy
symbolic expressions that complicate the treatment of large scale applications of the equiv-
ariant moving frame method.

1. Introduction.

In the equivariant method of moving frames for finite-dimensional Lie group actions,
originally formulated in [8], a crucial insight was to delay initiating the analysis until the
group action has been prolonged to a sufficiently high order jet space in order that it be-
comes (locally) free. Once freeness is attained, the specification of a local cross-section to
the prolonged group orbits enables one to simultaneously normalize all the group param-
eters, and thereby produce a moving frame, defined as an equivariant map from (an open
subset of) the jet space back to the group. With a moving frame in hand, one immedi-
ately produces complete systems of differential invariants, invariant differential operators,
invariant differential forms, etc. The equivariant method is endowed with a number of
innate advantages over the classical Cartan approach in that, not only is it much simpler
to formulate and implement, but, moreover, it can be readily applied to (almost) arbi-
trary group actions, thereby moving far beyond the special geometries treated by classical
moving frames, [5, 9]. The most important new contribution is the powerful recurrence
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formulae, that relate the normalized and differentiated differential invariants and invariant
differential forms, producing what Mansfield, [20] calls the “symbolic invariant calculus”,
and forming the foundation of the present work. Subsequently, the equivariant moving
frame method was extended to infinite-dimensional Lie pseudo-group actions, [33, 34],
based on a new, direct approach to the Maurer–Cartan forms and consequential structure
theory, [32, 35]. The claim that the equivariant method is the “correct” formulation of
moving frames is borne out by the ever expanding range of new fields of application, in-
cluding joint invariants and joint differential invariants, [26], invariant numerical schemes,
[27, 13], object recognition and symmetry detection in image processing, [4, 10], classical
invariant theory, [2, 24], invariant variational problems and invariant submanifold flows,
[17, 29], Poisson geometry and integrable systems, [21], Laplace invariants of differential
operators, [36], invariants and covariants of Killing tensors arising in general relativity,
[6, 22], and invariants of Lie algebras, with applications to the classification of subalgebras
and in quantum mechanics, [3]. Surveys of recent developments can be found in [20, 30].

While the idea of fully prolonging the group action until the onset of freeness proved to
be of crucial importance for developing the general theory and basic algorithms, the direct
computation of higher order prolonged group actions, which relies on implicit differenti-
ation, can rapidly overwhelm symbolic software, thereby limiting the method’s practical
scope. In the classical approach, e.g., [5, 9, 12], one instead incrementally normalizes
group parameters order by order, producing a succession of what Cartan calls (partial)
moving frames at each jet space order. Although much harder to rigorously justify and
then develop into a fully general, practical method — in part due to the appearance of
a succession of intricate nondegeneracy conditions, that often prove to be irrelevant to
the eventual freeness requirement — the recursive approach remains attractive from a
computational standpoint, and is thus worth recasting into the more powerful equivariant
framework. Indeed, in the original paper [8; Section 17], some indications of a recursive
equivariant algorithm were presented in the context of a specific example — the equi-affine
geometry of plane curves. As noted there, the key complication is that one cannot, in gen-
eral, partially normalize the implicit differentiation operators and retain their invariance,
owing to the appearance of additional connection-like terms in the underlying partially
reduced recurrence formulae. This example inspired Kogan, [14, 15, 16], to develop two
recursive/inductive algorithms for equivariant moving frame computations which, however,
place restrictions on the allowable group actions. Her recursive algorithm requires the ex-
istence of a slice, meaning a cross-section that has the same isotropy subgroup at each
point, to the prolonged group orbits. Her inductive algorithm relies on a factorization of
the full group into a product of subgroups with discrete intersection, and then relates the
moving frame and invariants for the full group with those of a subgroup. To date, neither
method has been extended to infinite-dimensional Lie pseudo-group actions.

The goal of this paper is to propose an unrestricted, general algorithm for recursively
constructing equivariant moving frames — for both finite-dimensional Lie group actions
and infinite-dimensional Lie pseudo-groups. The method can also be adapted to provide
the explicit relationships to the moving frames and invariants of any of its Lie subgroups.
The key insight is to base the computations on the lifted recurrence formulae and the recur-
sively normalized Maurer–Cartan forms, rather than the implicit differentiation operators

2



employed in the standard prolongation approach. As such, the method is somewhat closer
in spirit to the differential form-based moving frame method proposed in [7], although the
insights and results coming from the equivariant approach of [8] — particularly the recur-
rence formulae — are essential to the success of our new recursive approach. We illustrate
the method with several reletively simple finite- and infinite-dimensional examples, leaving
more substantial applications of these techniques to future works.

In this paper, we assume that the reader is familiar with jet bundles and contact forms,
[23], groupoids, [19, 39], the equivariant moving frame method, [8, 20, 30], its extension
to Lie pseudo-groups, [11, 31, 32, 33, 34, 35], as well as the variational bicomplex, [1, 37],
and its moving frame invariantization, [17].

2. Lie Group Actions.

For simplicity, we begin by developing the finite-dimensional version. Let G be an r-
dimensional Lie group acting on a smoothm-dimensional manifoldM . The trivial principal
bundle B = G×M carries the structure of a groupoid, [19, 39], with source map σ(g, z) = z
and target map Z = τ(g, z) = g · z. We will adopt the Cartan convention that employs
lower case letters z, x, u, etc., for source coordinates, and capital letters Z,X, U , etc., for
the corresponding target coordinates, throughout.

Let v1, . . . ,vr denote the infinitesimal generators of the action of G on M , which
form a basis for its Lie algebra g. Let µ1, . . . , µr denote the corresponding dual basis of
right-invariant Maurer–Cartan one-forms, which we identify with their pull-backs to B
via the projection B → G. The Cartesian product structure splits the cotangent bundle
T∗B ≃ T∗G ⊕T∗M into a group component, spanned by the Maurer–Cartan forms µκ,
and a manifold component, spanned by the (pull-backs of the) differentials dzi of local co-
ordinates z = (z1, . . . , zm) on M . This induces a corresponding splitting of the differential
d on B into manifold and group components, written d = dM + dG.

By the lift of a function f :M → R we mean its pull-back to B via the target map,
so λ(f)(g, z) = τ∗f(g, z) = f(g · z). In particular, the lift of the source coordinates z
are the corresponding target coordinates Z = g · z, written out as functions of the group
parameters and source coordinates:

Za = λ(za), a = 1, . . . , m. (2.1)

More generally, the lift λ(ω) of a differential form ω onM is defined as the purely manifold
component of its target pull-back to B, written λ(ω) = πM (τ∗ω), and obtained formally
by setting all group differentials (or, equivalently, Maurer–Cartan forms) in the pull-back
to zero. In particular,

λ(dω) = dMλ(ω). (2.2)

The basic formula for the group differential of a lifted function or form provides the key
to the all-important lifted recurrence formulae. See [17; Lemma 5.1] for a proof.

Proposition 2.1. Let ω be a differential form on M . Then

dGλ(ω) =

r∑

κ=1

µκ ∧ λ(vκ(ω)), (2.3)
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and therefore,

dλ(ω) = λ(dω) +
r∑

κ=1

µκ ∧ λ(vκ(ω)). (2.4)

Remark : Assuming local effectiveness of the group action (as defined below), if we
let ω range over the coordinate functions z1, . . . , zm on M , we can use the system of
equations resulting from (2.3) to read off the explicit formulas for the Maurer–Cartan
forms. Examples of this procedure can be found below.

We are interested in the induced action of G on p-dimensional submanifolds S ⊂ M ,
where 1 ≤ p < m is fixed. For 0 ≤ n ≤ ∞, let Jn = Jn(M, p) denote the (extended)
submanifold jet bundle of order n, [23]. For n ≥ k, we let π̃n

k : J
n → Jk denote the natural

projection. Given local coordinates z = (x, u) = (x1, . . . , xp, u1, . . . , uq), with q = m − p,
we view the x’s as independent variables and the u’s as dependent variables, whereby
submanifolds that are transverse to the vertical fibers {x = x0 } can be locally identified
with the graphs of functions u = f(x). The induced coordinates on Jn are denoted by
z(n) = (x, u(n)) = ( . . . xi . . . uαJ . . . ), where uαJ denote the derivative coordinates of
orders 0 ≤ #J ≤ n. In coordinates,

θαJ = duαJ −
p∑

i=1

uαJ,i dx
i, α = 1, . . . , q, 0 ≤ #J, (2.5)

are the basic contact one-forms , spanning the intrinsic contact or vertical subbundle C ⊂
T∗J∞. The complementary horizontal subbundle H ⊂ T∗J∞ is spanned by the coor-
dinate one-forms dx1, . . . , dxp, and so relies on a choice of independent variables. The
splitting T∗J∞ = H ⊕C induces the variational bicomplex structure on J∞, [1, 17]. The
jet differential splits into horizontal and contact components, dJ = dH + dV , so that, in
particular,

dHF =

p∑

i=1

(DiF ) dx
i, dV F =

∑

α,J

∂F

∂uαJ
θαJ , (2.6)

for any differential function F (x, u(n)), where D1, . . . , Dp are the usual total derivative
operators .

Given a Lie group action onM , the lifted horizontal coframe consists of the horizontal
differentials of the target independent variables:

ωi = dHX
i =

p∑

j=1

(DjX
i) dxj, i = 1, . . . , p. (2.7)

As long as the total Jacobian matrix DX =
(
DjX

i
)
is nonsingular†, these span the space

of horizontal forms. The dual implicit differentiation operators D1, . . . ,Dp are defined so

† At singularities, one needs to introduce an alternative set of independent and dependent
variables.
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so that

dHF =

p∑

i=1

(DiF ) dx
i =

p∑

i=1

(DiF )ω
i, (2.8)

for any differential function F (x, u(n)).

There is an induced action of G on Jn, called the nth prolongation of G, and written
Z(n) = g(n) · z(n) for z(n) ∈ Jn and g ∈ G. The prolonged action can be calculated
by successively applying the implicit differentiation operators to the target dependent
variables Uα, whereby

Uα
J = DJU

α, α = 1, . . . , q, #J ≥ 0. (2.9)

Since implicit differentiation involves the entries of the inverse of the total Jacobian matrix,
the explicit formulas for the prolonged action (2.9) rapidly lead to the unwieldy expression
swell that overwhelms the automated computation of substantial examples.

A Lie group G is said to act effectively if the only group element that fixes every point,
g ·z = z, is the identity g = e, and locally effectively if the set of such group elements forms
a discrete normal subgroup. According to [25], if G acts locally effectively on all open
subsets W ⊂ M , then, for n ≫ 0 sufficiently large, the action is locally free† on a dense
open subset of the submanifold jet space Jn. Once the group action becomes (locally)
free, one specifies a moving frame by the choice of a local cross-section Kn ⊂ Jn, that is,
a submanifold of complementary dimension that intersects the (regular) prolonged group
orbits transversally. Typically, but not always, one chooses a coordinate cross-section,
fixed by setting an appropriate collection of jet coordinates to adroitly selected constant
values. The moving frame is then obtained by solving the corresponding normalization

equations Z(n) = g(n) · z(n) ∈ Kn for the group parameters g = ρ(z(n)). It is easily seen
that ρ is a right-equivariant map, meaning for any g ∈ G,

ρ(g(n) · z(n)) = ρ(z(n)) · g−1 (2.10)

where defined. In classical geometrical situations, [5, 9], the moving frame can be identified
with the left-equivariant counterpart obtained by composing with the group inversion:
ρ̃(z(n)) = ρ(z(n))−1.

In the recursive approach to be developed here, one employs a succession of group
parameter normalizations at each order, based on a sequence of cross-sections Kk ⊂ Jk

for 0 ≤ k ≤ n, where n is the order of freeness, to the regular prolonged group orbits
at each order, satisfying the compatibility condition Kk−1 = π̃k

k−1(K
k) for 1 ≤ k ≤ n.

The normalization equations Z(k) = g(k) · z(k) ∈ Kk at order k will be solved for some of
the group parameters in terms of the kth order jet coordinates and the remaining group
parameters, resulting in a suitably right-equivariant partial moving frame of order k. (See
below for a more formal definition.) Compatibility implies that one can retain the already
established lower order normalizations when proceeding. The key to the efficacy of the

† In all known examples, the prolonged action eventually becomes free on an open subset of
Jn. Unfortunately, there is as yet no proof of this observation.
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algorithm is that one can then compute the resulting partially normalized prolonged group
action at the next highest order k + 1 by making use of the partially normalized lifted
recurrence relations at order k along with the explicit formulas for the partially normalized
Maurer–Cartan forms. However, before delving further into the theoretical framework, it
is best to work through a couple of examples.

Example 2.2. Equi-affine plane curves : Let SA(2) = SL(2)⋉R
2 act on M = R

2 by
unimodular affine transformations:

X = αx+ β u+ a, U = γ x+ δ u+ b, where α δ − β γ = 1. (2.11)

The infinitesimal generators are

v1 = ∂x, v2 = ∂u, v3 = −x ∂x + u ∂u, v4 = u ∂x, v5 = x ∂u. (2.12)

Let µ1, . . . , µ5 be the dual Maurer–Cartan forms. Since the action is effective, we can
recover their formulae by calculating the group differentials of the lifted coordinates X,U ,
as given in (2.11), and comparing with the expressions resulting from formula (2.3):

µ1 −X µ3 + U µ4 = dGX = x dα+ u dβ + da

=
[
δ (X − a)− β (U − b)

]
dα+

[
− γ (X − a) + α (U − b)

]
dβ + da,

µ2 + U µ3 +X µ5 = dGU = x dγ + u dδ + db (2.13)

=
[
δ (X − a)− β (U − b)

]
dγ +

[
− γ (X − a) + α (U − b)

]
dδ + db.

Comparing the terms involving the various powers of X and U , we immediately deduce
the well-known formulas for the right-invariant Maurer–Cartan forms on SA(2):

µ1 = da+ a µ3 − b µ4, µ2 = db− a µ5 − b µ3,

µ3 = γ dβ − δ dα = αdδ − β dγ, µ4 = α dβ − β dα, µ5 = δ dγ − γ dδ.
(2.14)

To construct an equivariant moving frame, we must prolong the action to a sufficiently
high order curve jet space Jn = Jn(R2, 1) in order that the action becomes (locally) free. In
keeping with Cartan’s convention, we will use x, u, ux, uxx, uxxx, . . ., to denote the (source)
jet coordinates, and X,U, UX , UXX , UXXX , . . ., to denote the corresponding target jet
coordinates. The latter can be obtained by implicit differentiation, but the higher order
formulas become more and more unwieldy. While the direct equivariant method would
require their determination ab initio, the recursive method, as we will see, completely
avoids this calculation.

To streamline the presentation, we will ignore contact forms from here on, since these
do not play a role in determining the moving frame and the differential invariants. (Contact
forms do, however, play a key role in the analysis of invariant variational problems and
invariant flows, [29]. Our method will also produce them with a bit of extra work.) We
will use ≡ to indicate equality modulo contact forms, so that ω ≡ ζ when ω−ζ is a contact
form. In particular, the (jet) differential of a differential function F : Jn → R is equivalent,
modulo contact forms, to its horizontal component:

dF ≡ dHF = DxF dx,
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where Dx is the usual total derivative. Also, keep in mind that the lift operation takes
contact forms to contact forms.

We begin the recursive algorithm by analyzing the differentials of the target coordi-
nates. According to the lifted recurrence formula (2.4),

dX = d λ(x) = λ(dx) +

5∑

ν=1

λ[vν(x) ]µ
ν = ω + µ1 −X µ3 + U µ4, (2.15)

where, again modulo contact forms,

λ(dx) ≡ ω = dHX = (α+ β ux) dx (2.16)

is the basic lifted horizontal form. Similarly,

dU = d λ(u) = λ(du) +
5∑

ν=1

λ[vν(u) ]µ
ν

≡ λ(ux dx) + µ2 + U µ3 +X µ5 = UX ω + µ2 + U µ3 +X µ5

(2.17)

has horizontal component

UX ω = dHU = (γ + δ ux) dx, (2.18)

which, in view of (2.16), produces the formula

UX =
γ + δ ux
α + β ux

(2.19)

for the first order prolonged action.

The higher order lifted recurrence formulas are obtained using (2.4), where the group
now acts on the submanifold jet space Jn, and so we must prolong the infinitesimal gener-
ators (2.12) using the standard formula, [23]:

v1 = ∂x,

v2 = ∂u,

v3 = −x ∂x + u ∂u + 2ux ∂ux
+ 3uxx ∂uxx

+ 4uxxx ∂uxxx
+ 5uxxxx ∂uxxxx

+ · · · ,
v4 = u ∂x − u2x ∂ux

− 3uxuxx ∂uxx
− (4uxuxxx + 3u2xx) ∂uxxx

−
− (5uxuxxxx + 10uxxuxxx) ∂uxxxx

+ · · · ,
v5 = x ∂u + ∂ux

.

(2.20)

Consequently, the lifted recurrence formulae, up to order 4, are

dX ≡ ω + µ1 −X µ3 + U µ4,

dU ≡ UX ω + µ2 + U µ3 +X µ5,

dUX ≡ UXX ω + 2UX µ3 − U2
X µ4 + µ5,

dUXX ≡ UXXX ω + 3UXX µ3 − 3UX UXX µ4,

dUXXX ≡ UXXXX ω + 4UXX µ3 − (4UX UXXX + 3U2
XX)µ4,

dUXXXX ≡ UXXXXX ω + 5UXX µ3 − (5UX UXXXX + 10UXX UXXX )µ4.

(2.21)
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We will retain the same Cartan-style notation for the recursively normalized functions and
forms. Eventually, once all the group parameters have been normalized, these will reduce
to the invariantized functions and forms, which are interrelated by the fully normalized
recurrence formulae, obtained by recursively reducing (2.21). The key feature of the recur-
sive approach is that there is no need to a priori compute explicit formulas for the higher
order lifted quantities, that is, the formulae for the prolonged group action; their reduced
expressions will appear, in much simpler fashion, at the appropriate stage of the procedure.

We will work with the normalizations that produce the standard cross-section leading
to the classical moving frame, [8, 9]. At order 0, since SA(2) acts transitively on M , a
cross-section consists of a single point, and we set K0 = {x = u = 0}. The corresponding
order 0 normalization equations Z = g · z ∈ K0 are obtained by setting X = U = 0,
producing the formulae

a = −αx− β u, b = −γ x− δ u, (2.22)

for the first two group parameters. Since we’ve normalized X and U to be constant, their
differentials now vanish: dX = dU = 0; substituting into the first two lifted recurrence
formulae (2.21) produces the corresponding formulae for the partially normalized Maurer–
Cartan forms

µ1 = −ω, µ2 = −UX ω − ϑ ≡ −UX ω, (2.23)

which can also be checked directly. The other 3 Maurer–Cartan forms are not affected by
(2.22).

We now proceed to the order 1 moving frame, based on the compatible cross-section
K1 = {x = u = ux = 0}. The corresponding first order normalization requires

0 = UX =
γ + δ ux
α + β ux

, whence γ = − δ ux and α =
1

δ
− β ux, (2.24)

the latter equation coming from the unimodularity constraint α δ−β γ = 1. Consequently,
the lifted horizontal form (2.16) reduces to

ω =
dx

δ
+ β θ ≡ dx

δ
. (2.25)

Substituting (2.24, 25) into (2.14) produces the partially normalized Maurer–Cartan forms

µ3 = β δ dux +
dδ

δ
≡ β δ uxx dx+

dδ

δ
≡ β δ2 uxx ω +

dδ

δ
,

µ4 = β2 dux +
dβ

δ
+
β dδ

δ2
≡ β2 uxx dx+

dβ

δ
+
β dδ

δ2
≡ β2 δ uxxω +

dβ

δ
+
β dδ

δ2
,

µ5 = − δ2 dux ≡ − δ2 uxx dx ≡ − δ3 uxx ω.

(2.26)

On the other hand, our normalization of UX = 0 implies dUX = 0, and so the first order
recurrence formula in (2.21) reduces to

µ5 = −UXX ω − ϑ1 ≡ −UXX ω.
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Comparison with the last equation in (2.26) leads to the formula for the partially normal-
ized second order jet coordinate:

UXX = δ3 uxx. (2.27)

The advantage of the recursive approach is that we did not need to compute the original,
more complicated second order prolonged action in order to arrive at this expression.

Restricting to the non-singular subset V 2 = {uxx 6= 0}, the order 2 cross-section sets
uxx = 1; solving the consequent normalization equation UXX = 1 using the partially
normalized formula (2.27) produces

δ =
1

3
√
uxx

, and thus, from (2.25), ω = 3
√
uxx dx, (2.28)

which recovers the usual contact-invariant equi-affine arc length element. Substituting the
formula for δ into (2.26) produces

µ3 ≡ −
(
uxxx

3u
4/3
xx

− β u1/3xx

)
ω, µ4 ≡

(
β2 u2/3xx − β uxxx

3uxx

)
ω + u1/3xx dβ. (2.29)

Comparison of the former with the recurrence formula for 0 = dUXX in (2.21) produces

µ3 ≡ − 1
3
UXXX ω, and thus UXXX =

uxxx
u4/3xx

− 3β u1/3xx .

Again, no initial prolongation was needed to arrive at this formula for the partially reduced
third order lifted jet coordinate.

The final order 3 normalization sets

UXXX = 0, whence β =
uxxx
3u5/3xx

. (2.30)

At this stage, collecting (2.24, 28, 30), we have

α = 3
√
uxx − uxuxxx

3u5/3xx

, β =
uxxx
3u5/3xx

, γ = − ux
3
√
uxx

, δ =
1

3
√
uxx

, (2.31)

which, when combined with (2.22), forms the right-equivariant moving frame. (The clas-
sical moving frame, [9], is left-equivariant and obtained by inverting the equi-affine group
element corresponding to (2.22, 31).) We substitute the moving frame formulas for β and
δ into the partially reduced expression (2.29) for µ4, and then compare with the recurrence
formula (2.21) for 0 = dUXXX , to deduce µ4 ≡ 1

3
κω, where

κ = UXXXX = Dx

(
uxxx
u5/3xx

)
=
uxxxx
u5/3xx

− 5u2xxx
3u8/3xx

(2.32)

is the fundamental differential invariant — the equi-affine curvature.

We now have the complete system of invariantized Maurer–Cartan forms:

µ1 = −̟ ≡ −ω, µ2 = −ϑ ≡ 0, µ3 = − 1
3
ϑ2 ≡ 0,

µ4 = 1
3
κ̟ + 1

3
ϑ3 − 4

9
ϑ2 ≡ 1

3
κω, µ5 = −̟ − ϑ1 ≡ −ω,

(2.33)
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where the former expressions, which involve the fully invariant equi-affine arc length one-
form

̟ = ι(dx) = ω + β θ = 3
√
uxx dx+

uxxx
3u5/3xx

(du− ux dx),

and the corresponding invariantized contact forms ϑj = ι(θj), can be found by keeping
track of the contact components in the preceding calculation. With these in hand, the
higher order recurrence formula for the differential invariants and invariant differential
forms follow as in the standard treatment, [8].

Example 2.3. Consider the following intransitive action of the abelian Lie group
G = R

3 on M = R
2:

X = x, U = u+ a+ bx+ cx2. (2.34)

Although almost completely trivial, this provides an example of a group action that does
not admit a slice (either at order 0 or, as we will see, order 1), and hence serves to illustrate
our contention that the recursive algorithm will proceed even when there is no slice at hand.

The prolonged infinitesimal generators are

v1 = ∂u, v2 = x ∂u + ∂ux
, v3 = x2 ∂u + 2x ∂ux

+ 2∂uxx
.

Ignoring contact components, the order 0 lifted recurrence formulae are

dx = dX = ω,

(ux + b+ 2cx) dx+ da+ x db+ x2 dc ≡ dU ≡ UX ω + µ1 +X µ2 +X2 µ3.

Thus, the basic lifted horizontal form is ω = dx. The first prolongation sets UX = ux +
b+ 2cx, while the Maurer–Cartan forms are

µ1 = da, µ2 = db, µ3 = dc.

Let us start with the order 0 cross-section K0 = {u = 0}, leading to the normalization
equation U = 0, with solution a = −u−bx−cx2. Observe that the isotropy subgroup of a
point (x, 0) ∈ K0 is determined by the condition a = −bx−cx2 which, in that it explicitly
involves the invariant X = x, demonstrates that K0 is not a slice. Indeed, it is not hard
to see that there are no slices. Continuing, we set UX = 0, which implies b = −ux − 2cx.
Again the isotropy subgroup is x-dependent, and so we still do not have a slice at order 1.
We substitute the formula for b into

µ2 ≡ − (uxx + 2c) dx− 2x dc.

Comparison with the first order lifted recurrence formula

0 = dUX ≡ UXX ω + µ2 + 2X µ3

leads to the reduced formula for the second prolongation: UXX = uxx + 2c. (For such a
simple action, this is, of course, easy to deduce directly.) Finally, we normalize UXX = 0
to produce the right-equivariant moving frame

a = − 1
2 x

2uxx + xux − u, b = xuxx − ux, c = − 1
2 uxx.
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The basic differential invariant UXXX = ι(uxxx) = uxxx can be deduced by first computing
µ3 ≡ − 1

2
uxxx dx and then substituting into the second order lifted recurrence formula

0 = dUXX = UXXX ω + 2µ3.

Thus, x and uxxx serve to generate the algebra of differential invariants through invariant
differentiation with respect to D = Dx.

Let us now describe the geometric framework underlying the recursive algorithm.

The starting point is the trivial principal bundle B = B(0) = G×M . Let B(n) = B
(n)
0 =

(π̃n
0 )
∗B = G × Jn be the corresponding principal bundle over the nth order jet space.

Note that B(n) is also a groupoid, with source map σ(n)(g, z(n)) = z(n) and target map
Z(n) = τ (n)(g, z(n)) = g(n) · z(n) determined by the prolonged group action. There is a
natural action of G on B(n) given by

Rh(g, z
(n)) = (g · h−1, h(n) · z(n)), (2.35)

which, in view of the G component, we refer to as right multiplication. Alternatively, we
can realize this by right groupoid multiplication:

Rh(g, z
(n)) = (g, z(n)) · (h−1, h(n) · z(n)), where (h−1, h(n) · z(n)) = Rh(e, z

(n)). (2.36)

The groupoid product is well-defined since

σ(n)(g, z(n)) = z(n) = τ (n)(h−1, h(n) · z(n)).

Moreover,

τ (n)
[
Rh(g, z

(n))
]
= τ (n)(g, z(n)) = g(n) · z(n), (2.37)

and thus the components of the target map are invariant under right multiplication —
indeed, these are the lifted invariants defined in [8].

A right-equivariant moving frame can be viewed as a (locally defined) right-invariant
section ρ̂ (n): Jn → B(n). Indeed, writing

ρ̂ (n)(z(n)) = (ρ(n)(z(n)), z(n)),

right-invariance requires Rhρ̂
(n)(z(n)) = ρ̂ (n)(h(n) · z(n)) for all h ∈ G, which, by (2.35),

implies

ρ(n)(h(n) · z(n)) = ρ(n)(z(n)) · h−1,

which is precisely the right-equivariance requirement (2.10) for the moving frame map
ρ(n): Jn → G. With this in mind, let us now formalize the notion of a partial moving
frame. (A somewhat different formulation of the notion of a partial moving frame, which
is based on equivariant bundle maps and designed for analyzing the singular subset of a
prolonged (pseudo-)group action, has been recently proposed by Valiquette, [38].)

Definition 2.4. A partial moving frame of order k is a right-invariant (local) sub-

bundle B̂(k) ⊂ B(k), meaning that Rh(B̂
(k)) ⊂ B̂(k) for all h ∈ G.

11



In the case of a moving frame, the right-invariant subbundle is the image of the moving
frame section: B̂(n) = ρ̂ (n)(V n) where V n = dom ρ̂ (n) ⊂ Jn. Clearly, if B̂(k) ⊂ B(k) is

right-invariant, so is its pull-back (π̃l
k)
∗B̂(k) ⊂ B(l) for any l ≥ k.

Given a right-invariant subbundle B̂(k) ⊂ B(k) (e.g., B(k) itself) consider the target

map τ (k): B̂(k) → Jk. If Kk ⊂ Jk is any subset, then, as an immediate consequence of
(2.37), (τ (k))−1Kk ⊂ B̂(k) is a right-invariant subset. In order that it also be a sub-
bundle, we must impose a suitable transversality condition. For each z(k) ∈ Jk, we let
g
(k)|z(k) ⊂ TJk|z(k) denote the subspace spanned by the prolonged infinitesimal gener-

ators, or, equivalently, the tangent to the prolonged group orbit passing through z(k).
The following construction of a partial moving frame is an immediate consequence of the
Implicit Function Theorem.

Proposition 2.5. If Kk ⊂ Jk is a cross-section to the prolonged group orbits, or,

more generally, satisfies TKk|z(k) + g
(k)|z(k) = TJn|z(k) for all z(k) ∈ Kk, then B̂(k) =

(τ (n))−1Kk defines a partial moving frame of order k.

In particular, if the action is free on an open subset of Jn, then the partial moving

frame B̂(n) = (τ (n))−1Kn ⊂ B(n) associated with a local cross-section Kn ⊂ Jn coincides
the image of an equivariant moving frame section, reproducing the construction originally
proposed in [8].

The recursive procedure can now be formalized as follows. To keep matters simple, we
will only construct moving frames of minimal order; [28]. (This restriction can be relaxed
by not performing all possible normalizations at low orders; but this variant will not be
developed here.) The order 0 lifted recurrence formulae (2.4) can be used to compute
the Maurer–Cartan forms µ1, . . . , µr, the lifted horizontal forms ω1, . . . , ωp, and hence the
dual implicit differentiation operators D1, . . . ,Dp. (These formulas can also be used to
compute the lifted order 0 contact forms, although in this paper these will be suppressed.)
One can also read off the formulae for the first prolongation of G acting on J1, although
these are also not required until after the initial choice of cross-section and resulting order
0 normalization of group parameters has been performed.

Let K0 ⊂ M be a cross-section to the group orbits. (If G acts transitively, K0 is a

single point.) Set B̂(0) = τ−1(K0) ⊂ B so that B̂(0) defines a partial moving frame of
order 0 according to Proposition 2.5. If K0 has codimension k0, then, by transversality

and the Implicit Function Theorem, the subbundle B̂(0) will also have codimension k0. In
other words, the normalization equations τ(g, z) ∈ K0 will result in expressions for k0 of
the group parameters in terms of the coordinates z = (x, u) onM and the remaining r−k0
unnormalized parameters. We then substitute these expressions into the Maurer–Cartan
forms and the lifted horizontal forms. Using the results in the lifted recurrence formulae
produces the formulae for the partial normalization of the first prolongation of G.

The recursive step proceeds in a similar fashion. At each order 1 ≤ k ≤ n, where
n is the order of (local) freeness of the prolonged group action, we start with a partial

moving frame B̂(k−1) ⊂ B(k−1) of order k − 1. We pull the subbundle back to Jk via
the jet space projection: B̃(k) = (π̃k

k−1)
∗B̂(k−1) ⊂ B(k). Choose a cross-section Kk ⊂ Jk

to the prolonged group orbits satisfying π̃k
k−1(K

k) ⊂ Kk−1. Using the restricted target

12



map τ (k): B̃(k) → Jk, define B̂(k) = (τ (k))−1Kk ⊂ B̃(k). The remaining steps consist of
normalizing the group parameters using the cross-section conditions τ (k)(g, z(k)) ∈ Kk

with the group parameters restricted to (g, z(k)) ∈ B̃(k), having been partially normalized
at order k− 1, then determining the partially normalized Maurer–Cartan forms and lifted
horizontal forms, and then finally using the resulting partially normalized lifted recurrence
formulae to compute the prolonged action at order k + 1.

Example 2.6. Let us illustrate the construction in the context of the equi-affine
curves of Example 2.2. The initial bundle has coordinates

B = G×M →M : (g; z) = (α, β, γ, δ, a, b ; x, u), where αδ − βγ = 1.

The target map is
τ(g; z) = Z = (αx+ βu+ a, γ x+ δu+ b).

The order 0 normalizations (2.22) produce the subbundle coordinatized by

B ⊃ B̂(0) →M : (α, β, γ, δ,−αx− βu,−γ x− δu; x, u).

Observe that the restricted target map satisfies

τ(α, β, γ, δ,−αx− βu,−γ x− δu; x, u) = (0, 0),

and so, in accordance with its construction, mapping the entire subbundle to the cross-
sectionK0 = {(0, 0)}. Moreover, B̂(0) is easily seen to be right-invariant: Rh(B̂

(k)) ⊂ B̂(k)

for all h ∈ SA(2), and hence forms a partial moving frame of order 0. We then lift the

bundle B̂(0) to the first jet space, producing

B(1) ⊃ B̃(1) → J1 : (α, β, γ, δ,−αx− βu,−γ x− δu; x, u, ux),

with restricted target map provided by (2.19):

τ(α, β, γ, δ,−αx− βu,−γ x− δu; x, u, ux) =

(
0, 0,

γ + δux
α+ βux

)
.

The first order normalization (2.24) produces the partial moving frame of order 1:

B̃(1) ⊃ B̂(1) → J1 :
(
δ−1 − βux, β,−δux, δ,−δ−1x+ β (xux − u), δ (xux − u); x, u, ux

)
.

We then lift B̂(1) to J2 and apply the normalization (2.28), producing the order 2 partial

moving frame B̂(2) → V 2, where V 2 = {uxx 6= 0} ⊂ J2 :
(
u1/3xx − βux, β,−uxu−1/3

xx , u−1/3
xx ,−xu1/3xx + β (xux − u), (xux − u)u−1/3

xx ; x, u, ux, uxx
)
,

which all goes to the cross-section K2 = {(0, 0, 0, 1)} under the target map. Finally, the

complete moving frame, of order 3, is obtained by lifting B̂(2) to J3 and then applying the
normalization (2.30), producing B̂(3) → J3 :

(
u1/3xx − 1

3
uxu

−5/3
xx uxxx,

1
3
u−5/3
xx uxxx,−uxu−1/3

xx , u−1/3
xx ,

−xu1/3xx + 1
3 (xux − u)u−5/3

xx uxxx, (xux − u)u−1/3
xx ; x, u, ux, uxx, uxxx

)
,

which is the image of a right-equivariant moving frame section ρ̂(3):V 3 = {uxx 6= 0} ⊂
J3 → B(3).
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3. The Inductive Method.

Let us now discuss an implementation of the recursive procedure that takes into ac-
count the existence of a smaller subgroup H ⊂ G for which we have already constructed a
moving frame and consequent differential invariants and invariant differential forms. The
goal is to use this information to both streamline the construction of a moving frame for
the larger group G, and also to express G invariant quantities in terms of their H counter-
parts. Unlike Kogan’s inductive approach, [14, 15, 16], which requires the existence of a
factorization G = N ·H into a product of Lie subgroups N,H ⊂ G, with N ∩ H discrete,
there will be no restrictions on the subgroup H ⊂ G for our inductive method to succeed.
Our general inductive method will be modeled on the recursive algorithm, and thus relies
on the lifted recurrence relations in an essential manner.

Rather than describing the general theory, it is easiest to explain how the method pro-
ceeds in the context of the preceding Example 2.2, which also appears in [16]. Although
this is a case in which the group factors, we never require the existence of the comple-
mentary subgroup in order to complete the calculations. Also, while we are treating the
exact same example, the calculations performed here can be done independently of those
appearing above.

Example 3.1. We return to the action (2.11) of the equi-affine group G = SA(2)
on plane curves, and take the Euclidean subgroup H = SE(2) ⊂ SA(2) containing the
orientation-preserving rigid motions. For simplicity, we will continue to ignore contact
forms, although it would not take much more effort to include them in the computations.

We begin by constructing a Euclidean moving frame using the recursive approach
based on the standard cross-section

S = {x = u = ux = 0} ⊂ J1, (3.1)

thereby recovering the well-known result [8, 30]. (If you already know the Euclidean
moving frame, you can skip this initial computation.) We start with the Euclidean action

X = x cosφ− u sinφ+ a, U = x sinφ+ u cosφ+ b, (3.2)

and corresponding prolonged infinitesimal generators

v1 = ∂x, v2 = ∂u,

v3 = −u ∂x + x ∂u + (1 + u2x) ∂ux
+ 3uxuxx ∂uxx

+ (4uxuxxx + 3u2xx) ∂uxxx
+ · · · . (3.3)

Computing
dX ≡ (cosφ− ux sinφ) dx− (x sinφ+ u cosφ) dφ+ da

= (cosφ− ux sinφ) dx− U dφ+ da+ b dφ,

dU ≡ (sinφ+ ux cosφ) dx+ (x cosφ− u sinφ) dφ+ db

= (sinφ+ ux cosφ) dx+X dφ+ db− a dφ,

and comparing with the order 0 lifted recurrence formulae

dX ≡ ω + µ1 − U µ3, dU ≡ UX ω + µ2 +X µ3, (3.4)
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we deduce the formulas for the lifted horizontal one-form and first order prolonged action:

ω = (cosφ− ux sinφ) dx, UX =
sinφ+ ux cosφ

cosφ− ux sinφ
, (3.5)

while the Maurer–Cartan forms are given by

µ1 = da+ b dφ, µ2 = db− a dφ, µ3 = dφ. (3.6)

The order 0 normalizations X = U = 0 imply that

a = −x cosφ+ u sinφ, b = −x sinφ− u cosφ, (3.7)

while, using either (3.4) or (3.6), the partially normalized Maurer–Cartan forms become

µ1 ≡ −ω, µ2 ≡ −UX ω. (3.8)

Next, we use the order 1 normalization†

UX = 0, whence φ = − tan−1 ux, (3.9)

to produce the (locally) right-equivariant moving frame (3.7, 9). (As usual, the classical
left-equivariant moving frame is obtained by inversion.) Substituting (3.9) back into (3.5)
produces the contact-invariant Euclidean arc length element

ω ≡
√
1 + u2x dx. (3.10)

On the other hand, using the formula for µ3 = dφ along with the first order recurrence
formula

dUX ≡ UXX ω + (1 + U2
X)µ3, (3.11)

we find that

− uxx dx

1 + u2x
≡ − d tan−1 ux = dφ = −UXX ω, (3.12)

from which we conclude that the lifted second order jet coordinate has been reduced to
the Euclidean curvature differential invariant:

UXX = κ =
uxx

(1 + u2x)
3/2

.

The fully normalized recurrence formulae can then be used to determine the higher order
differential invariants; for instance,

dUXX ≡ UXXX ω + 3UXUXX µ3 = UXXX ω,

dUXXX ≡ UXXXX ω + (4UXUXX + 3U2
XX)µ3 = (UXXXX − 3U3

XX)ω,
(3.13)

† As in most treatments — an exception being [26] — we ignore a sign ambiguity resulting

from the fact that the action of SE(2) on J1 is only locally free.
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imply that

UXXX = DsUXX = κs, UXXXX = DsUXXX + 3U3
XX = κss + 3κ3, (3.14)

where the s subscript indicates invariant differentiation with respect to the arc length
element (3.10).

Now, with a Euclidean moving frame in hand, let’s implement the recursive construc-
tion of the SA(2) moving frame, but base our calculations on the SE(2) lifted coordinates
(3.2, 5), which we continue to denote by X,U, UX , etc. We will use bars to distinguish
the equi-affine lifted jet coordinates: X,U,UX , etc., as well as the translation subgroup
parameters ā, b̄ for the SA(2) action. Thus, on M = R

2, the equi-affine action has the
adapted form

X = αX + β U + ā, U = γ X + δ U + b̄, α δ − β γ = 1, (3.15)

where X,U are given in (3.2). As we will see, the overspecification of group parameters
will be naturally dealt with during the course of the computation. Using the Euclidean
recurrence formulae (3.4) to evaluate dX and dU , we find, modulo contact forms,

dX = α dX + β dU +X dα + U dβ + dā

≡ (α+ β UX)ω + αµ1 + β µ2 + dā+X (dα+ β µ3) + U (dβ − αµ3)

= (α+ β UX)ω + αµ1 + β µ2 + dā+

+ [δ(X − ā)− β(U − b̄) ] (dα+ β µ3) + [− γ(X − ā) + α(U − b̄) ] (dβ − αµ3),

dU = γ dX + δ dU +X dγ + U dδ + d b̄

≡ (γ + δ UX)ω + γ µ1 + δ µ2 + db̄+X (dγ + δ µ3) + U (dδ − γ µ3)

= (γ + δ UX)ω + γ µ1 + δ µ2 + d b̄+

+ [δ(X − ā)− β(U − b̄) ] (dγ + δ µ3) + [− γ(X − ā) + α(U − b̄) ] (dδ − γ µ3).

On the other hand, the first two equi-affine recurrence relations in (2.21) are

dX ≡ ω + µ1 −X µ3 + U µ4, dU ≡ UX ω + µ2 +X µ5 + U µ3, (3.16)

where the SA(2) Maurer–Cartan forms µα are now indicated with bars in order to distin-
guish them from the SE(2) Maurer–Cartan forms µβ. Comparing the preceding two pairs
of formulas, the horizontal components imply that

ω = (α+ β UX)ω, UX =
γ + δ UX

α+ β UX

, (3.17)

where UX is as in (3.5), while the Maurer–Cartan forms are related by

µ1 = dā+ αµ1 + β µ2 + (β b̄− δ ā) (dα+ β µ3) + (γ ā− α b̄) (dβ − αµ3),

µ2 = d b̄+ γ µ1 + β µ2 + (β b̄− δ ā) (dγ + δ µ3) + (γ ā− α b̄) (dδ − γ µ3),

µ3 = γ(dβ − αµ3)− δ(dα+ β µ3) = α(dδ − γ µ3)− β(dγ + δ µ3),

µ4 = α(dβ − αµ3)− β(dα+ β µ3),

µ5 = δ(dγ + δ µ3)− γ(dδ − γ µ3).

(3.18)
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For the order 0 normalizations, we already employed X = U = 0 for the Euclidean
action, and we adopt the same cross-section X = U = 0 for the equi-affine action. (Note:
in general, it is not necessary that the two cross-sections be identical for the inductive
algorithm to proceed.) With this choice, (3.15) implies ā = b̄ = 0, which thus simplifies

µ1 = αµ1 + β µ2, µ2 = γ µ1 + β µ2.

Substituting into the order 0 recurrence formulae (3.16), and recalling (3.8, 17),

µ1 ≡ −ω = − (α+ β UX)ω, µ2 ≡ −UX ω = − (γ + δ UX)ω.

The order 1 Euclidean normalization sets UX = 0, and, correspondingly, we adopt the
equi-affine normalization UX = 0. Using (3.17), this implies

γ = 0, and hence, by unimodularity α =
1

δ
. (3.19)

At this stage, we have deduced that the isotropy subgroup of any jet on the Euclidean
cross-section (3.1) is

N =

{ (
1/δ β
0 δ

) ∣∣∣∣ δ 6= 0

}
⊂ SA(2). (3.20)

Since N is independent of the cross-section coordinates (equivalently, the subgroup’s dif-
ferential invariants) the cross-section is a slice. (Although, in this case, this is com-
pletely trivial, since it consists of a single point.) Moreover, the equiaffine group factors,
SA(2) = N · SE(2) with N ∩ SE(2) = {± I } discrete, although these properties are not
required for the recursive algorithm to succeed.

Remark : If we know the relevant subgroup N in advance, then we can restrict our
initial group action (3.15) to that of N alone, thereby simplifying the preceding calcula-
tion. Or, alternatively, the presented algorithm can serve as a means of determining the
corresponding isotropy subgroup(s).

Substituting the normalizations (3.19) into (3.18) yields

µ3 =
dδ

δ
− β δ µ3, µ4 =

dβ

δ
+
β dδ

δ2
−
(
β2 +

1

δ2

)
µ3, µ5 = δ2 µ3, (3.21)

while

ω =
1

δ
ω, µ1 ≡ −ω, µ2 ≡ 0, (3.22)

(as always, modulo contact forms). Moreover, substituting the normalization UX = 0 into
the first order lifted recurrence formula

dUX ≡ UXX ω + 2UX µ 3 − U 2
X
µ4 + µ5,

and comparing the result with the last equation in (3.21) combined with (3.12) and (3.22),
yields

−UXX ω ≡ µ5 = δ2µ3 ≡ − δ2 κω = − δ3 κ ω.
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This produces the partially normalized lifted formula for the second order derivative:

UXX = δ3 κ.

Normalizing UXX = 1, we find

δ = κ−1/3, and so ω = 3
√
κ ω, (3.23)

which relates the equi-affine arc length element, as derived directly in (2.28), to the Eu-
clidean arc length element (3.10). Substituting the preceding normalizations into the order
2 recurrence formula

dUXX ≡ UXXX ω + 3UXX µ3 − 3UX UXX µ4,

produces
µ3 ≡ −1

3 UXXX ω.

On the other hand, from (3.12, 21, 23),

µ3 =
dδ

δ
− δ β µ3 ≡ −

( κs
3κ

+ β κ2/3
)
ω = −

( κs
3κ4/3

+ β κ1/3
)
ω,

where the s subscript denotes the Euclidean arc length derivative. Comparing the last two
formulas, we find

UXXX =
κs

3κ4/3
+ β κ1/3.

Applying the last normalization UXXX = 0 produces the final formula

α = κ1/3, β = − κs
3κ5/3

, γ = 0, δ = κ−1/3, ā = b̄ = 0, (3.24)

now expressing the equi-affine parameters in terms of the Euclidean invariants. The final
equi-affine moving frame will be given by the product of the group element (3.24) with
the Euclidean group element provided by its moving frame (3.7, 9). The order 3 reduced
recurrence formula

0 = dUXXX ≡ UXXXX ω+4UXXX µ3−
(
4UX UXXX + 3U2

XX

)
µ4 = UXXXX ω+3µ4,

coupled with (3.21), yields

−1
3
UXXXX ω = µ4 =

dβ

δ
+
β dδ

δ2
−
(

1

δ2
+ β2

)
µ3.

Substituting for the group parameters via (3.24), we arrive at the well-known formula for
the equi-affine curvature κ = UXXXX in terms of the Euclidean curvature:

κ =
κss
κ5/3

− 5κ2s
3κ8/3

+ 3κ4/3. (3.25)

Remark : If we already know the local coordinate formula (2.32) for equi-affine cur-
vature, we can immediately deduce the latter formula by applying invariantization with
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respect to the Euclidean moving frame, noting that ι(κ) = κ, while, by the Euclidean
recurrence formulae (3.14),

ι(ux) = 0, ι(uxx) = κ, ι(uxxx) = κs, ι(uxxxx) = κss + 3κ3.

A couple of pertinent comments: First, as just noted above, if one has already com-
puted a moving frame for G, there is no need to repeat the computation if the only goal is
to express the G differential invariants in terms of the H differential invariants. Indeed, the
Replacement Theorem can be immediately applied to express any G–invariant quantity in
terms of H–invariant quantities. Second, observe that it was not necessary to use any sort
of adapted basis for the infinitesimal generators of G, e.g., one that includes a basis for
the Lie algebra of H.

4. Lie Pseudo–Groups.

The same underlying ideas work, when suitably re-interpreted, for Lie pseudo-group
actions. In addition to the original references [32, 33, 34], the recent survey paper [31]
may be profitably consulted for details on the following constructions.

Given a smooth (or, better, analytic) manifold M , let D = D(M) denote the Lie
pseudo-group of all local diffeomorphisms† φ:M → M . For 0 ≤ n ≤ ∞, let D(n) ⊂
Jn(M,M) denote the bundle, or, more specifically, groupoid, [19, 39], consisting of their n
jets. The groupoid multiplication is provided by composition of jets (i.e., Taylor poly-
nomials or, when n = ∞, series). Coordinates on D(n) are denoted by (z, Z(n)) =
( . . . za . . . Zb

C . . . ), where the za, a = 1, . . . , m, are source coordinates on M , while
the Zb

C , b = 1, . . . , m, 0 ≤ #C ≤ n, represent the target jet coordinates of a local diffeo-
morphism. There is an induced right action of D on D(n) induced by right composition of
local diffeomorphisms, and denoted by

Rφ(jnψ|z) = jn(ψ ◦φ−1)|φ(z) for φ ∈ D, z ∈ imφ.

Let G ⊂ D be a regular Lie pseudo-group acting onM , meaning that, for all sufficiently
large n ≫ 0, the pseudo-group jets G(n) ⊂ D(n) form a subbundle, and the induced
projection πn+1

n :G(n+1) → G(n) forms a fibration. The condition that G be a Lie pseudo-

group requires that, again for n ≫ 0, every local diffeomorphism φ ∈ D that satisfies
jnφ ⊂ G(n) belongs to the pseudo-group: φ ∈ G. (See [11] for how to complete a more
general pseudo-group into a Lie pseudo-group with exactly the same invariants and local
geometry.) We will regard the target coordinates on the subbundle G(n) ⊂ D(n) as a system
of pseudo-group parameters, whose values will be recursively normalized during the course
of the moving frame algorithm.

As with the submanifold jet bundle, we split the differential forms on D(∞) into
horizontal and contact (or groupoid) components, and we let d = dM + dG denote the
corresponding decomposition of the differential. The right-invariant contact forms are

† As before, our notation allows the domain of the diffeomorphism to be an open subset of the
source space: domφ ⊂ M .
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interpreted as the Maurer–Cartan forms for the diffeomorphism pseudo-group, and an
explicit basis µb

C , for b = 1, . . . , m, #C ≥ 0, can be obtained by invariant differentiation,
[32]. The corresponding Maurer–Cartan forms for the pseudo-group G are then obtained
by restricting the diffeomorphism Maurer–Cartan forms to the pseudo-group jet groupoid.

A vector field on M is an infinitesimal generator of G provided the corresponding
one-parameter group exp(tv) ∈ G, where defined. In local coordinates, we write

v =

m∑

a=1

ζa(z)
∂

∂za
. (4.1)

For each n, the nth order jet of a vector field (4.1) is coordinatized by the derivatives of
its coefficients, denoted ζ(n) = ( . . . ζbC . . . ), with 1 ≤ b ≤ m, 0 ≤ #C ≤ n. Infinitesimal
generator jets are constrained by the infinitesimal determining equations

L(n)(z, ζ(n)) = 0, (4.2)

which forms a linear system of partial differential equations that prescribe the tangent
space TG(n) ⊂ TD(n).

We extend the lift map (2.1) so that it takes a vector field jet coordinate to the
corresponding restricted diffeomorphism Maurer–Cartan form:

λ(ζbC) = µb
C , for b = 1, . . . , m, #C ≥ 0. (4.3)

A fundamental result, established in [32], states that the restrictions of the diffeomorphism
Maurer–Cartan forms to G(∞) are constrained by the system of linear algebraic relations
obtained by formally applying the lift map to the infinitesimal determining equations (4.2):

L(n)(Z, µ(n)) = 0. (4.4)

To explicitly construct the Maurer–Cartan forms, we mimic the finite-dimensional
lifted recurrence formulae (2.4). Consider the differentials of the target coordinates, which
we view as functions on the diffeomorphism jet bundle D(∞), and thereby split into man-
ifold and groupoid components:

dZa = dMZ
a + dGZ

a = σa + µa, a = 1, . . . , m. (4.5)

Their horizontal components are

σa = dMZ
a =

m∑

b=1

Za
b dz

b, a = 1, . . . , m, (4.6)

with Za
b denoting first order jet coordinates on D(1). Their contact components

µa = dGZ
a = dZa −

m∑

b=1

Za
b dz

b, a = 1, . . . , m, (4.7)

are the zeroth order contact forms. Right-invariance of the target coordinates and the
Cartesian product structure implies right-invariance of both the horizontal and zeroth
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order contact forms, and hence the latter are identified as the order 0 Maurer–Cartan
forms for the pseudo-group. The higher order Maurer–Cartan forms are obtained by
invariant differentiation with respect to the horizontal coframe (4.6). More explicitly, let
DZ1 , . . . ,DZm be the dual total derivative operators, satisfying

dMF =
m∑

a=1

(DZaF ) dZa (4.8)

for any F :D(∞) → R. The higher order Maurer–Cartan forms are found by repeated total
differentiation: µb

A = DZa1 · · ·DZa
k
µb.

We are interested in the induced action of the pseudo-group G on p-dimensional sub-
manifolds S ⊂M . As before, we denote the submanifold jet bundle of order 0 ≤ n ≤ ∞ by
Jn = Jn(M, p). The formulae for the prolonged action of G on Jn can be found by implicit
differentiation with respect to the lifted horizontal coframe (2.7). Let H(n) → Jn denote
the pullback of the pseudo-group jet groupoid G(n) → M via the projection π̃n

0 : J
n → M .

Given a choice of independent variables, the variational bicomplex structure on J∞ induces
a three-way splitting of the differential d = dJ + dG = dH + dV + dG on the prolonged
pseudo-group bundle (groupoid) H(∞) → J∞, thus endowing it with the structure of a tri-
complex. The lifts of functions and differential forms on J∞ to H(∞) is defined, as before,
by applying the target pull-back and then eliminating any Maurer–Cartan forms.

The pseudo-group version of the lifted recurrence formula can now be stated; see [33;
Theorem 19] for details and a proof. We will use v to also denote the prolongation of
the pseudo-group infinitesimal generator (4.1) to the submanifold jet spaces, acting on
differential functions and differential forms by Lie differentiation.

Lemma 4.1. Let ω be a differential form on J∞, and Ω = λ(ω) be its lift to H(∞).

Then

dGλ(ω) = λ[v(ω) ], and hence dλ(ω) = λ[dω + v(ω) ]. (4.9)

Equations (4.5) are particular cases of the lifted recurrence formula:

dZa = λ(dza + ζa) = σa + µa, a = 1, . . . , m, (4.10)

since, by definition, λ(dza) = dMZ
a and λ(ζa) = µa. Also, since every Lie group action

is a Lie pseudo-group (of finite type), the finite-dimensional lifted recurrence formulae are
particular cases of the pseudo-group version (4.9).

We explain the recursive moving frame algorithm for prolonged pseudo-group actions
in the context of a well-studied example, [18, 33]. The general construction proceeds in
analogy to the finite-dimensional case discussed at the end of Section 2, relying on the
lifted recurrence formulae and their recursive reductions.

Example 4.2. Consider the intransitive Lie pseudo-group G given by

X = f(x), Y = y, U =
u

f ′(x)
, (4.11)
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where f ∈ D(R) is an arbitrary local diffeomorphism, on M = R
3 \ {u = 0}. The cor-

responding jet coordinates f, fx, fxx, . . ., will serve to parametrize the pseudo-group jet
bundles G(n) ⊂ D(n)(M). The infinitesimal generator has the form

v = ξ ∂x + η ∂y + ϕ∂u = a(x) ∂x − a′(x) u ∂u, (4.12)

where a = a(x) is an arbitrary function of x, being the general solution to the linearized
determining equations

ϕ = −uξx, ϕu = − ξx, ξy = ξu = ηx = ηy = ηu = ϕy = 0. (4.13)

Each infinitesimal generator coefficient jet is thus parametrized by the jet coordinates of
a(x), namely a, ax, axx, . . . . We use

α = λ(a), αX = λ(ax), αXX = λ(axx), . . . ,

to denote the corresponding Maurer–Cartan forms, whose formulae will be determined
shortly. Note that the lifts of the infinitesimal generator coefficients are

λ(ξ) = λ(a) = α, λ(η) = 0, λ(ϕ) = λ(−u ax) = −U αX . (4.14)

As in (4.5), we begin by computing the differentials of the target coordinates, and
separating them into manifold and groupoid components:

dX = dMX + dGX = (Xx dx+Xy dy +Xu du) + (dX −Xx dx−Xy dy −Xu du)

= fx dx+ (df − fx dx),

dY = dMY + dGY = Yx dx+ Yy dy + Yu du+ (dY − Yx dx− Yy dy − Yu du) = dy, (4.15)

dU = dMU + dGU = Ux dx+ Uy dy + Uu du+ (dU − Ux dx− Uy dy − Uu du)

=
fx du− fxx u dx

f2
x

− u(dfx − fxx dx)

f2
x

=
fx du− fxx u dx

f2
x

− U
dfx − fxx dx

fx
.

On the other hand, the lifted recurrence formula (4.10) are

dX = σ1 + λ(ξ) = σ1 + α, dY = σ2 + λ(η) = σ2, dU = σ3 + λ(ϕ) = σ3 − U αX ,

and hence

α = df − fx dx, αX =
dfx − fxx dx

fx
. (4.16)

The invariant horizontal coframe is

σ1 = dMX = fx dx, σ2 = dMY = dy, σ3 = dMU =
fx du− fxx u dx

f2
x

, (4.17)

with corresponding dual invariant differentiation operators

DX =
1

fx
Dx +

fxx u

f2
x

Du, DY = Dy, DU = fxDu. (4.18)
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Observe that αX = DXα, as it should be; the higher order Maurer–Cartan forms are
obtained by repeated differentiation, but since f only depends on x, the only nonzero ones
are

αXX = D
2
Xα =

dfxx − fxxx dx

f2
x

− fxx( dfx − fxx dx)

f3
x

, (4.19)

and its higher order X derivatives. The corresponding lifts of the infinitesimal generator
coefficient jet coordinates are similarly obtained by successively applying the invariant
differentiations (4.18) to (4.14); at first order,

µX = λ(ξx) = λ(ax) = αX ,

νX = λ(ηx) = 0,

ψX = λ(ϕx) = λ(−u axx)

= −U αXX ,

µY = λ(ξy) = 0,

νY = λ(ηy) = 0,

ψY = λ(ϕy) = 0,

µU = λ(ξu) = 0,

νU = λ(ηu) = 0,

ψU = λ(ϕu) = λ(− ax)

= −αX .

(4.20)

The evident linear relations among the Maurer–Cartan forms on G, namely,

ψ = −uµX , ψU = −µX , µY = µU = νX = νY = νU = ψY = 0,

follow from lifting the linearized determining equations (4.13).

We are interested in the induced action of (4.11) on surfaces S ⊂ M , which, for
simplicity, we assume to be graphs of functions u = h(x, y). (Adapting the constructions
to parametrized surfaces is straightforward.) We thus further split the differential on the
surface jet bundle J∞ = J∞(M, 2), into horizontal and vertical components: dJ = dH+dV .
Again, for simplicity, we shall ignore the contact forms on the submanifold jet space, e.g.,
θ = du − ux dx − uy dx, etc., in order to keep the expressions relatively short, although
they are not so difficult to keep track of, and are useful for other purposes, e.g., invariant
variational problems. The lifted horizontal coframe is

dHX = ω1 = fx dx, dHY = ω2 = dy, (4.21)

and hence the dual implicit differentiations are

DX =
1

fx
Dx, DY = Dy, (4.22)

which act on differential functions on J∞.

Using (4.12), we construct the order 0 lifted recurrence formulae (4.9)

dX ≡ ω1 + α, dY ≡ ω2, dU ≡ UX ω1 + UY ω
2 − U αX , (4.23)

where UX , UY denote the lifted jet coordinates, i.e., the prolongation of the pseudo-group
action to first order surface jets. The order 0 cross-section sets X = 0, U = 1, which
normalizes the first two pseudo-group parameters f = 0, fx = u. Substituting these
expressions into the Maurer–Cartan forms (4.16), we find

α = −ω1 = −u dx, αX ≡ ux − fxx
u

dx+
uy
u
dy.
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At this stage, we have already produced the (contact-)invariant horizontal coframe and
dual differential operators:

ω1 = u dx, ω2 = dy, DX = D1 =
1

u
Dx, DY = D2 = Dy. (4.24)

On the other hand, upon normalization, dX = dU = 0, and so the order 0 lifted recurrence
formulae (4.23) imply

U αX = UX ω1 + UY ω
2, so UX =

ux − fxx
u2

, UY =
uy
u

= J,

the latter being a differential invariant, as it involves no pseudo-group parameters.

The order 1 normalization sets UX = 0, whereby fxx = ux, which, referring back to
(4.16), means that

αXX ≡ uxx − fxxx
u2

dx+
uuxy − uxuy

u3
dy. (4.25)

On the other hand, the order 1 lifted recurrence formulae are

dUX = UXX ω1 + UXY ω
2 − U αXX − 2UX αX , dUY = UXY ω

1 + UY Y ω
2 − UY αX .

Upon normalization, dUX = 0, and so the first of these, via (4.24) and (4.25), implies

αXX = UXX ω1 + UXY ω
2, whence UXX =

uxx − fxxx
u3

, UXY =
uuxy − uxuy

u3
,

while equating the second to

dUY = dJ = D1J ω
1 +D2J ω

2

results in

D1J = J1 = UXY =
uuxy − uxuy

u3
, D2J = J2 − J2, where J2 = UY Y =

uyy
u

.

We can clearly continue in this recursive fashion, reproducing the calculations in [33],
but without the necessity of a priori computing the significantly more complicated full
prolongation of the pseudo-group action on the submanifold jet space.

Example 4.3. Let us also revisit the equi-affine curve example, but now using the
pseudo-group approach. This approach allows us to avoid finding the explicit formulas for
the Maurer–Cartan forms on the Lie group, using the Maurer–Cartan contact forms on
the corresponding pseudo-group jet bundle G(∞) ⊂ D(∞) in their stead. Thus, consider
the general infinitesimal generator

v = ξ(x, u) ∂x + ϕ(x, u) ∂u, (4.26)

where the coefficients satisfy the infinitesimal determining equations

ξx = −ϕu, ξxx = ξxu = ξuu = ϕxx = ϕxu = ϕuu = 0. (4.27)
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Starting with the group transformation formulae (2.11), the order 0 lifted recurrence for-
mulae, in the pseudo-group form (4.9), are

(α dx+ β du) + (x dα+ u dβ + da) = dMX + dGX = dX = dλ(x) = λ(dx+ ξ) = σ1 + µ,

(γ dx+ δ du) + (x dγ + u dδ + db) = dMU + dGU = dU = dλ(u) = λ(du+ ϕ) = σ2 + ν,
(4.28)

where the horizontal coframe is

σ1 = dMX = αdx+ β du, σ2 = dMU = γ dx+ δ du, (4.29)

while the order 0 Maurer–Cartan forms are

µ = λ(ξ) = dGX = dX −Xx dx−Xu du = x dα+ u dβ + da,

ν = λ(ϕ) = dGU = dU − Ux dx− Uu du = x dγ + u dδ + db.
(4.30)

Note that while these can be identified as X,U–dependent linear combinations of the Lie
group-based Maurer–Cartan forms (2.13), we do not need to make this identification, since
we only care about the eventually normalized Maurer–Cartan forms, and the pseudo-group
contact forms serve equally well for this purpose. The higher order Maurer–Cartan contact
forms are obtained by differentiation with respect to the invariant horizontal coframe
(4.29), that is, by successively applying the dual differentiation operators

DX = δDx − γ Du, DU = −β Dx + αDu.

Thus, the order 1 Maurer–Cartan forms are

µX = λ(ξx) = DXµ = δ dα− γ dβ,

µU = λ(ξu) = DUµ = αdβ − β dα,

νX = λ(ϕx) = DXν = δ dγ − γ dδ,

νU = λ(ϕu) = DUν = αdδ − β dγ,
(4.31)

while all second and higher order Maurer–Cartan forms are 0. This, and the evident
identity µX = − νU , are in accordance with the lifted infinitesimal determining equations
(4.27), as in (4.2). The order 1 contact Maurer–Cartan forms happen to coincide with the
ordinary Maurer–Cartan forms (2.14), but this identification is not needed to complete the
calculation.

To study the action of SA(2) on plane curves, we select x as the independent variable,
and u as the dependent variable, and, as before, ignore contact forms, concentrating on
the horizontal components with respect to our usual choice of independent and dependent
variables. Solving the cross-section normalization equations X = U = 0 for the group
parameters a, b as in (2.22), the reduced order 0 Maurer–Cartan forms become

µ = −σ1 ≡ −ω, ν = −σ2 ≡ −UX ω,

where ω and UX are as before: (2.16, 19). Next, using the usual vector field prolongation
formula, [23], to determine

v(ux) = ϕx + (ϕu − ξx) ux − ξu u
2
x,

the first order lifted recurrence formula (4.9) takes the form

dUX = dλ(ux) ≡ λ[ux dx+ v(ux) ] = UXX ω + µX + 2UX µX + U2
XνU , (4.32)
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which, in view of (4.31), coincides with first order recurrence formula in (2.21). From here
on, the computations are essentially as before, and will not be reproduced. As noted above,
the simplification is that we did not need to solve for the Lie group Maurer–Cartan forms
to proceed with the algorithm, but rather could use the pseudo-group Maurer–Cartan
contact forms obtained by applying the invariant differentiation operators to the order 0
Maurer–Cartan forms.
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