Corrections to

Page 432: Replace the last paragraph by the following:

We now have the complete system of invariantized Maurer–Cartan forms:

\[
\begin{align*}
\mu_1 &= -\varpi \equiv -\omega, \\
\mu_2 &= -\theta \equiv 0, \\
\mu_3 &= -\frac{1}{3} \vartheta_2 \equiv 0, \\
\mu_4 &= \frac{1}{3} \kappa \varpi + \frac{1}{3} \vartheta_3 - \frac{4}{9} \vartheta_2 \equiv \frac{1}{3} \kappa \omega, \\
\mu_5 &= -\varpi - \vartheta_1 \equiv -\omega,
\end{align*}
\]

(2.33)

where the former expressions, which involve the fully invariant equi-affine arc length one-form

\[
\varpi = \iota(dx) = \omega + \beta \theta = \sqrt[3]{u_{xx}} \, dx + \frac{u_{xxx}}{3u_{xx}^{5/3}} (du - u_x \, dx),
\]

and the corresponding invariantized contact forms \(\vartheta_j = \iota(\theta_j) \), can be found by keeping track of the contact components in the preceding calculation. With these in hand, the higher order recurrence formula for the differential invariants and invariant differential forms follow as in the standard treatment, [8].

Page 442, equation (3.24):

Change \(a = b = 0 \) to \(\bar{a} = \bar{b} = 0 \).