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In general the ubiquitous χ(2) nonlinear directional coupler, where nonlinearity and evanescent
coupling are intertwined, is nonintegrable. We rigorously demonstrate that matching excitation
to the even or odd fundamental supermodes yields dynamical analytical solutions for any phase
matching in a symmetric coupler. We analyze second harmonic generation and optical parametric
amplification regimes and study the influence of fundamental fields parity and power on the oper-
ation of the device. These fundamental solutions are useful to develop applications in classical and
quantum fields such as all-optical modulation of light and quantum-states engineering.

The nonlinear directional coupler (NDC) is a core de-
vice in integrated optics. Its potential was first demon-
strated in χ(3) materials as an all-optical switch [1, 2].
The possibilities of the NDC in semiconductors were
thoroughly analyzed [3], where for instance ultrafast all-
optical switching was demonstrated even though limited
by three-photon absorption [4]. This and other interest-
ing functionalities were later displayed in the χ(2) NDC
through cascaded second-order effects [5–9]. In the last
years the χ(2) NDC has found a flourishing field of appli-
cation: quantum optics [10]. Its key strengths in quan-
tum information processing as a source of entangled pho-
tons and entangled field quadratures have been demon-
strated and are still actively explored [11–16]. In general
the χ(2) NDC is a nonintegrable system and only station-
ary solutions –solitons– are available [17–19]. Even in this
case, general solutions are only obtained numerically or
in a semianalytical form [20]. The dynamical solutions of
the χ(2) NDC have nonetheless a broad range of applica-
tions in the classical and quantum regimes [5–8, 10–16].
Two limiting cases only have up to now been identified as
integrables, i.e. with analytical dynamical solutions: (i)
The propagation equations can be reduced to those re-
lated to the simpler χ(3) NDC when the phase mismatch
between the fundamental and second harmonic waves
propagating in the device is large, which corresponds to
a regime of lower efficiency [18]. (ii) The undepleted
harmonic-field approximation in spontaneous paramet-
ric downconversion linearizes the propagation equations
[10].
Analytical solutions are universally preferred since

they can be used to contemplate new applications and
engineer the propagation of both classical and quan-
tum light in these devices. In this paper, we rigor-
ously retrieve analytical solutions for the χ(2) NDC for
–any– phase matching under specific symmetry condi-
tions: pumping in the even or odd fundamental super-
mode. We show indeed that the propagation equations
are analogous to those related to a single χ(2) nonlinear
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waveguide with imperfect phase matching. We show that
in the NDC case the effective coupling plays the role of
the wavevector phase mismatch in the emblematic single
waveguide [22]. We can thus analyze second harmonic
generation (SHG) and optical parametric amplification
(OPA) in this configuration, shedding light on the in-
fluence of total power and fundamental-modes phases on
the operation of the device, towards higher efficiency and
quantum applications.
The χ(2) NDC, sketched in Figure 1 (dashed box), is

made of two identical nonlinear χ(2) waveguides. In each
waveguide, an input fundamental field at frequency ωf is
up-converted into a second-harmonic field at frequency
ωh (SHG), or a weak input fundamental field is amplified
with the help of a strong second-harmonic field (degener-
ate OPA). For the sake of simplicity, we consider all fields
in the same polarization mode. In the coupling region,
the energy of the fundamental modes propagating in each
waveguide is exchanged between the coupled waveguides
through evanescent waves, whereas the interplay of the
generated, or injected, second harmonic waves is negligi-
ble for the considered propagation lengths due to their
high confinement into the waveguides. Both physical pro-
cesses, evanescent coupling and nonlinear generation, are
described by the following system of equations [5]

dAf

dz
= iCBf + 2igAhA

∗

f e
i∆βz,

dAh

dz
= igA2

f e
−i∆βz,

dBf

dz
= iCAf + 2igBhB

∗

f e
i∆βz,

dBh

dz
= igB2

f e
−i∆βz,

(1)

where A and B are the slowly varying amplitudes of fun-
damental (f) and second harmonic (h) fields correspond-
ing to the upper (a) and lower (b) waveguides, respec-
tively, g is the nonlinear constant proportional to χ(2)

and the spatial overlap of the fundamental and harmonic
fields in each waveguide, C the linear coupling constant,
∆β ≡ β(ωh) − 2β(ωf ) the wavevector phase mismatch
with β(ω) the propagation constant at frequency ω, and
z is the coordinate along the direction of propagation. C
and g are taken as real without loss of generality. We
consider C = 8 × 10−2 mm−1, g = 25 × 10−4 mm−1
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FIG. 1. (Color online) Sketch of the nonlinear directional

coupler χ(2)-NDC made of two identical waveguides a and b

with second-order susceptibilities χ(2). The dashed box indi-
cates the nonlinear and coupling region. Input fundamental
fields produce second harmonic fields through SHG or input
harmonic fields amplify injected fundamental seeds through
OPA. In red, the fundamental waves, evanescently coupled
(f). In blue, and more confined, the non-interacting second
harmonic waves (h).

mW−1/2 and lengths of few centimeters in the simula-
tions we show below. These are state-of-the-art values in
periodically poled lithium niobate waveguides [23]. The
input powers used in the simulations are of the order of
those in [8].

In order to solve the set of Equations (1), we use di-
mensionless amplitudes and phases related to the com-
plex amplitudes through

uf (z) =
|Af (z)|√

P
, vf (z) =

|Bf (z)|√
P

,

θf (z) = arg{Af (z)}, φf (z) = arg{Bf (z)},

uh(z) =

√

2

P
|Ah(z)|, vh(z) =

√

2

P
|Bh(z)|,

θh(z) = arg{Ah(z)}, φh(z) = arg{Bh(z)},

with P = |Af |2 + |Bf |2 +2|Ah|2 +2|Bh|2 the total input
power. We also introduce a normalized propagation coor-
dinate ζ ≡

√
2Pgz, which is defined only in the nonlinear

and coupling region (Figure 1, dashed box). Applying
this change of variables into Equations (1), we obtain for
the modes propagating in waveguide a

duf

dζ
=− κ vf sin(δf )− ufuh sin(∆θ), (2)

dθf
dζ

=κ
vf
uf

cos(δf ) + uh cos(∆θ), (3)

duh

dζ
=u2

f sin(∆θ), (4)

dθh
dζ

=
u2
f

uh
cos(∆θ), (5)

and for the modes propagating in waveguide b

dvf
dζ

=κuf sin(δf )− vfvh sin(∆φ), (6)

dφf

dζ
=κ

uf

vf
cos(δf ) + vh cos(∆φ), (7)

dvh
dζ

= v2f sin(∆φ), (8)

dφh

dζ
=

v2f
vh

cos(∆φ). (9)

The three governing parameters of the system are the ef-
fective coupling κ ≡ C/(

√
2Pg), the fundamental fields

phase difference δf ≡ φf − θf , and the nonlinear phase
mismatchs ∆θ ≡ θh − 2θf +∆Sζ and ∆φ ≡ φh − 2φf +

∆Sζ, where ∆S = ∆β/(
√
2Pg) is an effective wavevector

phase mismatch. Remarkably, the nonlinear phase mis-
match drives the nonlinear optical processes whereas the
effective coupling indicates which effect is stronger, either
the evanescent coupling or the nonlinear interaction. Ad-
ditionally, there are two dynamical invariants, the energy
and momentum of the total system given respectively by

u2
f + v2f + u2

h + v2h = 1, (10)

uhu
2
f cos(∆θ) + vhv

2
f cos(∆φ) + 2κufvf cos(δf ) = Γ,

(11)

where Γ is a constant given by the initial conditions [24].
The systems of Equations (2-5) and (6-9) are not inte-

grable in general [18]. The key to our analytical solution
is to take advantage of the fact that the full system of
Equations (2-9) is invariant under the following set of
transformations F (uf , θf , uh, θh, vf , φf , vh, φh):

uf ↔ vf , uh ↔ vh,

φf ↔ θf + nπ, ∆θ ↔ ∆φ, (12)

with n = 0, 1. The two last transformations can be com-
bined to obtain φh ↔ θh. In general this set of transfor-
mations modifies the initial conditions of the problem,
thus losing the symmetry and the dynamical invariance.
Nonetheless, we crucially notice that for symmetric ini-
tial conditions

uf (0) = vf (0), uh(0) = vh(0),

φf (0) = θf (0) + nπ, φh(0) = θh(0), (13)

the symmetry relations between the fields amplitudes and
phases persist along propagation, protected by the invari-
ance of the Equations (2-9), so that at all z

uf = vf , uh = vh,

φf = θf + nπ, φh = θh. (14)

These relations were mentioned along the analysis of the
stationary solutions to Equations (1) [18]. However, the
connection between the initial conditions Equations (13)
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and the solutions Equations (14) was missing. We pro-
ceed here to give rigorous justification to Equations (14).
Let us rewrite Equations (2-5) and (6-9) as a single vector
equation

dx

dζ
= h(x), (15)

with x = (uf , θf , uh, θh, vf , φf , vh, φh)
T . Let F be the lo-

cally defined invertible differentiable map which is given
by Equations (12). Then, by the chain rule, y(ζ) =
F (x(ζ)) solves the system of ordinary differential equa-
tions

dy/dζ = H(y) = ∇F (F−1(y))h(F−1(y)),

where ∇F (x) denotes the Jacobian matrix of F at x.
Now suppose H = h on their common domain of def-
inition, meaning that the map F defines a symmetry
of Equation (15). Furthermore, suppose F is also a
symmetry of the initial conditions x(0) = x0 such that
F (x0) = x0. Then x(ζ) and y(ζ) both solve the same
initial value problem. Hence, since the system is smooth
(indeed analytic), by uniqueness of solutions to the ini-
tial value problem, they must be the same, meaning that
F is also a symmetry of the solution

x(ζ) = F (x(ζ)), (16)

which proves Equations (14). This proof is indeed gen-
eral: any system with smooth evolution and invariant
under an invertible and differentiable transformation F
has solutions that retain this invariance provided the ini-
tial conditions are also F -invariant. This result is related
to century-old questions concerning the impact of sym-
metries on physical systems, formulated by P. Curie and
S. Lie [21].
The symmetry of the solutions Equation (16) thus sim-

plifies the system of Equations (2-9) into

duf

dζ
=− ufuh sin(∆θ), (17)

duh

dζ
= u2

f sin(∆θ), (18)

d∆θ

dζ
=(

u2
f

uh
− 2uh) cos(∆θ) − (−1)n2κ, (19)

and the dynamical invariants Equations (10-11) into

u2
f + u2

h = 1/2, v2f + v2h = 1/2, (20)

(1 − 2u2
h)(uh cos(∆θ) + (−1)nκ) = Γ. (21)

Remarkably, these equations are analogous to those re-
lated to the nonlinear interaction of two waves with im-
perfect phase matching ∆β in a bulk crystal or single
waveguide [22]. In our case, the effective coupling 2κ
plays the role of ∆β in the crystal or single waveguide.
The reduced Equations (17-19) are fulfilled only when
harmonic and fundamental input powers are set equal

in each waveguide, u2
f(0) = v2f (0) and u2

h(0) = v2h(0),

harmonic fields in phase, θh(0) = φh(0), and fundamen-
tal fields either in phase, θf (0) = φf (0), or π-dephased,
θf (0) = φf (0) + π. This leads to a reasonable set of

initial conditions for the χ(2) NDC as these conditions
correspond to the excitation of the even or odd funda-
mental eigenmodes of the linear directional coupler, so-
called supermodes [25]. Outstandingly, the χ(2) NDC is
a versatile source of quantum entanglement under these
conditions [14–16].
Equations (17-19) have analytical solutions in terms

of Jacobi elliptic functions [22]. We analyze thoroughly
these solutions in the SHG and OPA regimes. From
Equations (18) and (21), we get

ζ = ±1

2

∫ u2

h
(ζ)

u2

h
(0)

d(u2
h)

√

u2
h(

1
2 − u2

h)
2 − [Γ2 − (−1)nκ (12 − u2

h)]
2
.

(22)
The expression in the square root has three roots u2

h,3 >

u2
h,2 > u2

h,1 ≥ 0. By using the function y and the parame-

ter γ, defined respectively as y2 = (u2
h−u2

h,1)/(u
2
h,2−u2

h,1)

and γ2 = (u2
h,2−u2

h,1)/(u
2
h,3−u2

h,1), we can rewrite Equa-

tion (22) as

ζ =
±1

2
√

u2
h,3 − u2

h,1

∫ y(ζ)

y(0)

dy
√

(1− y2)(1 − γ2y2)
.

y is the Jacobi elliptic function of ζ. The normalized
harmonic power is thus given by

u2
h = u2

h,1 + (u2
h,2 − u2

h,1) sn
2(
√

u2
h,3 − u2

h,1(ζ + ζ0), γ),

(23)
where sn stands for the Jacobi elliptic sine. ζ0 is deter-
mined by the initial condition u2

h(0) and the parameter
γ, and it is given by

ζ0 =
1

√

u2
h,3 − u2

h,1

arcsn(

√

u2
h(0)− u2

h,1

u2
h,2 − u2

h,1

, γ),

where arcsn stands for the inverse Jacobi elliptic sine.
The period of oscillations in the harmonic powers is thus

L =
2K(γ)

√

u2
h,3 − u2

h,1

, (24)

with K the complete elliptic integral of first kind. The
individual phases θf,h and the nonlinear phase mismatch
∆θ can be straightforwardly obtained from Equations
(3), (5) and (23), and the invariants given by Equations
(20) and (21).
Now we show the solutions for two specific cases of

SHG and OPA. We consider perfect wavevector phase
matching ∆β = 0 in both situations for the sake of sim-
plicity. For SHG u2

h(0) = 0 and Γ = (−1)nκ, so that the
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FIG. 2. Fundamental (upper curve) and harmonic (lower
curve) fields power propagation in the SHG regime. Dimen-
sionless fundamental power u2

f (dash) and second harmonic

power u2
h (dot). κ = 0.51. The vertical lines show the effective

coupling coherence length L/2, with L = 3.35 the oscillation
period analytically calculated. ζ is the normalized propaga-
tion coordinate. ζ = 1 stands for z ≡ (

√
2Pg)−1 = 6.3 mm.
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FIG. 3. Nonlinear phase mismatch evolution along propaga-
tion in one oscillation period L in the SHG regime (dash).
κ = 0.51 and n = 0. The vertical line shows the effective
coupling coherence length L/2, with L = 3.35 the oscillation
period analytically calculated. ζ is the normalized propaga-
tion coordinate. ζ = 1 stands for z ≡ (

√
2Pg)−1 = 6.3 mm.

roots from the expression in the square root of Equation
(22) are solutions of

u6
h − (1 + κ2)u4

h +
u2
h

4
= 0,

which read

u2
h,1 = 0, u2

h,2(3) =
1 + κ2 ± κ

√
2 + κ2

2
. (25)

Notably, these solutions depend only on the strength of
the effective coupling κ and not on the supermode parity,
i.e. not on n. This point is clarified in the analysis of the
nonlinear phase mismatch evolution below.
Figure 2 displays the dimensionless powers (Equations

(23) and (25)) for each mode in waveguide a (or equally
b) along the propagation in the SHG regime. We have set
κ = 0.51, equivalent to P = 2W for our realistic values
in Lithium Niobate. A strong fundamental field deple-
tion and a periodic switch from fundamental-to-harmonic
conversion to harmonic-to-fundamental conversion are
observed. L = 3.35 is the period of oscillation analyt-
ically calculated through Equation (24). L/2 is the ef-
fective coupling coherence length defined in analogy with
the wave-vector coherence length. The connection of the
observed periodic behavior and a coupling-based nonlin-
ear phase mismatch has been proposed recently through
the analysis of numerical simulations [15, 16]. To clarify
the origin of these periodic oscillations, we calculate the
evolution of phases along propagation. The individual
phases are given by

θh(ζ) = θh(0) + (−1)nκ ζ,

θf (ζ) = θf (0) +
(−1)nκ

uh,3
Π(2u2

h,2,Φ(uh,3ζ, γ), γ), (26)

where Π is the elliptic integral of the third kind and Φ
the amplitude of Jacobi elliptic functions. Figure 3 shows
the evolution of the nonlinear phase mismatch ∆θ(ζ) in a
period of oscillation L. We set κ as above, θf (0) = 0 and
θh(0) = π/2 due to the well-known SHG phase jump [22].
The phase mismatch evolves from π/2 down to −π/2 in
an oscillation period L when the parity is set as n = 0
(Figure 3). A symmetric evolution curve from π/2 up to
3π/2 is obtained for n = 1 (not shown). Since the evo-
lution of sin(∆θ), and thus of the uf and uh solutions in
Equations (17)-(18), is the same in both cases, SHG is in-
dependent of the input supermode parity. Equations (26)
show that the linear coupling of the fundamental modes
κ produces a nonlinear phase mismatch which cyclically
destroys the wavevector phase matching initially fulfilled,
driving two successive nonlinear optical processes, upcon-
version in the first effective coupling coherence length fol-
lowed by downconversion in the second coupling length.
We stress that our analytical solutions perfectly match
with the numerical solutions of Equations (2-9).
For OPA with a set of input phases such that ∆θ(0) =

0, Γ = uh(0)− 2u3
h(0)+ (−1)nκ (1− 2u2

h(0)) is preserved
along propagation, and the roots of the expression in the
square root of Equation (22) are given by solving the
expression

u2
h(

1

2
−u2

h)
2− [

uh(0)

2
−u3

h(0)+(−1)nκ (u2
h−u2

h(0))]
2 = 0,

with general solutions
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u2
h,1 = u2

h(0), u2
h,2(3) =

1

2
(1− u2

h(0) + κ2 ∓
√

2u2
h(0)(1− 3κ2 − 3

2
u2
h(0)) + 4(−1)nκu2

h(0)(1− 2u2
h(0)) + κ2(2 + κ2)).

(27)

These solutions also include SHG when u2
h(0) = 0. Note

that Equations (27) have to be suitably ordered in order
to be used in Equation (23). In contrast to SHG, Equa-
tions (27) depend in this case on the input harmonic
power u2

h(0), the effective coupling κ and the parity of
the input fundamental supermode via the parameter n.
We show below the dependence of the solutions on parity
and input harmonic power.

Figure 4 top displays the dimensionless fundamental
powers (Equations (23) and (27)) in waveguide a (or
equally b) along the propagation in a specific case of
OPA. We have set u2

h(0) = 0.499, κ = 0.92 (P =
600mW ) and n = 0 (Figure 4a, black dash) and n = 1
(Figure 4a, gray dash). The harmonic fields are not
shown since they remain almost undepleted for this set
of parameters. Note that the power scale (ordinate axis)
has been expanded by a factor of 103. In contrast with
SHG, OPA depends on the parity of the input fundamen-
tal supermodes. The system periodically switches from
harmonic-to-fundamental conversion to fundamental-to-
harmonic conversion for even input parity, whereas it
switches from fundamental-to-harmonic conversion to
harmonic-to-fundamental conversion for odd input par-
ity. Unlike in SHG, the nonlinear phase mismatch ∆θ
evolves in OPA from the initial value ∆θ(0) = 0 to neg-
ative (n=0) or positive (n=1) values (not shown). This
modifies the evolution of the amplitudes uf,h through
the sign of sin(∆θ) in Equations (17)-(18). The period
of oscillation is also modified by the input parity with
Leven = 5.19 and Lodd = 5.27. At Lodd/2 the fundamen-
tal odd mode is reduced by approximately a factor 7.5,
whereas at Leven/2 the fundamental even mode is ampli-
fied by the same factor. Figure 4b displays the ratio be-
tween even and odd fundamental fields power u2

f,e/u
2
f,o

along propagation. Notably, a ratio higher than 50 is
obtained at the odd effective coupling coherence length
Lodd/2.

Figure 5 displays the dimensionless fundamental and
harmonic powers (Equations (23) and (27)) in waveguide
a (or equally b) along propagation in the OPA regime
for equal injection of fundamental and harmonic fields,
i.e. u2

h(0) = 0.25. For the sake of comparison, the ef-
fective coupling is set as above (κ = 0.92). We show
the evolution of the fields produced by injection of even
(black) or odd (gray) fundamental supermodes at the in-
put. Fundamental and harmonic fields are in dash and
dot, respectively. Strong harmonic fields depletion and
fundamental fields amplification are achieved for even
(n=0) input. Lower fundamental fields depletion and
harmonic fields amplification are obtained for odd (n=1)
input. Shorter periods of oscillation and larger even-odd
oscillation period shifts are observed in comparison with
those in Figure 4. The even configuration allows to switch
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FIG. 4. Top figure (a): fundamental fields power propa-
gation in the OPA regime for an even and odd input funda-
mental supermode. Even dimensionless fundamental power
u2
f,e (dash, black). Odd dimensionless fundamental power

u2
f,o (dash, gray). Bottom figure (b): ratio between even and

odd fundamental fields power u2
f,e/u

2
f,o (solid, black) along

propagation. κ = 0.92. The vertical lines show the even and
odd effective coupling coherence lengths Leven/2 (dash) and
Lodd/2 (solid), with Leven = 5.19 and Lodd = 5.27 analyti-
cally calculated. ζ is the normalized propagation coordinate.
ζ = 1 stands for z ≡ (

√
2Pg)−1 = 11.5 mm.

from harmonic undepletion to a large amount of deple-
tion at Leven/2 by either injection of no, or very small,
fundamental seed as in Figure 4 or a substantial funda-
mental seed as in Figure 5. We have also found that the
higher the total input power P , the larger the harmonic
fields depletion (not shown). In contrast, the odd con-
figuration yields the converse effect: the harmonic fields
are amplified when substantial fundamental seeds are in-
jected. Hence, two mechanisms, parity and power of the
fundamental supermode, can be used as modulation pa-
rameters for a χ(2) NDC all-optical switch. The ana-
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FIG. 5. Fundamental (dash) and harmonic (dot) fields power
propagation in the OPA regime for an even (black) and odd
(gray) input fundamental supermode. Even dimensionless
fundamental and harmonic power u2

f(h),e (dash (dot), black).

Odd dimensionless fundamental and harmonic power u2
f(h),o

(dash (dot), gray). κ = 0.92. The vertical lines show the even
and odd effective coupling coherence lengths Leven/2 (dash)
and Lodd/2 (solid), with Leven = 2.62 and Lodd = 3.46 analyt-
ically calculated. ζ is the normalized propagation coordinate.
ζ = 1 stands for z ≡ (

√
2Pg)−1 = 11.5 mm.

lytical solutions enable prediction of the amplitude and
period of oscillation of the optical fields along propaga-
tion through Equations (23) and (24), respectively. It is
then possible to fix appropriately the initial conditions for
the desired operating mode, even in the quantum regime
[15, 16].

In conclusion, we have studied the χ(2) NDC and rigor-
ously demonstrated that matching excitation to the even
or odd fundamental supermodes yields dynamical analyt-
ical solutions for any phase matching. The propagation
equations are analogous to those related to a single χ(2)

nonlinear waveguide with imperfect phase matching, but
in the NDC we show that the effective coupling plays
the role of the wavevector phase mismatch. We have
reviewed the SHG and OPA regimes and studied the in-
fluence of fundamental fields parity and power on the
operation of the device. We have investigated the pos-
sible application of this device as an all-optical switch.
This study completes the analysis carried out in [15, 16],
where the versatility of this device as a resource for quan-
tum information processing was shown. Finally, we want
to stress that our analysis can open new avenues in the
study of general coupled χ(2) nonlinear systems, such as
arrays of nonlinear waveguides in optics and Fermi reso-
nance interface modes in solid state physics [26, 27]. The
use of symmetries can indeed help to simplify these sys-
tems and obtain analytical solutions to understand their
dynamics better.
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Kaiser, L. Labonté, T. Lunghi, E. Picholle and S. Tanzilli.
J.Opt. 18, 104001 (2016).

[24] In terms of the original amplitudes, the momentum is
given by Γ = g(AhA

∗2
f +BhB

∗2
f ) +CAfB

∗

f + c.c., where
c.c. stands for complex conjugate. It is obtained from the
flux of momentum of the electromagnetic stress-energy-
momentum tensor. Equations (1) are derived from this

momentum. For a quantum-mechanical introduction see
for instance M. Toren et Y. Ben-Aryeh, Quantum Opt.

6, 425-444 (1994).
[25] A. Yariv. Quantum electronics, (J. Wiley & sons, New

York, 1988).
[26] F. Setzpfandt, A.A. Sukhorukov, D.N. Neshev, R. Schiek,

Y.S. Kivshar and T. Pertsch. Phys. Rev. Lett. 105 233905
(2010).

[27] V.M. Agranovich. Excitations in organic solids, (Oxford
University Press, New York, 2008).


