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1. Introduction.

The local theory of symmetries of differential equations has been well-established since
the days of Sophus Lie. Generalized, or higher order symmetries can be traced back to the
original paper of Noether, [32], but were not exploited until the discovery that they play
a critical role in integrable (soliton) partial differential equations, cf. [30, 33, 35].

While the local theory is very well developed, the theory of nonlocal symmetries of
nonlocal differential equations remains incomplete. Particular results on certain classes of
nonlocal symmetries and nonlocal differential equations have been developed by several
groups, including Abraham—Shrauner et. al., [1,2,3,13], Bluman et. al., [5,6,7], Chen
et. al., [8,9,10], Fushchich et. al., [17], Guthrie and Hickman, [20, 21, 22], Ibragimov
et. al., [4], [23; Chapter 7], and many others, [11,12,16,18,19, 24, 28,29, 31, 37]. Per-
haps the most promising proposed foundation for a general theory of nonlocal symmetries
is the Krasilshchik-Vinogradov theory of coverings, [25,26,27,38,39]. However, their
construction relies on the a priori specification of the underlying differential equation, and
so, unlike local jet space, does not form a universally valid foundation for the theory.
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One of the reasons for the lack of a proper foundation is a continuing lack of under-
standing of the calculus of nonlocal vector fields. Recently, [34], during an attempt to
systematically investigate the symmetry properties of the Kadomtsev—Petviashvili (KP)
equation, Sanders and Wang made a surprising discovery that the Jacobi identity for non-
local vector fields appears to faill The observed violation of the naive version of the Jacobi
identity applies to all of the preceding nonlocal symmetry calculi, and, consequently, many
statements about the “Lie algebra” of nonlocal symmetries of differential equations are,
by in large, not valid as stated. This indicates the need for a comprehensive re-evaluation
of all earlier results on nonlocal symmetry algebras.

In this paper, I propose a new theoretical and computational basis for a nonlocal
theory which, like the original jet bundle construction, does not rely on a specific differential
equation, but applies equally well to a wide variety of nonlocal systems. I will also review
the concept of a ghost symmetry, introduced in [34], that resolves the apparent Jacobi
paradox. Applications to the classification of symmetries of the KP equation appear in
[34]. Similar issues appear in the study of recursion operators by Sanders and Wang, [36].

2. Generalized Symmetries.

Let us recall the basic theory of generalized symmetries in the local jet bundle frame-
work as presented in [33]. We specify p independent variables = = (x!,... 2P) and ¢
dependent variables u = (u',...,u?). The induced jet space coordinates are denoted by
u% = oIy /(Ox')i +.. (0xP)I», in which 1 < a < ¢, and J = (jy,. .. ,Jp) € NP is a (non-
negative) multi-index, so j,, > 0, of order #J = j, +---+j,. We let ul®) = (... ug ...)
denote the collection of all such local jet variables. A differential function is a smooth
function P[u] = P(x,u(>)) depending on finitely many jet variables. If u = f(z) is any
smooth function, we let P[f] denote the evaluation of the differential function P on f.

The total derivatives Dy, ..., D, are defined so that D,P[f] = 0,(P[f]) where 0; =
0/0z*. They act on the space of differential functions as derivations, and so are completely
determined by their action

D;(a7) = 8], Dy(uG) = uG 4o, (2.1)

on the coordinate functions. Here e, € N” denotes the ith basis multi-index having a 1 in

the ith position and zeros elsewhere. If J is a multi-index, we let D7 = D{l ‘e D{;p denote
the corresponding higher order total derivative; in particular, u§ = D7y,

We consider generalized vector fields in evolutionary form

q
0
a=1 J>0 J
where Q = (Q!,...,Q7) is the characteristic, and serves to uniquely specify v. We note
the basic formula
VQ(P) =Dp(Q) (2.3)
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where D, denotes the Fréchet derivative of the differential function P, [33], which is a
total differential operator with components

a op J
DP:Z @D, a=1,...,q. (2.4)
J

The Lie bracket or commutator between two evolutionary vector fields is again an evolu-
tionary vector field

[Vp, vo | = VirQ)

with characteristic

[P, Q] =vp(Q) —vo(P) = Dg(P) — Dp(Q). (2.5)

The Lie bracket satisfies the Jacobi identity, and hence endows the space of evolutionary
vector fields with the structure of a Lie algebra.

3. Counterexamples to the Jacobi identity?

Attempting to generalize the algebra of evolutionary vector fields to nonlocal variables
runs into some immediate, unexpected difficulties. Intuitively, the nonlocal variables should
be given by iterating the inverse total derivatives D, L applied to either the jet coordinates
u$, or, more generally, to differential functions. In particular, we allow nonlocal variables
u% = D7u® in which J € ZP is an arbitrary multi-index. Even more generally, one might
allow inversion of arbitrary total differential operators D1, where D = 3", P [u]DX,
whose coefficients P can be either constants, or even general differential functions.

However, the following fairly simple computation appears to indicate that the Jacobi
identity does not hold between nonlocal vector fields.

Example 3.1. Let p = ¢ = 1, with independent variable x and dependent variable
u. Consider the vector fields v, w, and z with respective characteristics 1, u, and D, 'u.
The first two are local vector fields, and, in fact, correspond to the infinitesimal generators
of the translation group

(x,u) — (z+0,u+e).
The Jacobi identity for these three vector fields has the form
[1, [ug, D 'u] ]+ [y, [ D', 1]]+ [ Db, [1,u, ]] =0, (3.1)

where we work on the level of the characteristics, using the induced commutator bracket
(2.5). Since

reflecting the fact that the group of translations is abelian, we only need to compute the
first two terms in (3.1). First, using the definition of the Fréchet derivative, we compute

[ug, DF'u] =Dy, (u,) =D, (Dg'u) = Dty — Do(Dy'u) =u+c—u=c
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where c is an arbitrary constant representing the ambiguity in the antiderivative D .
Thus,
[1’ [uxv D;lu]]:[l, C] =0,
irrespective of the integration constant ¢. On the other hand,
[D'u,1]=-D_ 1) = —x+d,
where d is another arbitrary constant, and so
lup [ D', 1]] = [u,, 2 +d] = —Dy(~a +d) = 1.

Therefore, no matter how we choose the integration “constants” ¢, d, the left hand side of
(3.1) equals 1, not zero, and so the Jacobi identity appears to be invalid!

This example is, in fact, the simplest of a wide variety of apparent nonlocal counterex-
amples to the Jacobi identity. Similar problems arise in the structure of the Lie algebra of
nonlocal symmetries of the KP equation, [34|, and the theory of recursion operators, [36].

4. Nonlocal Differential Algebra.

In order to keep the constructions reasonably simple, we will work entirely within
the polynomial category throughout. Thus, we only consider differential polynomials with
polynomial coefficients. Also we work, without any significant loss of generality, with
real-valued polynomials, the complex version being an easy adaptation.

By a multi-index we mean a p-tuple J = (j,,... ,jp) € ZP with integer entries. The
order of J is #J = j; + -+ + j,. The multi-index is positive, written J > 0, if all its
entries are positive: j, > 0. We impose a partial order on the space of multi-indices with
J < K if and only if K — J > 0. We will also impose a total ordering J < K on the
multi-indices that respects degree, so if #J < #K, then J < K. In particular, degree
lexicographic ordering is a convenient choice of total order, [14].

Let A = R[z] = R{z',...,2P} denote the algebra of polynomial functions f(z) de-
pending upon p variables. The derivatives d,,...,d, make A into a (partial) differential
algebra. Given a possibly infinite set of dependent variables U = { ... u® ... }, let
A{ U} denote the differential algebra consisting of all polynomials in their local deriva-
tives u$ = D7u®, J > 0, whose coefficients are polynomial functions in A. We write
Plul = P(... ' ... uS ...) for a differential polynomial in A{#}. Even though U
may contain infinitely many variables, any differential polynomial P € A{ U} has only
finitely many summands and hence depends on only finitely many variables u5. The set of
polynomials that only depend on x can be identified with A itself, and there is a natural
decomposition

A{UY = A= A (U},

where A { U} consists of all differential polynomials that vanish whenever we set all

u% = 0. Any ordering u® < u? of U induces an ordering of the derivatives, so u§ < uf(

whenever u* < u” or @« = 3 and J < K. This ordering in turn induces the degree
lexicographic ordering on the differential monomials in A { U }.

The total derivatives Dy, ..., D, act on A{ U} as derivations. Their kernels are well-
known:



Lemma 4.1. The kernel of the ith total derivative is
kerD; = A, = { flzt, oo a2t aP) ‘ feA}. (4.1)
In particular, the restriction of D;: A {U} — A, {U} has trivial kernel.

We begin our construction with the algebra of local differential polynomials
B, =B =AsBY = A{ul,... u}.

Our goal is to construct a nonlocal differential algebra B(®) = A o B o B,,. such

that each total derivative D, : B(*OO) — B(*OO) defines an invertible map everywhere except
on the ordinary polynomials f(z) € A. The polynomials in B(>) will, therefore, be
polynomials involving expressions of the form D, 'P where P is any local or nonlocal
differential polynomial, e.g., D; 'u, D;l(uzuj), or even D;l(uiij*l(UQ)Dkfl(u%)), and
so on. Our construction will accomplished by inductively implementing the following
construction.

At each step, we are given an infinite' collection of dependent variables
U™ = U, v, UU,U---U U,
which is the disjoint union of the subsets
U, ={u*| depthu*=~k}.

consisting of all dependent variables of a given depth. Roughly speaking, the depth of a
variable will measure its “depth of nonlocality”. In particular, all the original variables
in our local differential algebra U(®) = Uy = {u',...,u?} have depth 0. We also assign
a weight w, = wtu® to each variable in U (m)  For simplicity, the original dependent
variables u® € U, can have weight 1, although the initial weighting can be adapted to
particular applications, as in [35].

We let B™ = A & BU™ = A{ U™} denote the algebra of polynomials in the var-
iables u§ = D7u® for all u® € U™ and J € ZP. We define

depthu§ = depthu®, wtuG = wtu®.
Note that linearly nonlocal variables u§ for u® € U, will continue to have depth 0. The

total derivatives act on B("™) as derivations subject to the same rules (2.1).

Let M(™) denote the set of z-independent monomials in B(*m), i.e., products of the
form M = uj' ---u3*. Therefore, B = A[M(™] consists of finite linear combinations of
monomials with coefficients in .A. We extend the notion of depth and weight to monomials
in M(™) by setting

depth(M N) = max{ depth M, depth N }, wt(M N)=wt M +wtN, (4.2)

f Except the initial step, where we start with only finitely many dependent variables ul, oo ud.



whenever M, N € M(™)_ Thus, we write
MM = MyUM U - UM

where M, denotes the set of monomials of depth k.
We describe the induction step. For each monomial M € M

m)

and each 1 < i < p,
we introduce a new dependent variable u”* € U,, ., of depth m + 1 such that

m)

Dyt = M. (4.3)
Formally, we can write .
u’t =DM, (4.4)

but it is better, for the time being, to regard each of these as a completely new dependent
variable. Once the induction procedure is complete, we shall impose the relations implied
by (4.3). The weight and depth of each new variable is

whu? = wt M., depthu”" = m + 1 > depth M.

The inductive step sets

Uu 41 = {’Uﬂvi }, yU(m+1) — gy(m) um+1’ B(m+1) .A{ Y (m+1) }

m

Finally, we let

(o @]
U= = U u,, B =Ae B(*oo) = A{ ?/l(oo)}. (4.5)
m=0

We can identify B(°) as the injective limit B «— BM <« B@) « ... of subalgebras
of progressively higher and higher depth. Note that D; lpe B(*OO) is well-defined for any
P e B(*OO). A nonlocal differential polynomial is said to be homogeneous of weight k if all
its constituent monomials have weight k. We write B,goo) for the set of all homogeneous
differential polynomials of weight k, and so B(®) = A Do, B,(Coo).

Of course, the differential algebra B(°®) contains a huge number of redundancies, since
we have not yet taken into account the defining relations (4.3) of our nonlocal variables.
Thus, we need to determine which of these nonlocal expressions are trivial, meaning that
they vanish when evaluated upon any smooth function. In local differential algebra, one
can prove triviality by evaluating the differential polynomial on all polynomial functions
u = p(z). In the nonlocal case, the class of polynomial functions is not appropriate
because the inverse derivatives 0 ! include a possible integration constant, and so are
not uniquely defined on the space of polynomial functions. To check the vanishing of a
nonlocal differential polynomial, one needs to keep track of a consistent choice of integration
constants used to evaluate the nonlocal terms, and this rapidly becomes a difficult, if not
intractable issue. A more enlightened approach is to introduce the following functions.

Definition 4.2. A function of the form f(z) = p(x)e™? in which p(z) is a polynomial
andn = (nq,... ,np) € 7P will be called a polynomial—exponential function. It will be called
positive if n > 0, meaning n, > 0 for i = 1,...,p. Let F = {p(x)e™*|n > 0} denote the
algebra of all positive polynomial-exponential functions.
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The key property is that, in contrast to the space of polynomials, derivatives are
invertible when restricted to the positive polynomial-exponential space F.

Lemma 4.3. The derivative 0,: F — F is a one-to-one linear map, and hence its

inverse 0, . F — F is uniquely defined. Consequently, if P € B,goo) is any homoge-
neous nonlocal differential polynomial, its evaluation on f € F gives a uniquely defined
polynomial-exponential function P|f] € F. Moreover, evaluation commutes with (anti-)
differentiation, so D’ P f] = 87 (P[f]) for any J € ZP.

Proof: We recall the well-known formula

DY (PQ)=) (1) (DIP)(D;77'Q). (4.6)

=0

If P = p(x) is a polynomial, then the sum terminates, and gives an explicit formula for
D (p(z)e™®). Q.E.D.

Definition 4.4. A homogeneous nonlocal differential polynomial P € B,(Coo) is trivial
P[f]=0forall f=(f'...,f9) € Fo

The fact that testing a nonlocal differential polynomial on all polynomial-exponentials
is sufficient to detect triviality is a consequence of the fact that polynomial-exponential
functions are sufficiently extensive to match any finite nonlocal jet. We let

79 = P I;ioo), where IIEOO) - {P e B ‘ Plf]=0 forall fe f} (4.7)
=1

denote the ideal of all trivial nonlocal differential polynomials. If P € Z(>) then, by the
last remark in Lemma 4.3, D'P € Z(®) for any J € ZP, and hence Z(>) C B(*OO) is a
homogeneous nonlocal differential ideal. In particular, the defining relations (4.3) of our
nonlocal variables belong to the ideal, meaning Diu'm — Mv e 7(),

Finally, we define our nonlocal differential algebra to be the quotient algebra

B — Q) = 4 o Q) = Ble0) /() (4.8)

This algebra incorporates all the relations implied by (4.3) and their (anti-)derivatives. We
easily check that D; ! is uniquely defined on all of Q(°), and moreover forms an inverse

to D, when restricted to Q(*Oo ).

Theorem 4.5. If P € Q(fo) and 1 < i < p, then there exists a unique S; € Q(*Oo)
such that P = D,S,. We write S, = D;lP.

In practical applications, the key issue is whether we can perform effective compu-
tations in the nonlocal differential algebra Q(>). The main question is how to recognize
whether a given differential polynomial P € B(>) lies in the differential ideal Z(>). We
assume, without loss of generality, that P € I,goo) is homogeneous. Roughly speaking,
differentiating the polynomial P sufficiently often will eventually (and in a finite number
of steps) produce a purely local differential polynomial P* € B, . with the property that
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P € 70 if and only if P* € Z(>*). However, the latter will occur if and only if P* = 0 in
B,,., which is trivial to check.

In order to implement an algorithm, we extend our original term ordering to include
all the nonlocal variables U(*°). We set u®* < v if and only if depthu®’ < depthu?7,
or if depthu®® = depthu®J = m > 1 and the corresponding monomials satisfy M_ < M, 3
in the induced term ordering on M (™).

Although the full differential algebra B(>®) contains a gigantic number of different
variables, any given polynomial P( ... 2 ... u% ... u}' ... )€ B,(Coo) only depends on
finitely many of them, and so all computations are finite in extent. Let u}(z = Dyut
be the highest order variable occurring in P. We can assume k; > 0, since otherwise we
replace u KZ —— Dy .. M_, in accordance with (4.3), which has smaller depth and hence

’y’
appears earlier in the term ordering. We write out

n—1
P =P, (i) + Y P(ux)), (4.9)
£=0

where each coefficient P, € B(>°) depends on lower order variables u% < uj and we assume
P &7 () Since P, is of lower order than P, the latter condition can be checked by the
same algorithm. The derivative

D,P = D,P, Z D;P,+ ((+1)Pyy D M, ] (ul)". (4.10)

does not appear earlier in the term ordermg. However, the combination

n—1
P,D,P—PD,P,=Q=)Y_ Qpuy) (4.11)
=0
is of lower order than P in u'}(z The induction step claims that P € Z(>) if and only if

Q € Z(>), and hence the same algorithm can be used on Q. Since Q is of lower order,
we use the same algorithm on (), and so eventually — but in a finite number of steps —
reducing to a purely local differential polynomial, as desired.

To prove the claim, equation (4.11) implies that, for any f € F,

P.lf10;Pf] = PIf10;P,[f]=Q[f] =0

0 (£

oxit \ P.[f])

and hence P[f] = 0 or P,[f] = 0. Now, if P, ¢ 7™ is nontrivial, then the jets of
polynomial-exponential functions that solve the nonlocal differential equation P, [f] =
0 forms a proper subvariety, and P[f] = 0 everywhere outside this subvariety, which,
by continuity, implies P[f] = 0 for all f € F, and proves the claim. Of course, the
implementation of this algorithm might be quite lengthy, and so developing more efficient
algorithms would be an interesting research topic.

Therefore,
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5. Evolutionary Vector Fields and Symmetries.

In this section we extend the space of evolutionary vector fields to our nonlocal dif-
ferential algebra. Since they are defined as commutators, the Jacobi Identity will be
automatically valid.

Definition 5.1. A evolutionary vector field v on a differential algebra B = A « B
is a derivation v:B — B, with A C kerv, while [v, D, | = 0 commutes with all total
derivatives.

Remark: 1f we drop the hypothesis A C kerv then the only additional derivations
that commute with the total derivatives are the partial derivatives 9/0x7; see [33].

Therefore, an evolutionary vector field v must satisfy
v(P+Q)=v(P)+v(Q), v(z") =0,
v(PQ)=v(P)Q+ Pv(Q), [v, D,] =0,

for all P,QQ € B and i = 1,...,p. Each evolutionary vector field is uniquely specified by
its action v(u9) on the coordinate variables. We denote the space of evolutionary vector
fields by V = V(B). The commutator bracket

(5.1)

[v, w](P) =v(w(P)) —w(v(P)), PecB.

between two evolutionary vector fields endows V with the structure of a Lie algebra, satis-
fying the usual skew symmetry and Jacobi identities. The proof of the latter is elementary.

Warning: The space of evolutionary vector fields is not a B module. The product
Pv of Pe B and v € V does not commute with total differentiation.

Given an evolutionary vector field v, we define its characteristic Q € B? to have
components

v(u®) = Q%, a=1,...,q.

The commutation condition implies
v(uj) = v(D,u®) = D,;v(u®) = D,;Q°

for all positive multi-indices J > 0. Thus, in the local situation, an evolutionary vector
field is uniquely determined by its characteristic. This basic fact is not true in nonlocal
differential algebras — there are nonzero evolutionary vector fields with zero characteristic
— and this observation motivates the following key definition.

Definition 5.2. An evolutionary vector field - is called a a K -ghost for some K € Z”
if y(uf)=0foral L > K and a=1,...,q.

There are no ghost vector fields in a local differential algebra B;,. because each evo-
lutionary vector field is uniquely determined by its characteristic (). There are, however,
positive ghost vector fields; for example the vector field with characteristic Q = 1 is a
K-ghost for any positive multi-index K > 0.
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Example 5.3. Let us see how the existence of ghost vector fields serves to resolve the
Jacobi identity paradox in (3.1). Surprisingly, the problem is not with the nonlocal vector
field z with characteristic D 'u, but rather the local commutator [ v, w | corresponding
to the vector fields with characteristics 1 and u,, respectively. While [ v, w | = 0 on the
local differential algebra B, it is, in fact, a ghost vector field on a nonlocal differential
algebra. thus, surprisingly, in a nonlocal setting, the group of translations is not abelian!

The action of the vector fields on the local variables does not uniquely specify their
action on the nonlocal variables, due to the presence of possible integration constants.
However, as we have seen, the integration constants do not play a significant role in the
resolution of the Jacobi identity paradox, and so we shall fix all the integration constants
to be zero by default. Therefore,

0 k>0,
Vit z X () = x k<0 w(uy,) = D, (uy) Ugy1- (5.2)
(—k)! -

Since v(u;) only depends on x, we have w(v(u;)) = 0, and so

[ v, wl(ug) = v(tgpr) = Xppa (2):
Therefore, [ v, w | = -y is a ghost vector field that satisfies
0 k>0,

v(ug) = X]H_l(:l?) = p k1
e

This ghost provides the missing term in the Jacobi identity (3.1). Indeed,
[2, 7 1(u) = —(2(v)) = —y(DF'u) = —1.

In [34], we introduced a “ghost calculus” for general nonlocal evolutionary vector
fields. The first remark is that only evolutionary vector fields that depend on the indepen-
dent variables can be ghosts. Indeed, if «v is a K-ghost, then

kE <0.

Y(y) = DI Koy(uy) =0, J> K.
Therefore, if y(u;) = P; and J > 0 is any positive multi-index such that J + I > K, then
0="(usys) = DJ’Y(“I) = DJPI»
and we know that ker D’ C A, so that P, is a function of z only.

Lemma 5.4. An evolutionary vector field v is a K-ghost for some K € ZP if and
only if v(u%) = p%(x) is a polynomial function of z',. .. zP.

Definition 5.5. Given a multi-index K € ZP, define

-K
x P
<

K <0, where  (—K)! =[] (~k,)!. (5.3)
0 otherwise, v=1
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Definition 5.6. Given a multi-index J € ZP, define the basis ghost vector field v,
so that v;(ug) = X sy, which is a K-ghost for any K + .J > 0.

Proposition 5.7. Every ghost vector field is a linear combination of the basis ghosts,
Y =Y ; ¢y, where the c; € R are constants.

The summation in Proposition 5.7 can be infinite. However, only certain “configura-
tions” of the nonzero coefficients c; are allowed in order that v map Q) o Q).

Let us formulate the results in the one dependent variable case where u € R, and so
g = 1. (The multi-variable case can be found in [34].) Let us split the space of evolutionary
vector fields V = V_ e V_ where V_ denotes the space of purely z-dependent vector fields,
so v(ug) = pg(x) € A. In the polynomial category, every v € V, is a ghost vector field.
consists of u-dependent vector fields, where v(u,) = DXQ € B(*oo).
Since ker DX = {0} on B(*OO), the evolutionary vector fields in V' are uniquely determined
by their characteristics @ = v(u), and we write v = Vo as in the local category. Thus,
to re-emphasize: only the z-dependent vector fields can be ghosts and hence cause any
difficulty in the non-local category.

The remainder, V,

Corollary 5.8. If B(*®) is a polynomial differential algebra, then any evolutionary
vector field v € V can be written a linear combination of basis ghosts and a u-dependent
vector field v € V,:

v:vQ+Z Y, whereby v(uK):DKQ-i-Z Cr XK (5.4)
J J

To implement a calculus of evolutionary vector fields, we identify a vector field with
its “characteristic”. The characteristic of the evolutionary vector field Vg Is, as usual,
(). The characteristic of the ghost vector field «; will be formally written as x ;. In this
manner, every nonlocal vector field (5.4) has a unique characteristic

S=Q+ Z CyXJ- (5:5)
7

In particular, a local vector field with polynomial characteristic % becomes a ghost char-
acteristic K! x_j. Indeed, one can, again in the one dependent variable case, replace all
polynomials % +—— K!x , wherever they appear in the characteristic (5.5). The only
place true ghosts appear, i.e., x ; with J £ 0, is in the u-independent terms in the summa-
tion. Only when the vector field has been evaluated on a nonlocal differential polynomial
are we allowed to replace the ghost functions x ; by their actual formulas (5.3).

In this calculus, the product rule 27 % = 277X becomes the ghost product rule

-K—-J
XKk Xg = ( K )XK+J7 J = 0. (5.6)

The product makes sense as long as one of the multi-indices is non-negative, provided we
adopt the Pochhammer definition

(755) = # L I Gk 5.7
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for the multinomial symbol. And, indeed, only such products will appear when we evaluate
commutators and apply vector fields to nonlocal differential polynomials.

The precise ghost calculus rules for computing the commutators of ghost character-
istics will now be described. The commutators of ordinary characteristics [ Q, R | for

Q,R e BY follow the same rules (2.5) as in the local case, where we replace the multipli-
cation of monomials by the ghost multiplication rule (5.6). Secondly, since ghosts do not
involve the dependent variables, they mutually commute:

[Xs Xk ]=0. (5.8)

Finally, the ghost characteristics x ; act as derivations on the ordinary characteristics:

[XKa QR]=0Q XK(R) + R XK(Q)-

Thus, we only need to know how to commute ghosts and derivative coordinates,

[ X ug | = XJ+K (5.9)

in order to compute in the ghost characteristic space.

Example 5.9. Let us revisit Example 5.3. The three ghost characteristics are

— — -1, _
1= X0, U, = Uy, D "u=u_j.

Then the three terms are

[ X0, [ug, u_y ]]=0, [uy, [u_ys xo )] =—up x21 1= Xo»
[u_y, [Xor wi ] ]=T[u_y, X1 1= —Xo-
The sum of these three terms is 0, and so the Jacobi paradox is resolved.

Example 5.10. The first Jacobi identity paradox that was found in [34], while
working on the symmetry algebra of the KP equation, [9, 10, 15, 29], was more compli-
cated than (3.1). Here p = 2, with independent variables z,y, and ¢ = 1, with dependent
variable u. Consider the vector fields with characteristics y, yu, and ungjluy. As in
Section 3, without the introduction of ghost terms, the Jacobi sum

[y, [ug Dy My, yuy 1]+ [yug, [y, gD uy, 1]+ [uy Dy My, [yug, y]] (5.10)
equals —2yu,, not zero. In this case, the three ghost characteristics are
Y= Xo,-1> Yu, = Xo,—1 U1,0 Ua:D;l“y = Uy oU_q,1-
Then,
[Xo,—p Xo,—1U1,0 | = 2X1,—27 [XO,—D Up,0U1,0 | = Xo0,—1 U1,0)
[ Xo,—1 U100 U1 0U_11 | = Dul,o U_11 (Xo,—1 u1,0) — Xo,—1 Dz(%,o “—1,1) = Uy, oU1,0>
and so,
[ul,O U_q1,2X1,_9 |=-2 X0,—1 U1,0 [U1,0 U_1,15 Xo,—1 | = —X-1,0U1,0
[ X0,-1%1,00 =X-1,0Y%1,0 | = Xo0,—1 Y1,0-

The latter three terms add up to 0, and so the Jacobi identity is valid in the ghost frame-
work.
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6. Conclusions.

In this paper, I have introduced a general framework for a nonlocal differential algebra
that will handle quite general nonlocal polynomial expressions. Several further topics of
investigation are now of importance:

(a) A complete re-evaluation of earlier work on nonlocal symmetries of local and non-
local partial differential equations is required. A proper understanding of the
hitherto undetected ghost terms needs to be properly incorporated into earlier
results, including the study of recursion operators and master symmetries, all of
which typically involve nonlocal operations.

(b) The framework for the geometric and algebraic study of nonlocal symmetries and
nonlocal differential equations requires further development. The establishment
of a complete nonlocal variational calculus on the nonlocal differential algebra
Q(*) including nonlocal conservation laws, [40] and a nonlocal form of Noether’s
Theorem, [32, 33], would be a very worthwhile project for both theoretical devel-
opments and practical applications.

(¢) Implementation of the nonlocal ghost calculus in standard computer algebra packages
would help a lot in these investigations.
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