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Abstract. A novel procedure to reduce by four the order of Euler–Lagrange

equations associated to n-th order variational problems involving single variable

integrals is presented. In preparation, a new formula for the commutator of two C∞-

symmetries is established. The method is based on a pair of variational C∞-symmetries

whose commutators satisfy a certain solvability condition. It allows one to recover a

(2n − 2)-parameter family of solutions for the original 2n-th order Euler–Lagrange

equation by solving two successive first order ordinary differential equations from the

solution of the reduced Euler–Lagrange equation. The procedure is illustrated by two

different examples.
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1. Introduction

The relevance of symmetry groups for reducing and solving ordinary differential

equations dates back to the classical work of Sophus Lie, and has been intensively

studied in recent decades [13, 14, 16, 17]. Lie also applied his theory to problems arising

in the calculus of variations by introducing the concept of variational symmetry groups

[13, 14]. Later, in 1918, Noether published her celebrated theorem that associates

every one-parameter variational symmetry group with a conservation law of the Euler–

Lagrange equations [12].
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Throughout this paper we will restrict our attention to a nondegenerate n-th order

scalar variational problem involving a single variable integral, whose associated Euler–

Lagrange equation is thus a 2n-th order ordinary differential equation. The main result

in this regard states that if an n-th order variational problem admits a one-parameter

variational symmetry group, then the order of the associated Euler–Lagrange equation

can be reduced by two [13, 14, 18]. In addition, the general solution of the original

equation is recovered by a single quadrature from the general solution of the reduced

Euler–Lagrange equation. In this sense, variational symmetry groups double the power

of standard symmetry groups. It is also well known that if an n-th order ordinary

differential equation admits a solvable r-parameter symmetry group G, then the order of

the equation can be stepwise reduced by r. However, this result cannot be extrapolated

to the case of variational symmetry groups: the order of the associated Euler–Lagrange

equation cannot be reduced by 2r, unless G is abelian. This fact is closely related to

the Marsden–Weinstein reduction of Hamiltonian systems [6]. For the non-abelian case,

the Hamiltonian framework enables one to determine the maximum degree of reduction

by means of the residual symmetry group [13]. An integrability condition for the non-

abelian case in terms of solvable structures [1] was presented in [7].

On the other hand, there exist integration techniques which cannot be explained

by the classical symmetry analysis and generalizations of the Lie approach are required.

To this end, inspired by examples developed in [13], particularly the method of nonlocal

exponential symmetries in Exercises 2.31–32, the authors of [8] introduced the concept

of a C∞-symmetry (or λ-symmetry) based on a new way of prolonging vector fields, for

which it is still possible to calculate differential invariants by derivation of lower-order

invariants. This led to new reduction methods for ordinary differential equations based

on the existence of C∞-symmetries. Furthermore, the authors established in [9] the

concept of variational C∞-symmetry by considering this modified prolongation formula.

They showed that variational C∞-symmetries also provide a reduction method for Euler–

Lagrange equations, although such reduction of order is somehow partial, meaning that

the reconstructed solutions depend upon one fewer parameters than the general solution

to the original Euler–Lagrange equations; see [9, p. 174] for details. The extension of

the concept of C∞-symmetries to partial differential equations led to the notion of µ-

symmetry [5, 3], whose application to the variational framework has also been studied

in the recent literature [4, 11].

The aim of this paper is to show how one can use what we call a solvable pair

of variational C∞-symmetries — meaning that they satisfy condition (20) below — to

reduce the order of the Euler–Lagrange equation associated to an n-th order variational

problem by four. The solvability condition ensures that one of the symmetries is

inherited as variational C∞-symmetry of the corresponding reduced variational problem.

It should be noted that such a result cannot hold in the case of two standard, non-
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commuting variational symmetries. The method presented here allows one to recover

a (2n − 2)-parameter family of solutions for the original Euler–Lagrange equation by

solving two successive first order ordinary differential equations. We leave the extension

of our method to higher order reductions associated with more than two C∞-symmetries

to future investigations, and only remark that it is not, to the best of our knowledge, a

straightforward extension of the results in this paper.

The paper is organized as follows. In Section 2, with the aim of being self-contained,

we briefly introduce the basics concerning variational problems as well as the concept of

variational symmetry and variational C∞-symmetry. The solvability condition, which is

crucial in the application of our method, requires the determination of the Lie bracket of

two C∞-prolonged (or λ-prolonged) vector fields. However, in contrast to the ordinary

prolongation of vector fields, a convenient characterization for such commutator was

not known. With this aim, we address in Section 3 the problem of determining the

commutator of two C∞-prolonged vector fields in evolutionary form, leading to a formula

involving a new type of symmetry that remains to be investigated in detail.

In Section 4, we focus on providing an operative characterization of the solvability

condition by using the results obtained in the previous section. We first study the case

in which the vector fields are given in evolutionary form. The characterization obtained

for evolutionary vector fields allows us to address the general case and obtain explicit

necessary and sufficient conditions for solvability.

In Section 5, our procedure is described step by step. Firstly, we reduce the order of

the original 2n-th order Euler–Lagrange equation by two by means of the first variational

C∞-symmetry. After that, assuming that the solvability condition (20) is verified, we

prove that the second variational C∞-symmetry is inherited for the reduced variational

problem and therefore it can be used to reduce the order of the reduced Euler–Lagrange

equation again by two. As a result of the double reduction, we obtain a (2n−4)-th order

Euler–Lagrange equation whose general solution can be used to reconstruct a (2n− 2)-

parameter family of solutions to the original equation by solving two first order ordinary

differential equations. The loss of two parameters in the resulting family of solutions is

due to the partial reduction associated to each variational C∞-symmetry.

Finally, in Sections 6 and 7, the method is applied to two different examples

corresponding to two second order variational problems. In the case of Example I, a two-

parameter family of solutions to the associated fourth order Euler–Lagrange equation is

obtained in terms of elementary functions. It should be remarked that the variational

problem considered in Example I does not admit standard variational symmetries. On

the other hand, Example II corresponds to a family of variational problems that admit

a commuting (abelian) pair of C∞-symmetries. The application of our method allows to

obtain a two-parameter family of solutions to the Euler–Lagrange equation expressed

in terms of the solutions to a Schrödinger-type equation. For a particular case of the
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family that does not admit standard variational symmetries such solution is explicitly

expressed in terms of elementary functions.

2. Preliminaries

We refer the reader to [13, 14, 17] for the basics concerning jet spaces, symmetry groups

of differential equations, and variational problems.

2.1. Previous results

We work with scalar variational problems, and so let x ∈ X = R denote the independent

variable and u ∈ U = R the dependent variable. Consider an n-th order variational

problem

L[u] =

∫
Ω

L(x, u(n))dx, (1)

where the Lagrangian L(x, u(n)) is defined on (an open subset of) the n-th order jet

space M (n), for some open set M of the space of independent and dependent variables

X×U , and Ω ⊂ X is connected, open, and contained in the projection of M → X. The

coordinates on M (n) are denoted by (x, u(n)) = (x, u, u1, . . . , un), with ui corresponding

to the i-th order derivative of u with respect to x. In general, a smooth real-valued

function on M (n), depending on x, u, and finitely many derivatives of u, is called a

differential function of order n.

The Euler operator or variational derivative is given by

Eu =
n∑
i=0

(−Dx)
i ∂

∂ui
, (2)

where Dx = ∂x + u1∂u + u2∂u1 + · · · is the usual total derivative operator with respect

to x. Thus,

Eu[L] = 0 (3)

is the Euler–Lagrange equation associated to (1).

Roughly speaking, by a variational symmetry group of (1) we mean a local group of

transformations G that leaves L[u] unchanged (modulo boundary terms) when evaluated

on functions u = f(x) whose graph is transformed by the action of the group on M . A

connected group of transformations G forms a variational symmetry group if and only

if, for every infinitesimal generator

v = ξ(x, u)∂x + η(x, u)∂u (4)

of G, the following infinitesimal symmetry condition holds:

v(n)(L) + LDx(ξ) = 0, (5)
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where v(n) stands for the standard n-th order prolongation of the vector field v, [13]. In

what follows, by a variational symmetry we will simply mean a smooth non-zero vector

field (4) locally defined on M which satisfies (5).

It is well known that one variational symmetry of (1) allows to reduce the order

of the associated Euler–Lagrange equation (3) by two. Furthermore, the solution of

the original Euler–Lagrange equation can be recovered by a single quadrature from

the solution of this reduced equation; see [13] and references therein. However, the

existence of a two-parameter variational symmetry group does not assure the existence

of a reduction in order by four for the Euler–Lagrange equation.

2.2. C∞-symmetries and variational C∞-symmetries

The goal of this paper is to study the problem of the double reduction of order from the

point of view of the variational C∞-symmetries, first introduced in [9]. The construction

is based on a new way of prolonging vector fields. For a given smooth vector field (4)

defined on M and an arbitrary first order differential function λ(x, u, u1) ∈ C∞(M (1)),

the (infinite) λ-prolongation of v is the vector field

vλ = ξ(x, u)∂x +
∞∑
i=0

η[λ,(i)](x, u(i))∂ui , (6)

defined on M (∞), where u0 = u, η[λ,(0)](x, u) = η(x, u) and, for i ≥ 1,

η[λ,(i)](x, u(i)) = Dx

(
η[λ,(i−1)](x, u(i−1))

)
−Dx(ξ(x, u))ui
+ λ

(
η[λ,(i−1)](x, u(i−1))− ξ(x, u)ui

)
.

(7)

A vector field of the form (6) will be called a C∞-prolonged (or λ-prolonged) vector field.

When λ = 0, this new prolongation formula reduces to the ordinary prolongation of the

vector field. Observe that when we evaluate vλ(P ) on any differential function P , only

finitely many terms in the sum are needed. It can be proved, [8, Theorem 2.1], that vλ

is the unique vector field which satisfies the following commutation relation:

[ vλ, Dx ] = λvλ + ρDx, (8)

where ρ = −(Dx + λ)ξ.

Let us next present the definition of a variational C∞-symmetry. The λ-prolongation

formula motivates the following, cf. [9, Definition 2.1]:

Definition 2.1. Given a smooth vector field v defined on M , as in (4), and λ ∈
C∞(M (1)), the pair (v, λ) is a variational C∞-symmetry (or variational λ-symmetry)

of the functional (1) with Lagrangian L provided the following infinitesimal invariance

condition holds:

vλ(L) + L(Dx + λ)ξ = 0. (9)
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In particular, when λ = 0, condition (9) reduces to the standard infinitesimal

variational symmetry condition (5).

The importance of variational C∞-symmetries is that they provide new reduction

procedures for Euler–Lagrange equations, as spelled out in the following result, proved

in [9, Theorem 1]:

Theorem 2.2. Let L[u] =
∫
L(x, u(n))dx be an n-th order variational problem

with Euler–Lagrange equation Eu[L] = 0, of order 2n. Let (v, λ) be a variational

C∞-symmetry of the problem. Then there exists a variational problem L̃[w] =∫
L̃(y, w(n−1))dy, of order n − 1, with Euler–Lagrange equation Ew[L̃] = 0 of order

2n− 2, such that a (2n− 1)-parameter family of solutions of Eu[L] = 0 can be found by

solving a first order equation from the solutions of the reduced Euler–Lagrange equation

Ew[L̃] = 0.

An outline of how the reduction method associated to a variational C∞-symmetry

works is described in Subsections 5.1 and 5.3.

3. The commutator of C∞-prolonged vector fields in evolutionary form

For ordinary infinitesimal symmetries, the commutator of two vector fields determines

the commutator of their corresponding prolongations. However, this result does not

hold for the case of C∞-prolonged vector fields associated with two different first order

differential functions λ and µ. The key to the reduction procedure presented in this

paper is to consider a pair of variational C∞-symmetries satisfying a certain solvability

condition involving their commutators — see (20) below. Thus, in this section, we

address the outstanding problem of determining the commutator of two C∞-prolonged

vector fields.

Consider the C∞-prolonged vector field

vλQ =
∞∑

n= 0

Q[λ,(n)] ∂

∂un
(10)

which is the λ-prolongation of an evolutionary vector field vQ = Q∂u, so that

Q[λ,(0)] = Q and Q[λ,(n)] = (Dx + λ)nQ, n ≥ 1.

Note that

vλQDx = (Dx + λ)vλQ. (11)

Let vµR be another C∞-prolonged vector field, the µ-prolongation of vR = R∂u and

assume that vλQ and vµR are pointwise linearly independent. From this point on, in order

to streamline the notation, we denote Q(n) = Q[λ,(n)] and R(n) = R[µ,(n)], for n ≥ 1. We

are interested in their commutator

v∗S = [ vλQ,v
µ
R ] =

∞∑
n= 0

Sn
∂

∂un
. (12)
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When λ 6= µ this is almost never a C∞-prolonged vector field. However, we can establish

a recurrence formula for its coefficients Sn as follows. First, the coefficient of ∂u is

S = S0 = vλQ(R)− vµR(Q) = vQ(R)− vR(Q). (13)

We next compute, using (11) and the analogous equation for vµR,

S1 = vλQ(R(1))− vµR(Q(1))

= vλQ[ (Dx + µ)R ]− vµR[ (Dx + λ)Q ]

= (Dx + λ+ µ)[ vλQ(R)− vµR(Q) ] + vλQ(µ)R− vµR(λ)Q

= (Dx + λ+ µ)S + vλQ(µ)R− vµR(λ)Q.

In general,

Sn = vλQ(R(n))− vµR(Q(n))

= vλQ[ (Dx + µ)R(n−1) ]− vµR[ (Dx + λ)Q(n−1) ]

= (Dx + λ+ µ)[ vλQ(R(n−1))− vµR(Q(n−1)) ] + vλQ(µ)R(n−1) − vµR(λ)Q(n−1)

= (Dx + λ+ µ)Sn−1 + S̃n,

(14)

where we set

S̃0 = S = vλQ(R)− vµR(Q), S̃i = vλQ(µ)R(i−1) − vµR(λ)Q(i−1), i ≥ 1. (15)

The recursive formula for generating the coefficients of the commutator (12) can thus

be explicitly written as

Sn =
n∑

i= 0

(Dx + λ+ µ)i S̃n−i. (16)

Consequently, we can write the commutator (12) in the following compelling form:

v∗S = [ vλQ,v
µ
R ] =

∞∑
k = 0

ṽλ+µ
k , (17)

where

ṽλ+µ
k =

∞∑
n= k

[ (Dx + λ+ µ)n−kS̃k ]
∂

∂un
(18)

can, formally, be identified with the λ+ µ prolongation of the k-th order vector field

ṽk = S̃k
∂

∂uk
. (19)

In particular, the first summand ṽλ+µ
0 = vλ+µ

S in the commutator formula (17) is the

λ + µ prolongation of the evolutionary vector field ṽ0 = vS. However, the additional

terms tell us that v∗S is not (usually) a C∞-prolonged vector field. Moreover, one cannot

compute these terms just from the expressions of S, λ, µ; one also needs to know Q

and R. The interesting question is whether these kinds of vector fields lead to order
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reductions of ordinary differential equations, even though they project onto null vector

fields on the base manifold. As far as we know, this question has not been considered

in the literature to date, and so it remains an open problem which will be investigated

in future research.

4. The solvability condition

Suppose that the functional (1) admits two variational C∞-symmetries (v1, λ1) and

(v2, λ2), where v1,v2 are smooth vector fields on M , and λ1, λ2 ∈ C∞(M (1)). In order

to apply our reduction procedure, we will assume that the vector fields vλ11 and vλ22 are

pointwise linearly independent on M (∞), and that they satisfy the additional solvability

condition [
vλ11 ,v

λ2
2

]
= hvλ11 , (20)

for some function h ∈ C∞(M). The solvability condition (20) is analogous to the usual

condition for a two-dimensional solvable Lie algebra of ordinary symmetries. We will

call such vector fields a solvable pair of variational C∞-symmetries.

Remark: The linear independence condition on vλ11 and vλ22 does not require that

the original vector fields v1,v2 be pointwise linearly independent on M . Indeed, in our

second example, they are the same vector field on M , but have different functions λ1, λ2

prescribing their linearly independent prolongations to M (∞).

At first sight, condition (20) has to be checked by using induction on the order of

the λ-prolongation in order to assure that the corresponding variational C∞-symmetries

form a solvable pair. This procedure seems to be difficult in practice, therefore we focus

on establishing a characterization of the solvability condition (20). We consider first

the case in which the vector fields are given in evolutionary form by using the results

obtained in Section 3.

4.1. The solvability condition for C∞-prolonged vector fields in evolutionary form

According to the previous notation, we consider the case in which v1 = vQ = Q∂u and

v2 = vR = R∂u. We also set λ1 = λ and λ2 = µ. Now let us investigate a solvability

condition in the form

v∗S = [vλQ,v
µ
R] = hvλQ. (21)

This requires

Sn = hQ(n) = h (Dx + λ)nQ. (22)

Assuming Q 6= 0, we can always write

S = hQ with h = S/Q, (23)



Pairs of variational C∞-symmetries 9

so there are no conditions at order 0. Working by induction, suppose we know (22)

holds at order n− 1. Using (14) and the induction hypothesis, we compute

Sn = (Dx + λ+ µ)Sn−1 + vλQ(µ)R(n−1) − vµR(λ)Q(n−1)

= (Dx + λ+ µ)[hQ(n−1)] + vλQ(µ)R(n−1) − vµR(λ)Q(n−1)

= h (Dx + λ)Q(n−1) + [ (Dx + µ)h− vµR(λ) ]Q(n−1) + vλQ(µ)R(n−1)

= hQ(n) + [ (Dx + µ)h− vµR(λ) ]Q(n−1) + vλQ(µ)R(n−1).

Thus, as vλQ and vµR are pointwise linearly independent, the induction step is valid

provided

vλQ(µ) = 0, and vµR(λ) = (Dx + µ)h. (24)

As a consequence of the previous discussion, the following proposition has been proved:

Proposition 4.1. Let vQ = Q∂u and vR = R∂u be two evolutionary vector fields and

consider two different first order differential functions λ and µ such that vλQ and vµR are

pointwise linearly independent. Then we have that [vλQ,v
µ
R] = hvλQ if and only if

vλQ(µ) = 0, and vµR(λ) = (Dx + µ)h. (25)

In such a case the function h is given by h = (vQ(R)− vR(Q))/Q.

4.2. The solvability condition for the general case

The characterization for the solvability condition obtained for the case of C∞-prolonged

vector fields in evolutionary form allows us to address the general case. Assuming v1

does not vanish in a neighborhood of a point of M , we can locally choose rectifying

coordinates (x, u) for the vector field v1 so that

v1 = ∂u, v2 = ξ(x, u)∂x + η(x, u)∂u, (26)

where, to streamline the notation, we omit the 2 subscripts on the coefficients of the

second infinitesimal generator. Throughout this subsection we will use the following

commutation relations, which hold by (8):

[vλ11 , Dx] = λ1v
λ1
1 , [vλ22 , Dx] = λ2v

λ2
2 + ρ2Dx, (27)

where

ρ2 = −(Dx + λ2) ξ ∈ C∞(M (1)).

Theorem 4.2. Let (v1, λ1), (v2, λ2) be variational C∞-symmetries of the form (26).

Then they form a solvable pair, i.e, (20) is satisfied for some function h(x, u), if and

only if h = ∂η/∂u and the functions ξ, λ1, λ2 and ρ2 = −(Dx + λ2) ξ satisfy the four

conditions

(i)
∂ξ

∂u
= 0, (ii) vλ11 (λ2) = 0, (iii) vλ11 (ρ2) = 0, (iv) vλ22 (λ1) = (Dx + λ2)h+ ρ2λ1.
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Proof. Let us assume that (v1, λ1) and (v2, λ2) form a solvable pair. Evaluating both

members of (20) on the coordinate function u shows that h = ∂η/∂u. On the other hand,

if we do the same for the coordinate function x then we find that vλ11 (ξ) = ∂ξ/∂u = 0,

which proves condition (i).

Let vR = R∂u be the evolutionary form of the vector field v2 = ξ(x, u)∂x+η(x, u)∂u,

where R = η − u1ξ. It can be checked that

vλ22 = vλ2R + ξ Dx. (28)

By using (28), vλ11 (ξ) = 0 and the first formula in (27), we have that

[vλ11 ,v
λ2
2 ] = [vλ11 ,v

λ2
R + ξ Dx] = [vλ11 ,v

λ2
R ] + ξ [vλ11 , Dx] = [vλ11 ,v

λ2
R ] + ξ λ1 vλ11 . (29)

As we are assuming that the variational C∞-symmetries form a solvable pair, it follows

from (29) that

[vλ11 ,v
λ2
R ] = h̃vλ11 , where h̃ = h− ξλ1. (30)

Observe that (30) corresponds to the solvability condition (21) for C∞-prolonged vector

fields in evolutionary form for the particular case of Q = 1. In consequence, by

Proposition 4.1, we deduce that

vλ11 (λ2) = 0, vλ2R (λ1) = (Dx + λ2) h̃. (31)

The first condition in (31) proves (ii). By using (28) and h̃ = h − ξλ1, the second

condition in (31) yields (iv).

In order to prove (iii), observe that by the first commutation relation in (27) and by

condition (ii), we have that for any differential function f the following relation holds:

vλ11 ( (Dx + λ2) f ) = vλ11 (Dx(f)) + λ2v
λ1
1 (f)

= λ1v
λ1
1 (f) +Dx(v

λ1
1 (f)) + λ2v

λ1
1 (f)

= (Dx + λ1 + λ2) vλ11 (f).

(32)

In particular, for f = −ξ,

vλ11 (ρ2) = vλ11 (−(Dx + λ2) ξ) = −(Dx + λ1 + λ2)vλ11 (ξ) = 0. (33)

Vice versa, if (i-iv) hold, then both conditions in (25) are satisfied for the

evolutionary vector fields v1 and vR and the differential functions λ1 and λ2. Therefore,

by Proposition 4.1, we have that [vλ11 ,v
λ2
R ] = h̃vλ11 , for h̃ = h− ξ λ1. By (29) we deduce

that

[vλ11 ,v
λ2
2 ] = hvλ11 ,

hence the variational C∞-symmetries form a solvable pair and the theorem is proved.

As a consequence of Theorem 4.2 we obtain the following corollary, which provides

an alternative characterization to the solvability condition (20):
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Corollary 4.3. Two variational C∞-symmetries (v1, λ1), (v2, λ2) of the form (26) are

a solvable pair if and only if

a) [v
[λ1,(1)]
1 ,v

[λ2,(1)]
2 ] = hv

[λ1,(1)]
1 , where h = ∂η/∂u,

b) vλ11 (λ2) = 0.

Proof. For the necessary condition, a) follows immediately from (20) and b) is condition

(ii) in Theorem 4.2.

Conversely, we first observe that applying the commutator in condition a) to the

local coordinate function x yields

vλ11 (ξ) =
∂ξ

∂u
= 0, (34)

which corresponds to condition (i) in Theorem 4.2. By the first commutation relation

in (27) and condition b), it can be checked, as in the proof of Theorem 4.2, that relation

(32) holds for any differential function f . In particular, for f = −ξ we get

vλ11 (ρ2) = vλ11

(
−(Dx + λ2) ξ

)
= 0, (35)

and for f = η:

vλ11

(
(Dx + λ2) η

)
= (Dx + λ1 + λ2) vλ11 (η) = (Dx + λ1 + λ2)h, where h =

∂η

∂u
. (36)

On the other hand, if we apply the commutator in condition a) to the local coordinate

u1 then we obtain:

vλ11

(
(Dx + λ2) η − u1(Dx + λ2) ξ

)
− vλ22 (λ1) = hλ1, (37)

which, by (35), (36) and a straightforward computation, yields

vλ22 (λ1) = (Dx + λ2)h+ ρ2 λ1. (38)

Observe that (34), (35), (38) and condtion b) prove that conditions (i–iv) in Theorem 4.2

are satisfied and in consequence the variational C∞-symmetries form a solvable pair.

The results obtained in this section prove that the solvability condition (20), which

involves infinite λ-prolongations, can be checked through relations defined only on the

first order jet space. In particular, the characterization given in Corollary 4.3 allows

one to check the solvability condition by just considering the first order λ-prolongations

and verifying that the function λ2 is a first order invariant of the first variational C∞-

symmetry.
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5. Reduction of order by use of two variational C∞-symmetries

We present now the double reduction of order associated to a pair of variational C∞-

symmetries (v1, λ1) and (v2, λ2) that form a solvable pair and where v1 and v2 are of

the form of (26). According to (9), the following conditions hold:

vλ11 (L) = 0, vλ22 (L) + L(Dx + λ2)ξ = 0. (39)

5.1. Reduction associated with the variational C∞-symmetry (∂u, λ1)

In this subsection, we focus on the use of the variational C∞-symmetry (v1, λ1) to reduce

the order of the original Euler–Lagrange equation Eu[L] = 0 by two, as spelled out in

Theorem 2.2. For that purpose, let us introduce a first order invariant of vλ11 , i.e, a

function w = w(x, u, u1) such that

vλ11 (w) =
∂w

∂u
+ λ1

∂w

∂u1

= 0. (40)

Observe that, by condition (ii) in Theorem 4.2, the general solution to (40) has the

form w = ϕ(x, λ2). In applications, we will choose w to simply be a convenient multiple

of λ2. The differential functions

x, wi =
diw

dxi
, i = 1, . . . , n− 1,

form a complete system of invariants of order ≤ n of the vector field vλ11 . As a

consequence of the first formula in (39), the original Lagrangian L = L(x, u(n)) can

be locally expressed as a reduced Lagrangian

L̃ = L̃(x,w(n−1)), (41)

defined on the reduced jet space M
(n−1)
1 , where M1 is the domain of definition of the

coordinates (x,w).

As in [9, formula (28)], the effect of the transformation {x = x,w = w(x, u, u1)} on

the Euler–Lagrange equation is

Eu[L] =
∂w

∂u
Ew[L̃]−Dx

(
∂w

∂u1

Ew[L̃]

)
, (42)

which by (40) yields

Eu[L] = − (Dx + λ1)

(
∂w

∂u1

Ew[L̃]

)
. (43)

Formula (43) will be used later in the reconstruction of solutions after the reduction of

order: if w = h(x) is a solution of the reduced Euler–Lagrange equation Ew[L̃] = 0,

then any solution u = f(x) to the first order auxiliary ordinary differential equation

w(x, u, u1) = h(x) satisfies the original Euler–Lagrange equation Eu[L] = 0.
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We recall that in the standard symmetry reduction procedure, the function λ1 does

not appear in formula (43) and therefore any solution to the reduced Euler-Lagrange

equation Ew[L̃] = c, where c ∈ R, produces a solution to the original Euler-Lagrange

equation Eu[L] = 0. However, according to (43), the reduced equation associated to a

variational C∞-symmetry is Ew[L̃] = 0 (i.e. c = 0), which produces the reduction by one

in the number of parameters after reconstructing the corresponding family of solutions

to the original Euler-Lagrange equation.

5.2. The variational C∞-symmetry inherited from (v2, λ2)

In this subsection we will prove that (v2, λ2) provides a variational C∞-symmetry of the

variational problem associated to the reduced Lagrangian (41). For that purpose, let us

observe first that:

(i) By conditions (ii) and (iii) in Theorem 4.2, both ρ2 and λ2 can be written in

terms of the set of invariants x,w, and we use ρ̃2 and λ̃2 to indicate the resulting

expressions.

(ii) Condition (20) implies that the vector field vλ22 , once it has been expressed in terms

of the local variables x, u, wi, for i ≥ 0, can be projected [15] onto a well-defined

vector field on the space M
(∞)
1 , denoted

X = ξ(x)∂x +
∞∑
i=1

τi−1(x,w(i−1))∂wi−1
; (44)

see [10, p. 480] for further details.

(iii) The total derivative operator Dx also projects onto the reduced total differential

operator

D̃x = ∂x +
∞∑
i=0

wi+1∂wi
, (45)

which acts on the differential functions depending on x, w and derivatives of w.

The remarks (i), (ii), and (iii) imply that both members of the second commutation

relation in (27), once expressed in terms of the local variables x, u, wi, can be projected

to M
(∞)
1 , where the following relation holds:

[X, D̃x] = λ̃2X + ρ̃2D̃x. (46)

Evaluating both sides of (46) on the coordinate function x, we deduce that

ρ̃2 = −(D̃x + λ̃2) ξ.

On the other hand, the λ2 prolongation Yλ̃2 of the vector field

Y = ξ(x)∂x + τ(x,w)∂w (47)



Pairs of variational C∞-symmetries 14

also satisfies the commutation relation (46). Since Y has the same the order zero

components of (44), as in [8], we conclude that they must agree:

X = Yλ̃2 . (48)

Since L̃ and ξ do not depend on u, the second formula in (39) can be written in terms

of the local variables x,wi, which, by (48) , yields

Yλ̃2(L̃) + L̃(D̃x + λ̃2) ξ = 0. (49)

This serves to prove the following theorem:

Theorem 5.1. The pair (Y, λ̃2) forms a variational C∞-symmetry of the variational

problem associated to the reduced Lagrangian L̃ = L̃(x,w(n−1)) obtained after the

reduction process carried out with the variational C∞-symmetry (∂u, λ1).

5.3. Reduction associated with (Y, λ̃2)

Assuming the vector field (47) does not vanish in a neighborhood of a point, we introduce

the rectifying change of variables

y = y(x,w), α = α(x,w), (50)

so that Y = ∂α. By [9, Proposition 2.2] the pair (Y, λ2), where λ2 = λ̃2/Dx(y), remains

a variational C∞-symmetry of the transformed functional L[α] =
∫
L(y, α(n−1))dy. In

these local coordinates, the infinitesimal symmetry condition (49) becomes:

Yλ2(L) = 0. (51)

Let us introduce a function z = z(y, α, α1) that satisfies

Yλ2(z) =
∂z

∂α
+ λ2

∂z

∂α1

= 0. (52)

Then, as above,

y, zi =
diz

dyi
, i = 0, . . . , n− 2.

form a complete system of invariants of Yλ2 . Thus, by (51), we can re-express

the Lagrangian L(y, α(n−1)) in the reduced form L̂(y, z(n−2)), whose associated Euler–

Lagrange equation, Ez[L̂] = 0, is a (2n− 4)-th order ordinary differential equation.

Furthermore, by proceeding as in the last part of Subsection 3.1, we deduce that

both Euler–Lagrange equations Eα[L] = 0 and Ez[L̃] = 0 are related by means of the

formula

Eα[L] = − (Dy + λ2)

(
∂z

∂α1

Ez[L̂]

)
. (53)
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5.4. Reconstruction of solutions

Let us now discuss how to recover solutions to the original variational problem from

solutions to the reduced Euler–Lagrange equation.

• First reconstruction

Let z = F (y;C1, · · · , C2n−4), where Ci ∈ R for i = 1, · · · , 2n − 4, be the general

solution of the (2n − 4)-th order ordinary differential equation Ez[L̂] = 0. This

solution annihilates the right-hand side of (53), which implies that

z(y, α, α1) = F (y;C1, · · · , C2n−4) (54)

satisfies the Euler–Lagrange equation Eα[L] = 0. On the other hand, the change of

variables formula for Euler–Lagrange equations [13, Theorem 4.8] implies

Ew[L̃] =

∣∣∣∣ ∂(y, α)

∂(x,w)

∣∣∣∣Eα[L].

Therefore, the solution (54), once re-expressed in terms of the coordinates

{x,w,w1}, also satisfies the Euler–Lagrange equation Ew[L̃] = 0. We conclude

that a (2n− 3)-parameter family of solutions of Ew[L̃] = 0 can be found by solving

the first order ordinary differential equation

z(y(x,w), α(x,w), α1(x,w,w1)) = F (y(x,w);C1, · · · , C2n−4). (55)

• Second reconstruction

Let w = H(x;C1, · · · , C2n−3) be the general solution of equation (55). By (43), this

solution also satisfies the original Euler–Lagrange equation Eu[L] = 0. Therefore a

(2n− 2)-parameter family of solutions of Eu[L] = 0 can be obtained by solving the

first order ordinary differential equation

w(x, u, u1) = H(x;C1, · · · , C2n−3). (56)

As a consequence of the preceding discussion, we have established the key theorem.

Theorem 5.2. Let L[u] =
∫
L(x, u(n))dx be an n-th order variational problem with

Euler–Lagrange equation Eu[L] = 0, of order 2n. Let (v1, λ1), (v2, λ2) be variational

C∞-symmetries that form a solvable pair, as in (20). Then there exists a variational

problem L̂[z] =
∫
L̂(x, z(n−2))dx of order n− 2 such that a (2n− 2)-parameter family of

solutions of Eu[L] = 0 can be reconstructed from the solutions of the associated (2n−4)-

th order Euler–Lagrange equation Ez[L̂] = 0 by solving two successive first order ordinary

differential equations.

6. Example I

Let us consider the second order variational problem

L[u] =

∫
L(x, u, u1, u2)dx, (57)
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with Lagrangian

L(x, u, u1, u2) =
x(2uu2 − u2

1 + 4u1u
2 + u4 + 1)2

4u4
. (58)

The Euler–Lagrange equation associated to (57) has the complicated form

−x− 2u3 − 5u1u− 2u7 + 4u3u
3 − 10u1u

2u2 − 5xu5u2 − 6xu2u2
2

+ 10xu2
1 − 5u5u1 + 4u4u2 − 2u2

1u
3 + 5u3

1u+ xu8

− 9xu4
1 − 5xu2u+ 2xu4u

3 + 21xuu2
1u2 − 8xu3u

2u1 = 0.

(59)

A straightforward computation shows that equation (59) does not admit any

(infinitesimal) Lie point symmetries, which also implies that the variational problem

(57) does not admit standard variational symmetries. We will apply the reduction

procedure presented in this paper to obtain a two-parameter family of solutions to the

Euler–Lagrange equation (59).

If we set

v1 = ∂u, λ1 =
u1

u
− u+

1

u
, v2 = u2∂u, λ2 = −u1

u
− u− 1

u
, (60)

then

vλ11 (L) = 0, vλ22 (L) = 0, (61)

and therefore (v1, λ1) and (v2, λ2) are variational C∞-symmetries of (57). In addition, it

can be easily checked that conditions a) and b) in Corollary 4.3 are satisfied, therefore

the variational C∞-symmetries satisfy[
vλ11 ,v

λ2
2

]
= 2uvλ11 ,

and hence form a solvable pair with h = 2u. Alternatively, it can be also checked that

the explicit conditions (i)-(iv) in Theorem 4.2 hold.

6.1. Reduction associated with the variational C∞-symmmetry (∂u, λ1)

A first order invariant of the vector field vλ11 is given by

w =
u1 + 1 + u2

u
= −λ2. (62)

Consider the invariant obtained by derivation

w1 =
dw

dx
=
u2u− u2

1 − u1 + u1u
2

u2
.

It can be checked that the Lagrangian (58) can be locally expressed in terms of the

invariants {x,w,w1} as the following reduced Lagrangian:

L̃(x,w,w1) =
x(w2 + 2w1 − 2)2

4
, (63)



Pairs of variational C∞-symmetries 17

whose associated Euler–Lagrange equation is the second order ordinary differential

equation

Ew[L̃] = −2xw2 − 2w1 + (w2 − 2)(xw − 1) = 0. (64)

Equation (64) does not admit Lie point symmetries, the determination of its solutions

appears to be a nontrivial task. We will use the variational C∞-symmetry (u2∂u, λ2) to

reduce the order of equation (64) by two, as established in Theorem 5.2.

6.2. Inherited variational C∞-symmetry from (u2∂u, λ2)

Changing variables to x,w = −λ2 rectifies v2, so that it becomes the variational C∞-

symmetry (Y, λ̃2), where Y = −2∂w, λ̃2 = −w, of the reduced Lagrangian (63):

Yλ̃2(L̃) = 0.

6.3. Reduction associated with (Y, λ̃2)

The function

z(x,w,w1) =
w2

2
+ w1 (65)

satisfies Yλ̃2(z) = 0. Thus, in terms of the invariants {x, z} the reduced Lagrangian

obtained from (63) is of order 0,

L̂(x, z) = x(z − 1)2, (66)

whose Euler–Lagrange equation becomes

2x(z − 1) = 0. (67)

The point x = 0 is a removable singularity, and the solution of the algebraic Euler–

Lagrange equation (67) is given by z = 1.

6.4. Reconstruction of solutions

By (65), a one-parameter family of solutions of the Euler–Lagrange equation Ew[L̃] = 0

can be found by solving the first order ordinary differential equation

w1 +
w2

2
= 1. (68)

The general solution of equation (68) is given by

w(x;C1) =

√
2
(

1 + C1e
√

2x
)

C1e
√

2x − 1
, (69)

where C1 ∈ R. It can be checked that the solution (69) satisfies the second order

ordinary differential equation (64).



Pairs of variational C∞-symmetries 18

By (62) and (69), a two-parameter family of solutions of the original Euler–Lagrange

equation, Eu[L] = 0, can be found by solving the first order ordinary differential equation

u1 + u2 + 1 = u

√
2
(

1 + C1e
√

2x
)

C1e
√

2x − 1
. (70)

Equation (70) is of Riccati-type, so it can be converted into the following linear second

order ordinary differential equation

Ψ′′(x) =

√
2
(

1 + C1e
√

2x
)

C1e
√

2x − 1
Ψ′(x)−Ψ(x) (71)

through the standard transformation u(x) = Ψ′(x)/Ψ(x). A basis of the solution space

to (71) is given by

Ψ1(x;C1) = C1e
√
2

2
x sin

( √
2

2
x

)
+ e−

√
2

2
x cos

( √
2

2
x

)
,

Ψ2(x;C1) = −C1e
√
2

2
x cos

( √
2

2
x

)
+ e−

√
2

2
x sin

( √
2

2
x

)
.

(72)

Therefore, the solution of the Riccati equation (70) can be expressed as follows:

u(x;C1, C2) =
C2Ψ′1(x;C1) + Ψ′2(x;C1)

C2Ψ1(x;C1) + Ψ2(x;C1)
, (73)

where C1, C2 ∈ R, which becomes

u(x;C1, C2) =

√
2
(
C1e

√
2

2 x − e
−
√

2
2 x

) (
(C2 − 1) cos

( √
2

2
x

)
+ (C2 + 1) sin

( √
2

2
x

) )

2
(
C2e

−
√

2
2 x − C1e

√
2

2 x
)

cos

( √
2

2
x

)
+ 2

(
C1C2e

√
2

2 x + e−
√

2
2 x
)

sin

( √
2

2
x

) . (74)

As a result of the procedure described, a two-parameter family of solutions (74) to

the original fourth order Euler Lagrange equation (59) has been obtained.

7. Example II

Consider the family of second order variational problems

L[u] =

∫
L(x, u, u1, u2)dx, (75)

with Lagrangians of the form

L = L

(
x,

2uu2 − u4 − 3u2
1

2u2

)
. (76)

Let Eu[L] = 0 be the associated Euler–Lagrange equations. It can be checked that

the pairs (∂u, λ1) and (∂u, λ2) are variational C∞-symmetries of (75) for the respective

functions

λ1 =
u1

u
− u and λ2 =

u1

u
+ u, (77)



Pairs of variational C∞-symmetries 19

i.e,

∂λ1u (L) = ∂λ2u (L) = 0. (78)

It can be checked that conditions a) and b) in Corollary 4.3 are satisfied with h = 0,

hence the variational C∞-symmetries form a solvable (or abelian) pair:[
∂λ1u , ∂

λ2
u

]
= 0.

In this particular example the order in which the variational C∞-symmetries are used

to reduce the order of the Euler–Lagrange equation associated to (76) is not relevant

because the corresponding infinite λ-prolongations commute, so their roles can be

exchanged.

7.1. Reduction associated with the variational C∞-symmetry (∂u, λ1)

A first order invariant of ∂λ1u is given by

w =
u1 + u2

u
= λ2. (79)

By derivation, we obtain the following second order invariant:

w1 =
dw

dx
=
−u2

1 + u1u
2 + uu2

u2
.

It can be checked that the Lagrangian (76) is expressed in terms of the coordinates

{x,w,w1} as the following reduced Lagrangian:

L̃ = L̃

(
x,w1 −

1

2
w2

)
, (80)

whose associated Euler–Lagrange equation is a second order ordinary differential

equation of the form

Ew[L̃] =

(
(ww1 − w2)

∂2L̃(x, s)

∂s2
− w∂L̃(x, s)

∂s
− ∂2L̃(x, s)

∂x∂s

)∣∣∣∣∣
s=− 1

2
w2+w1

= 0. (81)

7.2. Inherited variational C∞-symmetry from (∂u, λ2)

In terms of {x,w} the symmetry (∂u, λ2) becomes (Y, λ̃2) = (2∂w, w), satisfying the

variational C∞-symmetry condition Yλ̃2(L̃) = 0 for the reduced Lagrangian (80).

7.3. Reduction associated with (Y, λ̃2)

A first order invariant of Yλ̃2 is given by

z = w1 −
1

2
w2, (82)
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therefore the Lagrangian (80) can be expressed as the reduced order 0 Lagrangian

L̂ = L̂(x, z), whose Euler–Lagrange equation is simply the algebraic equation

∂L̂(x, z)

∂z
= 0 (83)

defining z implicitly as a function of x.

7.4. Reconstruction of solutions

Let z = H(x) be a solution of the algebraic equation (83). By (82), a one-parameter

family of solutions to the Euler–Lagrange equation (81) can be obtained by solving the

first order ordinary differential equation

w1 −
1

2
w2 = H(x). (84)

Equation (84) is of Riccati-type so it can be transformed into the Schrödinger-type

equation

ψ′′(x) = −1

2
H(x)ψ(x) (85)

by setting w = −2ψ′(x)/ψ(x). Therefore, if ψ1 and ψ2 are two linearly independent

solutions to equation (85), then the solution to the Riccati equation (84) is given by

w(x;C1) = −2
C1ψ

′
1(x) + ψ′2(x)

C1ψ1(x) + ψ2(x)
, C1 ∈ R. (86)

By (79), a two-parameter family of solutions to the original Euler–Lagrange equation

Eu[L] = 0 can be found by solving the first order ordinary differential equation

u1

u
+ u = −2

C1ψ
′
1(x) + ψ′2(x)

C1ψ1(x) + ψ2(x)
.

This is a Bernoulli equation, whose general solution is given by

u(x;C1, C2) =
(C1ψ1(x) + ψ2(x))−2∫

(C1ψ1(x) + ψ2(x))−2dx+ C2

, C1, C2 ∈ R. (87)

7.5. A particular case

Let us illustrate the preceding with a particular case in which the solution (87) can be

expressed in terms of elementary functions. Consider the Lagrangian

L

(
x,

2uu2 − u4 − 3u2
1

2u2

)
= x

(
k − 2uu2 − u4 − 3u2

1

2u2

)2

, (88)

where k ∈ R. The associated Euler–Lagrange equation is

−14u1u2u
2 + 2xu4u

3 − 2xku3u2 + 2xku2u2
1 + 21xuu2u

2
1 + xu8 − 9xu4

1

− 5u1u
5 + 9u3

1u+ 4u3u
3 + 2xku6 − 6xu2u2

2 − 5xu5u2 − 2ku1u
3 − 8xu1u3u

2 = 0.
(89)
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Furthermore, when k 6= 0, (89) does not admit Lie point symmetries, and hence

the variational problem associated to the Lagrangian (88) does not admit standard

variational symmetries. The corresponding Euler–Lagrange equation (81) becomes

−2xw2 − 2w1 + (yw + 1)(2k + w2) = 0, (90)

which does not admit Lie point symmetries for k 6= 0. Observe that this also

implies again that the variational problem associated to the reduced Lagrangian L̃ =

x
(
k − w1 + 1

2
w2
)

does not have standard variational symmetries.

In this case, the reduced order 0 Lagrangian is

L̂(x, z) = x(k − z)2,

with associated Euler–Lagrange equation

−2x(k − z) = 0. (91)

The point x = 0 is a removable singularity, and the solution to the Euler–Lagrange

equation (91) is z = k. In order to recover the solution of the original Euler–Lagrange

equation, we distinguish three different cases:

• CASE 1 : If k > 0 then the solution to the Riccati equation (84) is given by

w(x;C1) =
√

2k tan

( √
2k

2
(x+ C1)

)
and the 2-parameter family of solutions (87) becomes:

u(x;C1, C2) =

√
k tan Ω

(
1 + tan2 α(x)

)
(

tan Ω tanα(x)− 1
)(
C2

√
k tan2 Ω tanα(x)− C2

√
k tan Ω−

√
2
) ,

where

Ω =

√
2k

2
C1, α(x) =

√
2k

2
x, C1, C2 ∈ R.

• CASE 2: For k < 0, the solution (86) becomes

w(x;C1) = −
√
−2k tanh

( √
−2k

2
(x+ C1)

)
and the 2-parameter family of solutions (87) of the original Euler–Lagrange equation

(89) is

u(x;C1, C2) =
2
√
−2k(

cosh(2α(x)) + 1
)(

2 tanh(α(x)) + C2

√
−2k

) ,
where

α(x) =

√
−2k

2
(x+ C1), C1, C2 ∈ R.
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• CASE 3: k = 0. For the particular case of k = 0 a solution to equation (84) is

locally given by

w(x;C1) =
2

2C1 − x
and the 2-parameter family (87) becomes

u(x;C1, C2) =
1

(2C1 − x)(1− C2x+ 2C1C2)
.

8. Concluding remarks

A method to reduce by four the order of Euler–Lagrange equations associated to n-th

order variational problem involving single variable integrals has been developed. This

is done by means of a combined used of two variational C∞-symmetries admitted by

the variational problem that form a solvable pair, in accordance with condition (20).

Once the appropriate variational C∞-symmetry has been used to reduce the order of the

Euler–Lagrange equation by two, the solvability condition (20) ensures that the reduced

variational problem admits a second variational C∞-symmetry. Furthermore, a (2n−2)-

parameter family of solutions to the original Euler–Lagrange equation can be obtained

from the general solution of the (2n − 4)-th order reduced equation obtained after

the double reduction of order, by solving two auxiliary first order ordinary differential

equations.

Besides, in order to find an operative characterization of the solvability condition

(20), we have determined a formula – see expression (18) – for the commutator of two

C∞-prolonged vector fields in evolutionary form. A study on the possible use of either the

commutator (17) or the vector fields of the form (18) to produce new order reductions

for ordinary differential equations is still in progress.

Finally, we have considered two examples in which the method successes in

providing two parameter family of solutions of Euler–Lagrange equations of order four

even in the absence of standard variational symmetries. It would be worthwhile to

investigate further extensions of our method to possible higher order reductions induced

by more than two variational C∞-symmetries and/or to systems of ordinary differential

equations or even partial differential equations involving two or more independent

variables. We expect that such extensions will help one to find new solutions of physically

interesting problems.

Acknowledgements

A. Ruiz and C. Muriel acknowledge the financial support from the University of Cádiz
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