Dispersive Quantization

Peter J. Olver
University of Minnesota

http://www.math.umn.edu/~olver

November, 2011
Peter J. Olver
Introduction to Partial Differential Equations
Pearson Publ., to appear (2012?)

Dispersion

Definition. A linear partial differential equation is called *dispersive* if the different Fourier modes travel unaltered but at different speeds.

Substituting

\[u(t, x) = e^{i(kx - \omega t)} \]

produces the dispersion relation

\[\omega = \omega(k) \]

relating frequency ω and wave number k.

Phase velocity:

\[c_p = \frac{\omega(k)}{k} \]

Group velocity:

\[c_g = \frac{d\omega}{dk} \]

(stationary phase)
The simplest linear dispersive wave equation:

\[
\frac{\partial u}{\partial t} = \frac{\partial^3 u}{\partial x^3}
\]

Dispersion relation: \(\omega = k^3 \)

Phase velocity: \(c_p = \frac{\omega}{k} = k^2 \)

Group velocity: \(c_g = \frac{d\omega}{dk} = 3k^2 \)

Thus, wave packets (and energy) move faster (to the right) than the individual waves.
Linear Dispersion on the Line

\[\frac{\partial u}{\partial t} = \frac{\partial^3 u}{\partial x^3} \quad u(0, x) = f(x) \]
Linear Dispersion on the Line

\[\frac{\partial u}{\partial t} = \frac{\partial^3 u}{\partial x^3} \quad u(0, x) = f(x) \]

Fourier transform solution:

\[u(t, x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(k) e^{i(kx + k^3 t)} \, dk \]
Linear Dispersion on the Line

\[\frac{\partial u}{\partial t} = \frac{\partial^3 u}{\partial x^3} \quad u(0, x) = f(x) \]

Fourier transform solution:

\[u(t, x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(k) e^{i(kx + k^3t)} \, dk \]

Fundamental solution \(u(0, x) = \delta(x) \)

\[u(t, x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i(kx + k^3t)} \, dk = \frac{1}{\sqrt[3]{3t}} \text{Ai} \left(\frac{x}{\sqrt[3]{3t}} \right) \]
$t = 0.03$

$t = 0.1$

$t = \frac{1}{3}$

$t = 1$

$t = 5$

$t = 20$
Linear Dispersion on the Line

\[\frac{\partial u}{\partial t} = \frac{\partial^3 u}{\partial x^3} \quad u(0, x) = f(x) \]

\[u(t, x) = \frac{1}{\sqrt[3]{3t}} \int_{-\infty}^{\infty} f(\xi) \text{Ai} \left(\frac{x-\xi}{\sqrt[3]{3t}} \right) d\xi \]
Linear Dispersion on the Line

\[
\frac{\partial u}{\partial t} = \frac{\partial^3 u}{\partial x^3} \quad u(0, x) = f(x)
\]

\[
u(t, x) = \frac{1}{\sqrt[3]{3t}} \int_{-\infty}^{\infty} f(\xi) \text{Ai} \left(\frac{x - \xi}{\sqrt[3]{3t}} \right) d\xi
\]

Step function initial data: \[u(0, x) = \sigma(x) = \begin{cases} 0, & x < 0, \\ 1, & x > 0. \end{cases} \]
Linear Dispersion on the Line

\[\frac{\partial u}{\partial t} = \frac{\partial^3 u}{\partial x^3} \quad u(0, x) = f(x) \]

\[u(t, x) = \frac{1}{\sqrt[3]{3t}} \int_{-\infty}^{\infty} f(\xi) \text{Ai} \left(\frac{x - \xi}{\sqrt[3]{3t}} \right) d\xi \]

Step function initial data: \(u(0, x) = \sigma(x) = \begin{cases} 0, & x < 0, \\ 1, & x > 0. \end{cases} \)

\[u(t, x) = \frac{1}{3} - H \left(- \frac{x}{\sqrt[3]{3t}} \right) \]

\[H(z) = \frac{z \Gamma \left(\frac{2}{3} \right) {}_1 F_2 \left(\frac{1}{3}; \frac{2}{3}, \frac{4}{3}; \frac{1}{9} z^3 \right)}{3^{5/3} \Gamma \left(\frac{2}{3} \right) \Gamma \left(\frac{4}{3} \right)} - \frac{z^2 \Gamma \left(\frac{2}{3} \right) {}_1 F_2 \left(\frac{2}{3}; \frac{4}{3}, \frac{5}{3}; \frac{1}{9} z^3 \right)}{3^{7/3} \Gamma \left(\frac{4}{3} \right) \Gamma \left(\frac{5}{3} \right)} \]
$t = 0.005$

$\quad t = 0.01$

$\quad t = 0.05$

$\quad t = 0.1$

$\quad t = 0.5$

$\quad t = 1$.
Periodic Linear Dispersion

\[\frac{\partial u}{\partial t} = \frac{\partial^3 u}{\partial x^3} \]

\[u(t, 0) = u(t, 2\pi) \quad \frac{\partial u}{\partial x}(t, 0) = \frac{\partial u}{\partial x}(t, 2\pi) \quad \frac{\partial^2 u}{\partial x^2}(t, 0) = \frac{\partial^2 u}{\partial x^2}(t, 2\pi) \]
Periodic Linear Dispersion

\[\frac{\partial u}{\partial t} = \frac{\partial^3 u}{\partial x^3} \]

\[u(t, 0) = u(t, 2\pi) \quad \frac{\partial u}{\partial x} (t, 0) = \frac{\partial u}{\partial x} (t, 2\pi) \quad \frac{\partial^2 u}{\partial x^2} (t, 0) = \frac{\partial^2 u}{\partial x^2} (t, 2\pi) \]

Step function initial data:

\[u(0, x) = \sigma(x) = \begin{cases} 0, & x < 0, \\ 1, & x > 0. \end{cases} \]
Periodic Linear Dispersion

\[\frac{\partial u}{\partial t} = \frac{\partial^3 u}{\partial x^3} \]

\[u(t, 0) = u(t, 2\pi) \quad \frac{\partial u}{\partial x}(t, 0) = \frac{\partial u}{\partial x}(t, 2\pi) \quad \frac{\partial^2 u}{\partial x^2}(t, 0) = \frac{\partial^2 u}{\partial x^2}(t, 2\pi) \]

Step function initial data:

\[u(0, x) = \sigma(x) = \left\{ \begin{array}{ll} 0, & x < 0, \\ 1, & x > 0. \end{array} \right. \]

\[u^*(t, x) \sim \frac{1}{2} + \frac{2}{\pi} \sum_{j=0}^{\infty} \frac{\sin\left((2j + 1)x - (2j + 1)^3 t \right)}{2j + 1}. \]
$t = 0.$
$t = 0.1$
$t = 0.2$
$t = 0.3$
$t = 0.4$
$t = 0.5$
\[t = \frac{1}{30} \pi \]
\[t = \frac{1}{15} \pi \]
\[t = \frac{1}{10} \pi \]
\[t = \frac{2}{15} \pi \]
\[t = \frac{1}{6} \pi \]
\[t = \frac{1}{5} \pi \]
$t = \pi$

$t = \frac{1}{2} \pi$

$t = \frac{1}{3} \pi$

$t = \frac{1}{4} \pi$

$t = \frac{1}{5} \pi$

$t = \frac{1}{6} \pi$

$t = \frac{1}{7} \pi$

$t = \frac{1}{8} \pi$

$t = \frac{1}{9} \pi$
Theorem. At rational time \(t = \frac{\pi p}{q} \), the solution \(u^*(t, x) \) is constant on every subinterval \(\frac{\pi j}{q} < x < \frac{\pi (j + 1)}{q} \). At irrational time \(u^*(t, x) \) is a non-differentiable continuous function.
Lemma.

\[f(x) \sim \sum_{k=-\infty}^{\infty} c_k e^{i k x} \]

is piecewise constant on intervals \(p \pi/q < x < (p + 1) \pi/q \) if and only if

\(\hat{c}_k = \hat{c}_l, \quad k \equiv l \not\equiv 0 \mod 2q, \quad \hat{c}_k = 0, \quad 0 \not\equiv k \equiv 0 \mod 2q. \)

where

\[\hat{c}_k = \frac{\pi k c_k}{i q (e^{-i \pi k/q} - 1)} \quad \text{for} \quad k \not\equiv 0 \mod 2q. \]

\[\Rightarrow \quad \text{DFT} \]
The Fourier coefficients of the solution \(u^*(t, x) \) at rational time \(t = \pi p/q \) are

\[
c_k = b_k \left(\pi \frac{p}{q} \right) = b_k(0) e^{i(k x - k^3 \pi p/q)},
\]

where

\[
 b_k(0) = \begin{cases}
 -i/\pi k, & \text{if } k \text{ odd}, \\
 1/2, & \text{if } k = 0, \\
 0, & \text{if } 0 \neq k \text{ even}.
 \end{cases}
\]

Crucial observation:

if \(k \equiv l \pmod{2q} \), then \(k^3 \equiv l^3 \pmod{2q} \)

and so

\[
e^{i(k x - k^3 \pi p/q)} = e^{i(l x - l^3 \pi p/q)}
\]
Theorem. At rational time $t = \pi p/q$, the fundamental solution to the initial-boundary value problem is a linear combination of finitely many delta functions.
Theorem. At rational time \(t = \frac{\pi p}{q} \), the fundamental solution to the initial-boundary value problem is a linear combination of finitely many delta functions.

Corollary. At rational time, any solution profile \(u(\frac{\pi p}{q}, x) \) to the periodic initial-boundary value problem depends on only finitely many values of the initial data, namely

\[
u(0, x_j) = f(x_j) \quad \text{where}
\]

\[
x_j = \frac{\pi j}{q} \quad \text{for} \quad j = 0, \ldots, 2q - 1 \quad \text{when} \quad p \text{ is odd, or}
\]

\[
x_j = 2\frac{\pi j}{q} \quad \text{for} \quad j = 0, \ldots, q - 1 \quad \text{when} \quad p \text{ is even.}
\]
The same phenomenon appears in any linearly dispersive equation with “integral” dispersion relation:

$$\omega(k) = \sum_{m=0}^{n} c_m k^m$$

where

$$c_m/c_n \in \mathbb{Q}$$
Linear Schrödinger Equation

$$i \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

Dispersion relation: \(\omega = k^2 \)

Phase velocity: \(c_p = \frac{\omega}{k} = -k \)

Group velocity: \(c_g = \frac{d\omega}{dk} = -2k \)
Periodic Linear Schrödinger Equation

\[i \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \]

\[u(t, 0) = u(t, 2\pi) \quad \frac{\partial u}{\partial x}(t, 0) = \frac{\partial u}{\partial x}(t, 2\pi) \quad \frac{\partial^2 u}{\partial x^2}(t, 0) = \frac{\partial^2 u}{\partial x^2}(t, 2\pi) \]

- Michael Berry, et. al.
- Bernd Thaller, *Visual Quantum Mechanics*
- Konstantin Oskolkov
- Michael Taylor
- Fulling, Güntürk
- Kapitanski, Rodnianski

“Does a quantum particle know the time?”
William Henry Fox Talbot (1800–1877)
Talbot’s 1835 image of a latticed window in Lacock Abbey

⇒ oldest photographic negative in existence.
The Talbot Effect

Fresnel diffraction by periodic gratings (1836)

“It was very curious to observe that though the grating was greatly out of the focus of the lens ... the appearance of the bands was perfectly distinct and well defined ... the experiments are communicated in the hope that they may prove interesting to the cultivators of optical science.”

— Fox Talbot

⇒ Lord Rayleigh calculates the Talbot distance (1881)
The Quantized/Fractal Talbot Effect

- Optical experiments — Berry & Klein
- Diffraction of matter waves (helium atoms) — Nowak et. al.
Quantum Revival

- Electrons in potassium ions — Yeazell & Stroud
- Vibrations of bromine molecules — Vrakking, Villeneuve, Stolow
Periodic Schrödinger Equation

\[i \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \]

\[u(t, 0) = u(t, 2\pi) \quad \frac{\partial u}{\partial x} (t, 0) = \frac{\partial u}{\partial x} (t, 2\pi) \quad \frac{\partial^2 u}{\partial x^2} (t, 0) = \frac{\partial^2 u}{\partial x^2} (t, 2\pi) \]

Integrated fundamental solution:

\[u(t, x) = \frac{1}{2\pi} \sum_{0 \neq k = -\infty}^{\infty} \frac{e^{i(kx + k^2 t)}}{k} \cdot \]

* For \(x/t \in \mathbb{Q} \), this is known as a Gauss (or, more generally, Weyl) sum, of importance in number theory

\[\Rightarrow \text{Hardy, Littlewood, Weil, I. Vinogradov, etc.} \]
Integrated fundamental solution:

\[u(t, x) = \frac{1}{2\pi} \sum_{0 \neq k = -\infty}^{\infty} \frac{e^{i(kx + k^2t)}}{k}. \]

Theorem.

- The fundamental solution \(\partial u / \partial x \) is a Jacobi theta function. At rational times \(t = p\pi/q \), it linear combination of delta functions concentrated at rational nodes \(x_j = \pi j/q \).
- At irrational times \(t \), the integrated fundamental solution is a continuous but nowhere differentiable function. (The fractal dimension of its graph is \(\frac{3}{2} \).)
Dispersive Carpet

Schrödinger Carpet
Periodic Korteweg–deVries Equation

Analysis of nonsmooth initial data:

Estimates, existence, well-posedness, stability, ...

- Kato
- Bourgain
- Kenig, Ponce, Vega
- Colliander, Keel, Staffilani, Takaoka, Tao
- Oskolkov
- D. Russell, B–Y Zhang
- Erdoğan, Tzirakis
Periodic Dispersion

\[
\frac{\partial u}{\partial t} = F(D_x) u, \quad u(t, x + 2\pi) = u(t, x)
\]

Dispersion relation:

\[
u(t, x) = e^{i(kx - \omega t)}, \quad \omega(k) = -i F(-i k)
\]

\[\implies \text{assumed real}\]

Step function initial data:

\[
u(0, x) = \sigma(x) = \begin{cases}
0, & x < 0, \\
1, & x > 0.
\end{cases}
\]

\[
u^*(t, x) \sim \frac{1}{2} + \frac{2}{\pi} \sum_{j=0}^{\infty} \frac{\sin((2j + 1)x - \omega(k)t)}{2j + 1}.
\]

\[\star \quad \omega(-k) = -\omega(k) \text{ odd}\]

Polynomial dispersion, rational \(t \implies \text{Weyl exponential sums} \]
Dispersion Relations

<table>
<thead>
<tr>
<th>Equation</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schrödinger</td>
<td>k^2</td>
</tr>
<tr>
<td>Korteweg–deVries</td>
<td>$k - k^3$</td>
</tr>
<tr>
<td>BBM</td>
<td>$\frac{k}{1 + k^2}$</td>
</tr>
<tr>
<td>Boussinesq</td>
<td>$k \sqrt{1 + k^2}$</td>
</tr>
<tr>
<td>Boussinesq system</td>
<td>$\frac{k}{\sqrt{1 + k^2}}$</td>
</tr>
<tr>
<td>Water waves</td>
<td>$\pm \sqrt{k \tanh k}$</td>
</tr>
</tbody>
</table>
Periodic Korteweg–deVries equation

\[
\frac{\partial u}{\partial t} = \alpha \frac{\partial^3 u}{\partial x^3} + \beta u \frac{\partial u}{\partial x} \quad u(t, x + 2\ell) = u(t, x)
\]

Zabusky–Kruskal (1965)

\[\alpha = 1, \quad \beta = 0.000484, \quad \ell = 1, \quad u(0, x) = \cos \pi x.\]

Lax–Levermore (1983) — small dispersion

\[\alpha \rightarrow 0, \quad \beta = 1.\]

Gong Chen (2011)

\[\alpha = 1, \quad \beta = 1, \quad \ell = \pi, \quad u(0, x) = \sigma(x).\]
Future Directions

• General dispersion behavior
• Other boundary conditions (Fokas)
• Higher space dimensions and other domains (e.g., tori, spheres)
• Numerical solution techniques?
• Dispersive nonlinear partial differential equations:
 periodic Korteweg–deVries — Zabusky & Kruskal
• Experimental verification in dispersive media?