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included in Theorem 6.2 carry over to the case of infinite depth. Unlike f, and f4 
whose significance is unequivocal, I ,  and I4 in the present case are found not to be 
calculable from the Hamiltonian conjugate variables 7 and CD unless conditions more 
precise than needed hitherto are imposed a t  infinite distances in the fluid. So the 
present meanings of (6.18) are not immediately evident. They become clear when one 
appreciates, amplifying a point made earlier (after (6.7) and (6.8)), that  (6.18) are just 
kinematic identities whose validity depends on a particular choice of conditions a t  
infinity. The forms of the identities change when other such conditions are arbitrarily 
chosen, but the difference is merely one of incidental interpretation to be attached 
to the quantities d15/dt and d16/dt which are intrinsic properties of the evolutionary 
process. 

To pinpoint the issue, let us carefully retrace the arguments that  demonstrate 
(6.18), considering now that the fluid has a submerged solid boundary r in the form 
of an infinite semicircle. The steps whereby d I J d t  is reduced are 

where the last equality is evident because r is solid. As the final step, the contour 
integral around X u r is reduced by Green's theorem to equal an integral over the 
enclosed domain D,, and so it is concluded that 

' I 5  = { ( x ~ ) , + ( x u ) ~ } d x d y  = u d x d y  = M -  I,, 
dt JD7 

since divu = u Z + v y  = 0 everywhere in D,. The second of (6.18) is demonstrable in 
a precisely similar way, with recourse to the incompressibility of the fluid and to the 
assumed condition on but without reference to any dynamical condition. The 
kinematic meaning of (6.18), tied to the particular model for the fluid a t  infinity, is 
thus made clear; but i t  can also be appreciated that the physical quantities to be 
identified with d15/dt and d16/dt are to an extent arbitrary, depending on delicate 
specifications about infinity in the fluid that have no effect on the main dynamical 
equations (2.8) or results such as (6.15) and (6.16). (It will be shown in due course 
that, irrespective of the precise conditions a t  infinity, I, = fl for all initial conditions 
that are realistic in a certain sense; however, for the time being we proceed generally 
without recourse to this simplification.) 

For example, an alternative model for the submerged boundary r a t  infinity is a 
compliant surface such that hydrostatic pressure is exactly maintained upon it. This 
specification implies that  $ = 0 exactly on r, and consequently I ,  = fl. But the first 

of (6.18) becomes d15 
~ = I,- x ( v d x - u d y ) ,  (6.19) 

the second term of which is generally not zero. The sum on the right-hand side turns 
out, of course, to have the same value as I ,  in the previous case (vide in f ra  for proof ), 
and only the physical interpretation of this quantity has changed. 

The matter is made transparent by working out the explicit asymptotic form of 
the velocity potential $. For any finite point x inside the fluid, a standard 
construction of potential theory (cf. Lamb 1932, p. 60) shows that 

dt I,- 

(6.20) 

where 1 1 
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FIGURE 3. Illustration of the fictitious boundary S", the reflection of the free surface S 
about the horizontal line y = 0. 

is Green's funcBion for the whole plane, and $' is the potential defined in R2\  D, 
satisfying an $f = a, $ (both normal derivatives in direction out o f  D?) on the lower 
boundary S and $' = U(r- l )  like $ = U(r- l )  as r + 00 (along rays respectively in 
R2 \ D, and D,). While depending on the basic supposition that $ = 0 ( r v 1 )  as r +a, 
the representation (6.20) is independent of limr+wr$, which we shall therefore be 
able to specify separately later. Writing x = r cos 8, y = - r sin 8 and taking (2 ,  9 )  E S, 
we find that 

as r + co. Hence an asymptotic approximation to $(x) correct to  O(r-l)  is seen from 
(6.20) to be 

(6.21) 

Now, referring to figure 3 for illustration of the ideas, consider the potential 
$"(x, y ,  t )  = $'(x, - y, t)  which is defined in y < - y(x, t)  and satisfies a, $" = - Ryt on 
the fictitious boundary y = -y(x, t )  labelled S in the figure. Note that S translates 
horizontally in step with S, but moves down where S moves up and vice versa. The 
representation of $"corresponding to (6.20) is a line integral over S ,  and plainly the 
factor in the integrand expressible as $"(2, -y(2, t ) ,  t )  -$"'(2, -y(2,  t ) ,  t )  is the same 

According to (6.20), the asymptotic behaviour of 4'' therefore reflects that  of $ in 

$ = G{cos8j 1 ($-$')dy+sin8js($-$')dx}. 

S 

as -{$@, y(2, t ) ,  t)-$'@ y(2, t ) ,  t)>. 

the sense that if 
$ = r-l(A cos 8+B sin 8)+O(r -2) ,  

$'f = r-l(A cos 8-B sin 6) + O(r-2).  then 

Hence arguments precisely corresponding to  those used above to  verify (6.18) show 
that 

irrespective of the precise conditions at infinity. That is, contributions from integrals 
of $ and $" over an infinite semicircle r cancel in these identities. It follows that the 
asymptotic expression (6.21) for $ is the same as 

(6.22) 
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This result makes the interpretation entirely clear. In  all cases it describes the dipole 
field that the wave motion produces a t  large distances, but this description can be 
modified as follows at infinity to represent the exact conditions arbitrarily imposed 
there. If the infinite semicircle r is taken to be a solid boundary, this dipole field 

$ = -(AcosB+Bsin8), say, 

* - - + - ( A  cos B+B sin 8 ) ,  

(6.23) 
1 
r 

is modified to 

+ - (: ;J 
which is a potential satisfying 8, $* = 0 on r = p. Then $* = ( 2 / p )  ( A  cos 8 + B sin 8) 
on r = p ;  and after integral properties of $* on this semicircle have been evaluated, 
i t  is unambiguous to take the limit p --r 00. In  the limit, of course, the difference 
between $ and $* disappears at all finite distances r ,  however large, but the exact 
behaviour a t  infinity has been accommodated. Since 

r m 

Jrp-'sin8dz = - sin28d8 = -1 271 3 

the argument proceeding from (6.22) thus recovers (6.18) in the case of a solid 
boundary at  infinity. In  the alternative case that r$ = 0 a t  infinity, the appropriate 
modification of the dipole field is 

s, 

$* = ($ - +) (Acos8+BsinB), 

from which and from (6.22) it appears that (6.19) is satisfied identically irrespective 
of the value of 1'. Similarly the identity for d16/dt becomes vacuous in this case. 
Needless to say, between these two extreme models for the boundary r at infinity, 
there is a continuous range of other models that  can be arbitrarily imposed, with 
corresponding incidental interpretations in physical terms but without effect on the 
evolutionary process at the free surface. 

[It is noteworthy that the foregoing analysis recovers some features exemplified 
in the comprehensive review of the linearized deep-water problem by Lamb (1932, 
§§238-241), who abstracted the important early contributions to the subject by 
Cauchy, Poisson, Rayleigh and others. In  particular, part of the expression (6.22) for 
the dipole field a t  large r recovers the leading terms of asymptotic expansions of $ 
according to the linearized theory. But the terms with coefficients $ dy and yyt dx 
do not arise in that theory, being of second-order smallness. The classic treatments 
of the linearized problem are also helpful here as precedents for our view that the 
case I ,  + 0 is entirely compatible with the theoretical model comprising an infinitely 
deep ocean of incompressible fluid. At first sight, according to standard results, this 
case may seem pathological in that the wave motion has Fourier components whose 
speed of propagation is unbounded. The apparent difficulty is illusory, however; or 
rather it is outweighed by another, tractable feature that remains even when the 
speeds of all Fourier components are finite. Namely, at any finite distance, however, 
large, from the centre of a localized initial disturbance, some effect is manifested 
instantaneously (cf. Lamb, p. 394). This feature is accountable, of course, to the 
specification that the fluid is strictly incompressible, so that pressure changes in it 
propagate at infinite speed. The compensating attribute of the theoretical model 
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which makes it amenable to decisive treatment is that  in all cases, whether I3  is zero 
or not, $ has only dipole strength a t  large distances and so qt = O ( ( X ~ - ~ ) . ]  

We come a t  last to the crucial aspect as regards realistic applications, which turns 
on the evaluation of the contour integral I ,  expressing angular momentum. The 
contribution to  I ,  from the infinite semicircle I? is evidently zero, irrespective of the 
values of $ there, but the contribution from the free surface S is indeterminate in 
the case that the coefficient A in (6.23) is non-zero. This conclusion is unaffected by 
the precise condition at infinity, and indeed an attempt to calculate the angular 
momentum directly (i.e. by integrating xv-yu over Ds) shows it to be infinite like 
limp ~ lnp if A + 0. We should duly appreciate that examples admitting this 
unrealistic feature do not conflict with any of the arguments given so far,j- and in 
other physical respects they are fully determinate when conditions at infinity are 
chosen. On practical grounds, however, it is reasonable to exclude such examples from 
the account of the water-wave problem, and this proviso simplifies the interpretation 
considerably. Accordingly, we now assume the additional condition x@ E L1( W ) ,  which 
ensures the existence of Is and concomitantly makes A = 0 always. This condition 
is evidently satisfied, for instance, when xPEL~(W x (0, t o ) )  in addition to P having 
this attribution, where P(x, t )  is the external pressure considered earlier to  generate 
a wave motion from rest. 

irrespective of the precise 
boundary conditions at infinity, and according to  (6.22) we have that 

dI,/dt = fl, (6.24) 

which is known to be a constant of any free wave motion. It is appropriate to recall 
that d15/dt has the equivalent expressions 

To sum up from this new standpoint, we have that I ,  = 

c c 

the first of which shows the prescription of d15/dt to be immediate according to the 
Lagrangian view of the initial-value problem. But, as the original discussion in $2 
made clear, the second expression also determines d15/dt from the Hamiltonian 
conjugate variables q and (D. It is noteworthy that I5 has a status comparable with 
that of ignorable coordinates in finite-dimensional Hamiltonian systems, for which the 
corresponding momenta (like f, here) are always constants. 

The significance of the non-negative quantity I6 is less conspicuous, no invariant 
property of the motion being indicated. On the supposition that the infinitely remote 
lower boundary is solid, dI,Jdt can be identified with the total vertical momentum 
I4 which, unlike f4, is not a constant. I n  consequence, as indicated by (6.6) which 
carries over unambiguously to the case of infinite depth, a varying downward force 
d21,/dt2 + gm is exerted against r additionally to the hydrostatic force. The same 

t Take, for instance, the quite legitimate initial-value problem in which at t = 0 the free surface 
S has a semicircular depression of radius a (so that I3 = -ina2) and vt = -cvz with c > 0. Thus the 
initial motion of S is a horizontal translation a t  velocity c, and accordingly the initial form of the 
velocity potential is $,, = -ma r-l cos 8 in r 2 a. Evaluating this on S, we have - m0 = ca2 2-l for 
121 3 a and -m0 = cx for 1x1 < a,  which describes the impulsive pressure on S needed to generate 
the motion from rest. The distribution of starting impulse amounts to an infinite (anticlockwise) 
impulsive couple exerted against the system, so imparting to it an infinite angular momentum when 
t > 0. Note that $,, continued analytically to the whole of the region r > a in R2 describes the motion 
of an unbounded incompressible fluid caused by the displacement of a circular cylinder perpendicular 
to its length (Lamb 1932, $68). Equal and opposite but infinite angular momenta are then generated 
in the upper and lower half-spaces. 
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conclusion has already been demonstrated by (6 .14)  in the case of finite depth. It 
deserves re-emphasis, however, that  the specification justifying this interpretation 
is arbitrary and can be changed without affecting the dynamical problem. 

The present counterparts of the other identities in Theorem 6 .2  are simpler. 
Unambiguously, I ,  still represents total energy which is constant. As already noted, 
the excess mass m is also constant. The quantity I,, which has been named virial after 
the discussion in $6 .3 ,  is a convergent integral over So by virtue of the dipole 
behaviour of 9 at large r ,  even if A =+ 0. Expressing dI, ldt ,  one encounters an integral 
over the infinite boundary r that reduces to 

B7 = - +(u'+v') ( Y d x - x d y )  s, 
if l7 is supposed to be solid. With the appropriately corrected dipole form $* 
substituted, the integrand is non-zero in the limit p + CO, but the conclusion is that 

1 1 
B7 = - -((A2+B2) 

277 
cos28dB = 0. 

Moreover) the same conclusion holds if any one of the alternative conditions on r 
is imposed. Hence it is concluded that 

5 = 412-7g16 = 4 K - 3 V  
dt 

(6 .25)  

in the case of infinite depth. 

difficulty in concluding from (6.10') and then (6 .24)  that  
Finally, as I ,  is bounded under the assumption introduced above, there is no 

5 = -gI ,  = -g[I,(O) + I; t ] .  
dt 

(6.26) 

As might be expected, the angular momentum I ,  is thus shown to vary at a rate equal 
to the moment of the weight attributable to the displaced fluid, which moment varies 
linearly with time. 

7. Conclusion 
Apart from throwing some new light on the water-wave problem, our investigation 

may be of interest in exemplifying ageneral line of attack on nonlinear boundary-value 
problems that model evolutionary processes. Other prospective applications in fluid 
mechanics can be envisaged. As the first step, explained here in $ 4  and Appendix 2 ,  
the symmetry groups for the simplest, unrestricted form of the problem are 
identified systematically by use of infinitesimal-transformation and prolongation 
theory. Then, as exemplified in $ 5 ,  an appeal to Hamiltonian structure or perhaps 
other variational characterization of the problem enables the corresponding conserved 
densities to be worked out. Having thus been disclosed, the set of conservation laws 
may yet be unclear as regards all their physical meanings, and our painstaking 
discussion in $6 showed how much further study may.be needed to  illuminate the 
significance of the formal mathematical results. 

Two deliberate limitations of the present treatment should again be acknowledged. 
First, for the sake of simplicity, we have based most analytical developments on the 
assumption that the elevation of the free surface remains a single-valued function 
of horizontal position. Upon re-examination in the way indicated by Appehdix 1 ,  
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however, it is readily seen that all the results obtained have extensions to the case 
where the free surface becomes folded and so must be described parametrically. 
Second, and more important, there was an absence of rigorous justification for our 
claim that the derived lists of symmetries and conservation laws for the water-wave 
problem are exhaustive. The adopted method of systematic derivation points 
strongly to the truth of this claim, but full proof has been deferred to a separate study 
(Olver 1982). 

We are indebted to the Science and Engineering Research Council for support of 
the programme that has included the investigation here reported. The paper was in 
part written during an extended visit by T. B. B. to the Mathematics Research Center, 
University of Wisconsin-Madison. 

Appendix 1. Parametric representation of free surface 
Here we reformulate the dynamical problem in order to cover the class of situations 

that was reviewed in $3, being precursory to  the breaking of water waves. The free 
surface S becomes folded as illustrated in figure 1 ( b ) ,  so that its elevation Y,I is no longer 
a single-valued function of position in the horizontal plane and a parametric 
representation of S is then necessary. 

To take advantage of the summation convention of Cartesian-tensor notation, the 
axes used in the main text are now relabelled (x,, x,, x3) = (x, z ,  y). Accordingly, 
S is supposed to be described parametrically by 

xi = X , ( p ,  u, t ) ,  i = 1, 2 ,  3, (A 1 )  

where (p, v) ranges over a fixed two-dimensional domain Q. With the same meaning 
as before, we again write 

and, further compressing the notation for spatial derivatives of 9 evaluated on S, 
we write 

Note that in terms of 

a) = 9s = 9CX1, x,, 1 3 ,  t ) ;  

qi, = (a$/axi)s. 

the components of the outward unit normal to  S are yi/ J ,  and the element of surface 
area on S is J d p  du. It can be assumed without significant loss of generality that J > 0 
everywhere. 

Needless to say, the representation (A 1)  is not unique. One of the possibilities, 
which is evidently suitable for certain other purposes, is to let (p, v) be Lagrangian 
coordinates specifying particular fluid particles in S, in which case we would have 
a, X i  = @(i). This choice has no special advantage a t  present, however, and moreover 
it is inconsistent with the simpler description used previously, which is, of course, 
recoverable from (A 1 )  by taking (p, v) = (x,, xz), X, = p, X, = u ,  X 3  = q(p, u ,  t ) .  We 
therefore proceed from (A 1 )  on a general basis, leaving open the choice of parameter 
system. It is immediately plain that on this basis the dynamical problem cannot be 
reduced to the standard Hamiltonian form (1.2), with time derivatives of the functions 
Xi given explicitly in terms of the instantaneous state (Xi, @) of the system. But an 
appropriately modified Hamiltonian form (1.4) may be recognized as follows. 

The kinematical boundary condition (2.4), expressing the velocity of AS normal to 
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itself in terms of the velocity potential for the fluid motion, is now replaced by its 
generalization y i  8, Xi  = JQ,(n) = y i  a(,,. 
Correspondingly, with the effect of surface tension included, the dynamical boundary 
condition (2.5‘) becomes 

(A 2 )  

= - ( $ q 2 + g X 3 - 2 u H ) + q i , a t x i ,  (A 3) 

in which the mean curvature H is expressible in the standard way for parametric 
representations. Just  as for their simpler versions, these generalized equations, 
coupled with the remaining, linear boundary conditions that determine q5 from its 
boundary values Q, on S, complete the specifications of the evolutionary system. As 
before, we consider the solution as a vector-valued function, in the present case 

and seek a quasi-Hamiltonian formulation in terms of U. 
Now, the kinetic energy of the system is given by 

and the potential energy by 
r r 

In  expressing the first variation of the total energy E = K + 8, we use the facts that 

and 

In  the reduction of K, Green’s theorem is again used as in $ 2 ;  and the reduction of 
V is made through integrations by parts. The details in respect of the superficial 
energy proportional to a are the same as are familiar from the theory of minimal 
surfaces. Thus, defining the gradient of E by the inner product corresponding to 
integration with respect to (p,  v) over n, we find the four components of grad E to  be 

I gradx, E = (+ p2 + gX3 - 2aH)  yi - JQ,(n) 

g r a h  E = = yiQCi,. 

Hence, with U defined by (A 4), equations (A 2 )  and (A 3) are seen to be equivalent 
to 

%(a, U) = grad E(U), 

where % is the skew-symmetric matrix defined as follows. In terms of 

ci j  = yi a(,) - yj qi, = - cji, 
we have 

Given (A 2 )  and (A 3),  substitution for d,Xi and a,@ confirms that the four 
components of (A 6) recover (A 5 ) .  Conversely, given (A 5) and (A 6),  equation (A 2) 
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is a t  once recovered as the fourth component of (A 6), and the first three components 
provide 

Multiplying by yi, summing over i, and then substituting for JQcn) from the already 
implied result (A 2), we obtain 

( ! jq2+gX3-2gH)y i -  JCD(n)CD(g) = ~ i j a , X j - y $ 8 , @ .  

J2{8, CD +$q2 + gX3 - 2gH) = yi cij 8, X.j + yi yj @(i) 8, Xj  = J2@(i) 8, X i ,  

which recovers (A 3) upon division by J2 > 0. 
Equation (A 6) exemplifies the quasi-Hamiltonian form (1.4), which is plainly the 

one concomitant with parametric representations of the free surface. It is readily 
confirmed that det [XI = 0, so that, as expected, X is generally not invertible. 

Note that a two-dimensional version of the problem is included in the preceding 
account. To obtain it, the description (A 1) of S is simplified to 

x1 = XI@), 2 2  = u ,  34 = U p ) ,  

y, = - 8, x3, 7 2  = 0, 7 3  = 8, Xl. 

corresponding to which we have 

I n  (A 2), (A 3) and succeeding equations, the summations are then over i = 1 , 3  only. 
It may be of interest to note also how, in the case that S is not folded and so a 

non-parametric description is possible, the present formulation collapses into the 
simpler one used in the main text. Putting X, = ,u = xl, X, = v = x2 and X 3  = 
v(,u, u ,  t ) ,  we have y1 = -q,, y, = -vy and y3  = 1 .  Although none of the entries in the 
matrix X is cancelled in this case, the first two components of (A 5 )  and the left-hand 
side of (A 6) are vacuous since X, and X, are invariable. Thus (A 6) reduces to 

which is equivalent to (2 .8 ) .  

Appendix 2. Symmetry groups for free-boundary problems 
The study of symmetry groups associated with partial differential equations, a 

subject pioneered by Sophus Lie, has been significantly advanced in recent years, 
notably by L. V. Ovsiannikov. There is now an extensive literature on the subject, 
and for basic concepts bearing on what follows reference may be made to the books 
by Bluman & Cole (1974) and by Ovsiannikov (1982) (see also Olver 19793, 1980b). 
It appears, however, that  no general discussion of free-boundary problems from this 
standpoint is yet available. Accordingly, a brief treatment of such problems in 
abstract is here presented, outlining a procedure whereby the symmetry groups can 
be identified systematically. 

For any free-boundary problem in the general class to be considered, the inde- 
pendent variables are written (x, y) = (d, . . . , xp, y)  E Rp+'. Time may be included as 
one of the variables xi with label i < p ,  and y (=  xP+l) is a distinguished coordinate 
such as that with the vertical direction in the water-wave problem. The dependent 
variables are written Q = (q5l, . . . , q5*) E RQ. The problem is supposed to  comprise a 
system of partial differential equations 

Nx,  y> d) = 0 
satisfied in a domain 

D, = ((x, y): y < q = h(x)) t Rpfl, 
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s = {(x, y): y = 7 = h(x)). 

(The need to introduce a separate notation 7 for the dependent variable describing 
the free surface, and to distinguish i t  from any particular function 7 = h(x), will 
become apparent in the treatment that follows.) This representation is somewhat 
restrictive, implying S to be definable as the graph of a single-valued function of x. 
More generally, S could be any surface described parametrically as in Appendix 1. 
For simplicity, however, the case where h(x) is single-valued will be discussed first, 
and the modifications needed for the more general case will be indicated at the end. 

The boundary conditions at S are represented by 

w, 79 4.54 = 0, (A 8) 

being equations in the p-component independent variable x. These will usually 
involve partial derivatives of 7 with respect to the components of x, as well as 71 itself. 
They will also usually involve both the evaluation Qs E Q(x, ~ ( x ) )  of the set of 
dependent variables at S and, as is left implicit in (A 8),  the corresponding evaluations 
of derivatives of Q with respect to y as well as x. The system of equations (A 7)  and 
(A 8), supplemented by conditions that can be left unwritten determining suitable 
asymptotic behaviour of Q far from S in D,, constitute the general form of 
free-boundary problem now in question. Its solution should be understood as a pair 
of functions h :  IWP + R and f :  D, -+ Rq, such that 7 = h(x) and Q = f(x, y) satisfy the 
system (A 7 , 8 ) .  Clearly, the problem of gravity waves on water of unbounded depth 
has this form. 

(Note that this form of problem, respective to a perturbed half-space D, in [WP+l, 

is the most fertile for any inquiry into symmetry groups. Further delimitations of 
DT as may be required for various practical models, such as the introduction of fixed 
spatial boundaries at finite distances or the imposition of initial conditions with regard 
to  a time variable included in x, obviously cannot result in any increase of symmetry. 
Note also that for present purposes it is wholly justified to treat h and f as C"O 
functions in the stated senses.) 

We consider a diffeomorphism of the whole space RP+' x R* to be given by 

2 = X(X, y, QL J = Y(X,  y, 4 1 7  J= P(X, y, 4). 
If this is sufficiently close to the identity map, a domain D, defined by 7 = h(x) and 
a function Q = f(x, y) : D, + R* will be transformed one-to-one into a new domain D+ 
with free boundary f = @), and a new function f: D; -+ RQ. These are defined 
implicitly by the identities 

} ( A 9 )  
Y{X, h(x), f(x, h(x))} = WWx, W), f(x, h(x))}, 

P{x, y, f(x, y)) = W X ,  y, f(x, y)), Y(X,  Y, f(x, y))). 

(Note that if the restriction to a neighbourhood of the identity is relaxed, then 
f ,  6 may not be defined as single-valued functions, so that in general the class of 
transformations in question is only locally well-defined. It will be seen, however, that 
this proviso is admissible without loss of scope for present purposes.) Such a 
diffeomorphism is to be called a symmetry of the free-boundary problem (A 7 ,8 )  i f f ,  
4 is a (local) solution whenever 7, 4 is a solution. 

Henceforth indices i and j  will denote labelling numbers in { 1,  . . . , p} and { 1, . . . , q}  
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respectively, and repeated indices will imply summation. According to  standard 
terminology of differential geometry, a vector field v on RP+' x R'J is a first-order 
differential operator acting on smooth functions Rip+' x R'J --* Iw, thus 

Such a vector field is the infinitesimal generator of a one-parameter group of diffeo- 
morphisms, obtainable by integrating the system of ordinary differential equations 

where xi, y, @ denote derivatives with respect to the group parameter c. (The value 
e = 0 is taken to correspond to  the identity element of the group.) The method used 
to establish sympetry groups for the present problem, just as for systems of partial 
differential equations without free-boundary conditions, consists in finding their 
infinitesimal generators as follows. 

First we consider the vector field v prolonged to the space of derivatives of the 
dependent variables, up to some requisite order. In  terms of the prolongation prv,  
to be defined (cf. (A 14)), the infinitesimal criterion 

(prv)A = 0 whenever A(x, y, 4) = 0, (A 12) 
then gives a number of elementary differential equations in the coefficient functions 
of v,  and their general solution defines the (infinitesimal) symmetry group for the 
system A = 0. 

To extend this notion t o  the free-boundary problem, we need to consider the 
prolongation of v on the boundary itself. This can most readily be done after adopting 
a perturbational description of the symmetries, which is now outlined. 

For small values of the group parameter c, the action of the group on a particular 
function 4 = f(x, y) is 

in which according to (A 9) 

6fj(x, y) = y j - a i S - p - ,  af* a p  
aY 

with the right-hand side evaluated a t  (x, y, f(x, y)). This may be written in the concise 
form 

where S@ = yj{x, y, f(x, y)) and 
(A 13) Sfj = S$7V-v1(p), 

is the projection of v, as determined by f, onto the space of independent variables. 
Now the prolonged vector field to any required order k 2 1 can be expressed by 

where 4; withj = 1 ,  . . . , q denotes all the k-th and lower-order derivatives of q5j with 
respect to the p +  1 independent variables. Thus, a t  order K (1 < K < k ) ,  there are 
included qp, = q(23 + K )  ! / p  ! K !  components 
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and the total number of components is q(p,+. . . + p , ) .  In the same sense we shall 
also use the notation akqbj = 4;. Since evidently 

s(afj/axi) = a(sp)/axi, i = 1 , .  . . , p +  1, 

equation (A 13) implies that 

w, @) = mcfj) +vl(a,fj) 

= - W j , >  + V l c a k p ) .  

Moreover, since this formula holds for all possible particular choices of the function 
4 = f(x, y), we may replace the derivatives a,fi by the derivatives 4; of the dependent 
variables q5j wherever they occur. This final step recovers the known formula 

I (A 15) 
Wi,) = a,{Yj-v,(P)>+vl(4i,)> 

v, = aia/axi +palay, 
which expresses the infinitesimal variation of & (cf. Olver 1979b, 1980b; also 
Eisenhart 1933, p. 106, eqn. (28.12), for the same result in a recursive form). Note 
that the coefficients ai, p, yj  in (A 15) are now all in their original form, depending 

To investigate behaviour a t  the free boundary, we writefl,(x) = f j ( x ,  h ( x ) )  as befdre 
on x, y, 4. 

and note that 

&x) = f”j(x, L(X)) 

= fqx,  R(x)) +sSfj(x, L(x)) + O ( 2 )  

= fj(x, h(x))  +s{$(x, h(x)) Sh(x) +Sfj(X, h(x))) + 0(€2). 
4fi) = ( W ) s  + (f;)s &. (A 16; 

Thus 

It will be helpful to introduce the notation W = pi, W;,, = (4),, in terms of which 
(A 16) evaluated on S becomes 

where 
S@ = S@) + V,(fi), 

a 
v, = d{x, h(x), fs(x)}- ax< 

is the restriction of v to S. Moreover, 

and therefore 
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The operations d and restriction to  S are thus shown formally to  commute. The same 
argument plainly extends to  derivatives of $ j ,  and so we also have 

W q k J  = (“i)sI = [S(&)Is, (A 18’) 

Finally, we must discuss the prolongation of v to the derivatives of 7. It is clear 
in which a(#$) is given by (A 15). 

that  

Moreover, since a(dh)/axi = d(8h/8xi), we have 

87 = Ps = dh+vo(h). 

S(7,) = d(8h/8xk) + vo(8h/8xk) 

= (8/dx”){p,-vO(h)} + ~o(dh/ax”) .  

As before, since this formula holds for all particular functions 7 = h ( x )  and 
9 = f ( x ,  y ) ,  we may replace 8h/8xk by y k  and (a , f i ) s  by ($L)s = wherever they 
occur. The result complementing (A 15) is therefore 

in which Ps and all the ak are evaluated a t  X, 7, #s. This is just the standard 
prolongation for the vector field 

vs = a“x, 7,  9 )  8/8xi +P(x,  7, 9 )  8/87, 

with 7 considered as a function of x and $ as an arbitrary function of x and 7. 
Accordingly, the infinitesimal criterion of invariance gives the following result : 

THEOREM A 1. Take the free-boundary problem (A 7) ,  (A 8). Let v be a vectorJield with 
prolongation pr v deJined by (A la), and with boundary prolongation deJined by 

pr vs = a$ 8/a xi + (d#j& a/8@{,, + 8(vk)  8/87,, (A 20) 

in which 
symmetry group for the problem i f  and only i f  

and 

is  given by (A 15) and d(7,) by (A 19). Then v is  a one-parameter 

pr v(A) = 0 whenever A = 0, (A 21) 

(A 22) pr v s ( T )  = 0 whenever r = 0. 

This theorem can readily be generalized to the case that the free surface S is defined 
parametrically, being represented in the form x = h(p), where the parametersp range 
over RP or some subdomain of W. Clearly the first two sums of terms in (A 20) are 
unchanged, with the restrictions to S given their appropriate meanings which are 
obvious. To modify the third sum of terms appropriately, one needs to  work out ~ ( X L ) ~  
with xi = axi/a,uk. By reasoning similar to that leading to (A 19), it  is found that 

&(xi) = 8ai /8pk .  (A 19’) 

Accordingly, Theorem A 1 holds as before, except that (A 20) is replaced by 

pr vs = a$ 8 / W +  (dq5$k)s8/a@&) + &(xi) 8/8x$, 
with d(xi) given by (A 19’). 
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