Hodgkin-Huxley Model of Action Potentials

Differential Equations
Math 210
Neuron

Dendrites
Collect electrical signals

Cell body
Contains nucleus and organelles

Axon
Passes electrical signals on to dendrites of another cell or to an effector cell
Electrochemical Equilibrium
Action Potential

- Axon membrane potential difference
 \[V = V_{in} - V_{out} \]
- When the axon is excited, \(V \) spikes because sodium \(\text{Na}^+ \) and potassium \(\text{K}^+ \) ions flow through the membrane
Modeling the dynamics of an action potential

- Alan Lloyd Hodgkin and Andrew Huxley
 - Proposed model in 1952
 - Explains ionic mechanisms underlying the initiation and propagation of action potential in the squid giant axon
 - Received the 1963 Nobel Prize in Physiology or Medicine
Circuit model for axon membrane

\[q(t) = \text{the charge carried by particles in circuit at time } t \]
\[I(t) = \text{the current (rate of flow of charge in the circuit)} = \frac{dq}{dt} \]
\[V(t) = \text{the voltage difference in the electrical potential at time } t \]
\[R = \text{resistance (property of a material that impedes flow of charge particles)} \]
\[g(V) = \text{conductance} = \frac{1}{R} \]
\[C = \text{capacitance (property of an element that physically separates charge)} \]

Conductors or **resistors** represent the ion channels.
Capacitors represent the ability of the membrane to store charge.
Physical relationships in a circuit

- **Ohm’s law**: the voltage drop across a resistor is proportional to the current through the resistor; \(R \) (or \(1/g \)) is the factor of proportionality

\[
V(t) = I(t)R = \frac{I(t)}{g}
\]

- **Faraday’s law**: the voltage drop across a capacitor is proportional to the electric charge; \(1/C \) is the factor of proportionality

\[
V(t) = \frac{q(t)}{C}
\]
For elements in parallel, the total current is equal to the sum of currents in each branch; the voltage across each branch is then the same.

\[I(t) = I_1(t) + I_2(t) + I_3(t) \]

Differentiate Faraday’s Law \(V(t) = \frac{q(t)}{C} \) leads to

\[\frac{dV}{dt} = \frac{1}{C} \frac{dq}{dt} = \frac{I(t)}{C} = \frac{1}{C} (I_1(t) + I_2(t) + I_3(t)) \]
Hodgkin-Huxley Model

\[
\frac{dV}{dt} = -\frac{1}{C} \left(I_{Na}(t) + I_K(t) + I_L(t) \right)
\]

- \(I_{Na} = g_{Na}(V - E_{Na}) \)
- \(I_K = g_K(V - E_K) \)
- \(I_L = g_L(V - E_L) \)

- \(g_L \) is constant
- \(g_{Na} \) and \(g_K \) are voltage-dependent
Ion channel gates

"n" gates

Membrane

Ion channel
Voltage dependency of gate position

\[n \rightarrow \alpha_n \rightarrow n - 1 \rightarrow \beta_n \]

- \(n \) (proportion in the open state)
- \(\alpha_n \) and \(\beta_n \) are transition rate constants (voltage-dependent)
- \(\alpha_n \) = the # of times per second that a gate which is in the shut state opens
- \(\beta_n \) = the # of times per second that a gate which is in the open state shuts

Fraction of gates opening per second = \(\alpha_n(1 - n) \)
Fraction of gates shutting per second = \(\beta_n n \)

The rate at which \(n \) changes:

\[
\frac{dn}{dt} = \alpha_n(1 - n) - \beta_n n
\]

Equilibrium:

\[
n_\infty = \frac{\alpha_n}{\alpha_n + \beta_n}
\]

What is the behavior of \(n \)?
Gating variable

\[\frac{dn}{dt} = \alpha_n (1 - n) - \beta_n n, \quad n(0) = n_0 \]

- Solve initial value problem by separation of variables:

\[
n(t) = \frac{\alpha_n}{\alpha_n + \beta_n} - \left(\frac{\alpha_n}{\alpha_n + \beta_n} - n_0 \right) e^{-(\alpha_n + \beta_n)t} \\
= n_\infty - (n_\infty - n_0) e^{-t/\tau}, \quad \text{where } \tau_n = \frac{1}{\alpha_n + \beta_n}
\]

- If \(\alpha_n \) or \(\beta_n \) is large \(\rightarrow \) time constant is short \(\rightarrow \) \(n \) approaches \(n_\infty \) rapidly
- If \(\alpha_n \) or \(\beta_n \) is small \(\rightarrow \) time constant is long \(\rightarrow \) \(n \) approaches \(n_\infty \) slowly

time constant
Gating Variables

- K^+ channel is controlled by 4 n activation gates:

\[
\frac{dn}{dt} = \frac{1}{\tau_n} (n_{\infty} - n) \quad \Rightarrow \quad g_K = n^4 g_K
\]

- Na^+ channel is controlled by 3 m activation gates and 1 h inactivation gate:

\[
\frac{dm}{dt} = \frac{1}{\tau_m} (m_{\infty} - m)
\]

\[
\frac{dh}{dt} = \frac{1}{\tau_h} (h_{\infty} - h)
\]

- **Activation gate**: open probability increases with depolarization
- **Inactivation gate**: open probability decreases with depolarization
Steady state values
Time constants
Voltage step scenario

Given the voltage step above:

- Sketch n as a function of time. What does n^4 look like?
- Sketch m and h on the same graph as functions of time. What does m^3h look like?
How does the Hodgkin-Huxley model predict action potentials?

Positive Feedback
(results in *upstroke* of V)
- Depolarization
- Fast \uparrow in m
- Na^+ inflow
- $\uparrow g_{\text{Na}}$

Negative Feedback
(this and leak current repolarizes)
- Depolarization
- Slow \uparrow in n
- Repolarization
- $\uparrow g_K$
- K^+ outflow