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Summary. Density.dependent regulation of cell growth in tissue culture is a 
well-known phenomenon but the mechanism of regulation remains obscure. 
Here we explore the effects of cell density and metabolite flux on the collective 
dynamics of a cell population. The intracellular dynamics are modelled by 
positive feedback kinetic mechanisms of the kind known to apply to yeast cells. 
Several experimental observations related to glycolytic oscillations are predicted 
and it is suggested that the general conclusions may be applicable in a broader 
context. 
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1. Introduction 

Some form of intercellular communication is necessary in many multicellular 
systems, whether it be to ensure global coordination of proliferation, spatial pattern 
formation and differentiation in a developing embryo, or merely for the purpose 
of controlling the replenishment of lost cells in a fully-developed tissue or organ. 
At least three generic modes of short-range communication between cells have 
been identified. Firstly, there can be direct exchange of low molecular weight 
cellular constituents via the tight gap junctions that form in many systems 
(Loewenstein and Kanno, 1966; Furshpan and Potter, 1968). Such exchange is 
often invoked in mathematical models for pattern formation in developing tissue 
(Othmer and Scriven, 1971, 1974) and the role it may play in the control of growth 
has been discussed by Loewenstein (1968). Secondly, there can be surface inter- 
actions that result from mechanical stresses or that occur via receptor molecules 
embedded in the membrane and such interactions can lead to changes in per- 
meability and the rate of transport of nutrients into the cell (Hoffman et al., 1973; 
Sefton and Rubin, 1971). One fascinating example of the intracellular changes that 
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can be triggered in response to deformation of the cell membrane occurs when a 
paramecium encounters an obstacle (Machemer and Eckert, 1973). Thirdly, cells 
can interact indirectly by uptake of nutrients available in limited amounts or by the 
release into their environment of waste materials or other substances that activate 
or inhibit cellular functions. This third mode of interaction has been called 
'physiological competition' by Spiegelman (1945). 

One objective of theoretical analyses is to characterize and classify the kinds of 
collective behavior possible in a population of cells that interact via one or more 
of the foregoing modes. For example, substantial progress has been made in the 
theoretical analysis of pattern formation in aggregates of cells coupled by diffusion 
through tight junctions (for a review see Othmer, 1977). The effects of changing 
kinetic and transport parameters in systems near steady states have been analyzed 
and the kinds of spatio-temporal patterns that can develop have been characterized 
in simple systems. Although there is still a large gap between theory and experiment, 
simple models of some specific systems appear promising (Wilcox et al., 1973). 
Much less has been done toward modelling cellular interactions of the surface type, 
primarily because such interactions are poorly understood and their effects on 
other cell functions have not been adequately characterized~ In this paper we focus 
on indirect interactions, even though these are not always clearly separable from 
surface interactions. 

There are numerous instances in which cell density in a population influences 
cellular dynamics. For example, it has been shown that myoblasts will only fuse 
upon reaching a critical cell density (Konigsberg~ 1971), and many cell types show 
'density-dependent regulation ~ of growth in cultures (Hotley, 1975). A prototype 
system for theoretical studies of density effects and indirect communication between 
cells is a suspension of the yeast S. carlsbergensis. The effect on glycolytic metabolism 
of changes in the glucose supply rate have been characterized and a qualitatively 
correct description of the important reactions is available (Pye, 1971 ; Boiteux et al., 
1975; Aldridge, 1976)o The effects of changes in the cell density have also been 
reported (Aldridge and Pye, 1976). We shall use this system as a concrete example 
to illustrate some of our general conclusions. 

The following section deals with the dynamics of a class of positive feedback 
mechanisms that are applicable to the phosphofructokinase reaction in the glyco- 
lyric pathway. It is shown that these mechanisms give rise to at most one positive 
steady state and that when this steady state is unstable there exists at least one 
time-periodic solution. While much of the analysis can be done for an arbitrary 
mechanism of this type, the direction and stability of bifurcating periodic solutions 
depend on the particular mechanism~ In the third section we give a complete 
analysis of a mechanism that involves activation of PFK by a single molecule of 
AMP. 

The fourth section is concerned with the effect of cell density on cell dynamics. We 
treat the general case of arbitrary n-species kinetics and illustrate the results using 
the mechanism studied in the third section. We show that communication with a 
surrounding pool can quench oscillations that exist in the absence of communion- 
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tion and that such communication can give rise to oscillations when none exist in 
its absence. The relevance of these results to general models of growth control is 
discussed in the concluding section. 

2. Qualitative Analysis 

The general kinetic scheme studied here is one in which the throughput is controlled 
at one reaction in a sequence via feedback of a product of that reaction~ The overall 
reactions are irreversible and there are only two species whose concentrations vary 
on the time scale of interest. The overall reactions are of the form 

substrate ~ A1 2> As ~ products (1) 

but the mechanism may be more complex. The substrate may itself be the product 
of previous reactions ,at it may be supplied directly from the environment. Let x 
and y denote the dime~isionless concentration of AI and A2, respectively, and let 
9t~ be the rate of the ith reaction. The input flux #tl is assumed to be a constant, 
#t2 is a function of x and y, and the output Yto depends only on y. Therefore, the 
governing differential equations for x and y have the form 

dx 
-~  = 8 - F(x ,y )  

(2) 

= F(x, y) - G(y) 
dt 

where F and G are smooth functions of their arguments. 

By virtue of the irreversibility of reactions 2 and 3, F(x, y) i> 0 for (x, y) i> (0, 0) 
and G(y) >1 0 for y ;) 0. Because neither A~ nor A2 can disappear when none is 
present, F(0, y) = 0 for y >I 0 and G(0) = 0. To furthei restrict the mechanisms, 
we impose the followJing conditions on F and G. 

(i) oe/ox > 0, .< 0 for (x, y)  > (0, 0) 
(ii) OF/Oy > 0, for all (x, y) > (0, 0) (3) 

Cffi) dG/dy > O, daG/dy 2 <~ 0 for y > 0, dG/dy < oo at y = 0 

The first condition implies that there is no auto catalysis or inhibition by reactant in 
the reactions A~ ~ A2, and the third condition puts similar restrictions on the 
third reaction. The second condition requires that the feedback effect of y on the 
rate of the second reaction be positive at all concentrations. 

It is readily shown that under the preceding conditions any solution of (2) that 
begins in the non-negative quadrant always remains, there. If F(x, 0) =- 0 the x 
axis is invariant under the flow of (2) and there is a critical point at (oo, 0). If 
F(x, 0) > 0 for x > 0, then any solution that intersects the x axis at t -- to lies in 
the interior of the first quadrant for t > too The topological character of the phase 
portrait is determined by the number of critical points, closed orbits and separa- 
trices of saddle points and once their number is determined, the qualitative 
behavior of solutions can be established. 
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The steady state solutions of (2) satisfy the pair of equations 

8 = F(x, y)  = G(y) (4) 

and these have at most one positive solution, as shown by the following 
proposition. 

Proposition 1. ff  

lira G(y) > 8 (5) 

then there exists a unique positive solution y* of  G(y) = & I f  such a y* exists 
and 

lim F(x,y*)  > 8 (6) 

then there exists a unique positive solution x* of  F(x, y*) = 8. I f  either (5) or (6) 
is violated, then there is no positive steady state. 

Proof. The proof follows immediately from (5) and (6) and the monotonicity of 
G and F. 

The condition (5) means that the maximum possible output from the third 
reaction must exceed the input or else there can be no positive steady state; 
x and/or y simply increase. This is a necessary but not sufficient condition and if 
there exists a y* at which the input and output can balance, it is necessary that the 
maximum rate of  the second reaction balance the input at that y*o Evidently a 
mechanism may fail to have a positive steady state on either of these accounts, but 
hereafter we assume that one does exist for at least some values of 8o Note that 
there are no steady states on the finite portions of the positive x and y axes. 

It is helpful, in proving the existence or non-existence of  periodic solutions, to 
know the qualitative features of the isoclines ~ = 0 and ~ = 0. It follows from 
(3)(ii) that the equation F(x, y) ---- 8 has a unique solution y(x) that satisfies 

F(x ,  y (x) )  = 

dy - F x  (7) 
< o  

where F~ =- OF/~x and F~ =- ~F/~y. Thus y is non-increasing along ~ = 0 and 
either y approaches a horizontal asymptote y| ~ [0, y*) as x -+ oo, or there exists 
an xo such that F(xo, 0) = 8. It will be clear from the following that the latter 
case is trivial to deal with and so we consider only the former case. Since F(0, y)  = 
0, ~ = 0 can never cross the y axis and therefore it has a vertical asymptote at some 
x~>0 .  

Let Qx denote the interior of the first quadrant and let Qi ~ denote Qx plus the x 
and y axes. By hypothesis (3)(i), the equation .P = 0 (F(x, y)  = G(y)) has a unique 
solution x(y),  whenever (x, y)~ lies in Qt. I f  F(x, 0) ~ 0, this branch must pass 
through (0, 0). When F(x, O) -- O, the x axis is another branch. The latter case 
occurs when every pathway from Ax to A2 is catalyzed by As. 
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Along any branch of p --- 0 

a y  = F, ,  (8)  
dx G~ - F~ 

and therefore sgn (dy/dx) = sgn (G~ - F~). Even simple mechanisms can give 
rise to very complicated curves for the loci Gu = Fu (see, e.g. Higgins (1967)), but 
if we restihct attention to the locus, ) = 0, there are only three possibilities for 
dy/dx: (a) non-negative everywhere, (b) one or more sign changes, (c) non-positive 
everywhere. Representatives of the three generic loci for ) = 0 are shown in 
Figure 1. In (a) and (b) we show cases where F(x, 0) ~ 0, while in (c) we assume 
F(x, 0) = 0. It is clear from the figures that (a) and (c) are opposite extremes of (b). 
In general, there may be more than two points along ) = 0 at which the tangent 
is vertical. If we allow F(x, 0) -= 0 in (a) or (b) the intersection of p = 0 with the 
x-axis can occur at some positive x. 

Asymptotic stability of the steady state (x*, y*) is governed by the eigenvalues of 
the matrix 

(9) 
- 

wherein all partial derivatives are evaluated at (x*, y*). The eigenvalues are 

trace K + ~7(trace K) z - 4 det K 
a~ = 2 (10) 

where 

trace K --- F~ - F,~ -_G~ 
det K --- FxG~. 

YI (o) 

q"O 

(b) 

q~O 

v 

Fig. 1. The three generic j, --- 0 loci and the .~ = 0 locus 

~=0 

(c) 

q,O 
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Because Fx and Gu are positive throughout Q1, det K > 0 and the steady state is 
always a node or focus, stable or unstable according as trace K is negative or 
positive. By utilizing (8) and (10) we can write 

[ [dY~ -1 ] (I1) trace K = - F x  I + ~d~x]0,.oJ 

and from this we obtain a geometric criterion for stability: the steady state (x*, y*) 
is stable or unstable according as the slope at the steady state o f  p = 0 lies outside 
or inside the interval ( -  I, 0). It follows that for the cases shown i n  Figure 1, the 
steady state is always stable in (a), can be unstable in (b) onlywhen y* ~ (Yx, Ya), 
and is unstable in (c) when y* is sufficiently small. 

Now consider what happens as the input flux $ is varied. I f  (.~, ~) denotes the point 
of intersection of the locus :? = 0 with the vertical line x --- :~, then it follows from 
(2) that dye/d8 = 1/F~ > 0. If F(:~, 0) ~ 0, then there exists a 8" > 0 such that 
p ---> 0 as 8 -,'- 8" from above~ If  F(:~, 0) = 0, then 8* -- 0. In either case p increases 
monotonically from zero as 8 increases from 8". Therefore, when p = 0 is as 
shown in Figure lb, there is at most one interval (81, 82), 81 > 0 in  which the steady 
state can be unstable. At low and high fluxes it is necessarily stable. I fp  -- 0 passes 
through (0, 0) and has more than two points where the tangent is vertical, there 
may be several disjoint 8 intervals, none of which contains 0, in which the steady 
state is unstable. In contrast to this, when p = 0 is as shown in Figure It ,  its slope 
is monotoneincreasing in x. Now the steady state is unstable for all 8 ~ (0, ~), where 

is the 8 value for which (dy/dx)o-_o = - 1 at (x*, y*). Here all low input fluxes lead 
to unstable steady states. We shall return to this point in the following section. 

At those values of 8 for which (dy/dx)~ =o -- - 1 at the steady state, trace K = 0 and 
the eigenvalues of K are pure imaginary. Unless it happens that d(trace K)/d8 = 0 
at these values, the Hopf bifurcation theorem (see Appendix) guarantees the exis- 
tence of a periodic solution in a one-sided neighborhood of these values. The 
direction and stability of these bifurcating solutions are governed by the non-linear 
terms in (2) and therefore no general statements can be made. An example is 
treated in detail in the following section. To complete the qualitative picture we 
have to analyze the global behavior of solutions, both when the steady state is 
stable and when it is unstable. The first step is to determine when solutions remain 
bounded for all t > 0. 

The sum of x and y satisfies 

d (x + y)  = 8 - G(y) (12) 
dt 

and the right-hand side is positive for y < y*, negative for y > y*o Along y = y *  
the vector field is tangent to a line x + y = constant. If x(0) + y(0) > y*, then 
x(t)  § y( t )  > y* for all t > 0. Since :~ > 0 and p < 0 along the y axis, the trajec- 
tory through any point above the line y = y* ultimately crosses this line at a point 
whose x coordinate lies between 0 and x*. Moreover, it follows from (12) that any 
solution which begins in the region bounded above by the line y = y* and below 
by the curve :t = 0 eventually crosses into the region y > y*. 
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As a result, solutions can only escape to oo along a trajectory that remains beneath 
the curve :t = 0 for large x and small y. This happens when the substrate enters 
too fast to be consumed by the second reaction. An extreme case occurs when 
F(x, 0) = 0, for then any solution that begins 0n the x axis remains there and 
x --,- oo as t ~ o0. A necessary but not  sufficient condition for unbounded solutions 
is that the locus ~ = 0 have a non-negative horizontal asymptote, for if 8 is so 
small that ~ = 0 crosses the x axis at some Xo < oo, ~ < 0 for x > Xo and all 
solutions are certainly bounded. That  the condition is not sufficient is shown by 
the following result. 

Proposition 2. Suppose that F(x, O) > 0 for x > 0 and that the solution y(x) of  
Yc = 0 has a positive horizontal asymptote. Further, suppose that there exists an 
x** >I x* such that F > G in the region R that lies to the right of  x**, above the 
x axis, and below g =-- O. Then all solutions of  (2) that originate in Q~ remain 
bounded for all t > O. 

Proof. In light of the earlier remarks on the properties of solutions, it suffices to 
show that any solution that begins at a point Xo > x** on the x axis crosses the 
curve :t = 0 for the first time at ~ < oo. From the hypotheses it follows that 
dy/dx > 0 along that part of any trajectory that lies in R, and if d2y/dx 2 is always 
positive as well, the trajectory crosses ~ = 0 at some finite t and the proposition is 
established. Next, suppose that d2y[dx 2 < 0 at (Xo, 13). Along a trajectory 

d2y [Fx + F~(dy/dx)](8 - G ) -  (8 - F)Gu(dy/dx ) 
-- (~ - F ) 2  

(13) 

and this is positive near the curve ~ = 0 in R. Therefore, either there exist an 
odd number of points on the trajectory in R at which d2y/dx z changes sign, or 
there exists a horizontal asymptote y = y**,  y**  < y*, of the trajectory. The 
latter requires that (dy/dx)tr~je~to~,-'-> 0 as x---> oo, but this is impossible because 
F > G t> 0 in R. Therefore the trajectory crosses ~ --- 0 and the solution is bounded 
for all t > 0o The case where d2y/dx 2 > 0 at (xo, 0) but not sign-definite, is handled 
in a similar fashion. This proves the proposition. 

The physical interpretation of this result is as follows. If  the input of A1 exceeds 
the rate at which A2 is degraded (i.e. when y < y*) and the concentration of Ax is 
large, the solution remains bounded if the rate at which A1 is converted to A2 
also exceeds the rate at which A2 is used. The result ensures boundedness whenever 
the p = 0 locus is as shown in Figure la or lb, but not in case p = 0 is non- 
increasing, as in Figure Ic. We have not succeeded in proving a general result 
applicable to the latter case, but some particular forms of F and G are easy to treat. 
For  instance, if F(x, y)  and G(y) are given by 

F(x , y )  = k l x y '  y >t 1 
a ( y )  = k2y, (14) 

then one can show that all trajectories of (2) for which y(0) is sufficiently small 
tend to (co, 0) as t ---> oo (Selkov, 1968). 
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When F and G are such that all solutions of (2) remain bounded, it is sometimes 
possible to completely determine the nature of solutions. 

Proposition 3. Suppose that F and G are such that F(x, O) > 0 and all solutions of  
(2) remain bounded. Then i f  Fx + G~ > F~ throughout Qf  , 

lim (x(t), y(t))  = (x*, y*) 
t ~  ca 

for all (x(0), y(0)) 6 Q~. 

Proof. By hypothesis, (x*, y*) is asymptotically stable, and since Fx + Gu > F~ 
throughout Q~', Bendixson's criterion implies that there are no periodic solutions 
that lie entirely in Qf.  Since Qf  is invariant under the flow of (2), the result 
follows. 

A sufficient condition thatilensures Fx + Gy > F~ in Q~ is G~ > F~. Therefore, 
if the sensitivity of the output reaction is always greater than the sensitivity with 
respect to y of the intermediate reaction, the steady state is globally stable. A system 
that meets this condition is given by F(x, y)  = xy/(1 + x), G(x, y) = ky, k > 1. 

When the steady state is unstable and all solutions remain bounded, the Poincare- 
Bendixson theorem (Hartman~ 1973) implies the existence of at least one orbitally 
stable periodic solution. However, one cannot conclude a priori that this solution 
is unique and therefore, one cannot assert that a stable periodic solution that 
bifurcates when trace K -- 0 is unique. Uniqueness must be decided on a case by 
case basis. 

30 A Mechanism for the PFK Reaction 

A wide variety of two-variable models that lead to equations like (2) have been 
proposed to explain the observed oscillations in glycolytic intermediates (see Gibbs 
and Murray (1976) for a review). The portion of the pathway of interest here is 

PFK 
GIu ~ G6P -~ F6P ~ FDP --~ G3Po oo 

ATP ADP ~ AMP + ATP 

The major control point resides in the phosphofructokinase reaction, in which 
fructose-6-phosphate (F6P) is phosphorylated to give fructose diphosphate (FDP). 
Phosphofructokinase (PFK) is activated by AMP and FDP and inhibited by ATP, 
but under conditions that lead to oscillations, PFK is fully activated with respect 
to FDP, and ATP has a negligible effect on activity (Betz, 1973). Therefore~ if one 
assumes that a constant source of F6P exists, the major reaction is F6P --~ ADP. 
There is a net consumption of ADP in the entire glycolytic sequence and this can 
be accounted for with an ADP sink. Consequently, the overall reactions involving 
F6P and ADP can be modelled by (I), in which A1 ~ F6P and A2 " ADP. 

The differences between existing two-variable models for glycolytic oscillations 
stem from the differences in the mechanism assumed for the PFK reaction. Here 
we assume that PFK is activated by a single molecule of AMP, that PFK exists in 
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either a low activity state or in an activated state, and that AMP is in equilibrium 
with ADP. Our mechanism is a variation of a general type of back activation �9 
mechanism proposed by Higgins (1967) and is similar to one studied by Gibbs 
and Murray (1976). The complete set of reactions is as follows. 

k 
---.-> A l 

AI + Ex .k '  , E 1 A x - - ~  Ex + A2 
k-t 

k-.z 

A2 + E2 .k" ., E2A2 - ~  E2 + Product 
k-s 

k8 
E1 + A o  . k ' "  ~ , 2 A 2  " A3 + A ,  

&.or /r 

Here E~ and E* represent the low activity and activated" forms of free PFK, 
respectively; E2 is the enzyme for the ADP sink reaction; ExAx, E*Ax and E2A2 
are enzyme-substrate complexes; /~* and Et are the total amounts of activated 
and low-activity enzyme, both in free and bound form; and A3 and A4 represent 
AMP and ATP, respe:tivelyo We assume that AMP binds to both the free and 
complexed form of low-activity PFK and that the interconversion between low- 
activity and activated form is always at equilibrium. 

Let X and Y denote the dimensional concentrations of A~ and A 2. The preceding 
assumptions, coupled with the pseudo-steady-state hypothesis, leads to the follow- 
ing differential equations for X and Y: 

dX 
d-T = K -  F(X, Y) 

d____r F(X, r) - G(Y). 
dt = 

Here 

1 [ V.IKlX 
F(X, Y) =-- Kx + Y* [K'~m ~ ~ + 

V.,~Y 
G( Y) - K,2 + r 

Kx - k-Tk-sd4 
k~ks Vm =- k2E[ 

K,.l -_ k-1 + k2 kl V~*~ - k4E ~ 

k-3 + k~ v., 2 - k6EI 
K*I =-- ks 

k - s  + k6 
K,.~ ~ ks 

(16) 

V*~ X Y2 ] 

(17) 

E? --- E~ + E~A~ + E* + E*A~ 
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The equations can be cast into the dimensionless form 

dx 
d; = 3 - F (x ,  y )  

= c~[F(x, y)  - G(y)] 
dr 

by defining 

X Y K1 Km 
x = K :  ' 

Vm, V . , K ,  K V*~,t 
3 = V .  " ~= �9 2 3=-- .=-- v..,i~, v,., Kz, 

and 

(18) 

K., 

(19) 

F , > o  l 
F.. < 0~ (21) 
G~ > 0 ~  for all (x, y) ~ Oz. 

G~ < 01 

Furthermore, F~ > 0 for (x, y) m Q1 provided kl > ~' and k2 > ~,[k~, while Fyv 
changes sign only once, at y = a/kd3.  All the conditions at (3) are fulfilled if 
kl, k2 and 7' satisfy the foregoing restrictions. 

FCx, y ) - - k ~ §  

~y 
G(y)-- i + y~i 

The equations differ from those at (2) by the ~ factor in the y equation. It could be 
removed by setting x = gin, y = y~ and redefining the other constants, but it 
proves more convenient to use the above form~ The major parameters, and the only 
ones that we shall vary~ are the dimensionless input 3 and the dimensionless maxi- 
mum output rate/3. The others will be chosen to satisfy the conditions on F and G 
given at (3). From (19) it follows that 

l [ ykz y2 ] 
Fx = kl + y~ (ks + xy  + ~(1 

- 2  [ ~,k~ y2 ] 
F~x-- kl +YZ[(ks  + x )  a + ~ ( 1  ] 

2xy[klk2 - ~, + (k~ - y)xl (20) 
eu = (k~ + y2)2(k2 + x)(l + x) 

2x(ki - 3y 2) [k,k_2 _--.y + (k• -IY)X] 

fl Gu ~ = - 23 
G~ = (I + y y  ( 1 ~ "  

Therefore 
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The  locus :t = 0 is given by 

1 [ ?x xY2 ] (22) 
= k l  + y---~ k -7"~x  + I + xJ 

and this yields the vertical a sympto te  

8 
x = [ , _  8" (23) 

The  solut ion of  (22) is 

.,,, = [u  -,, + 1 + (~ - l)x j [k2 + xj '  (24) 

which intersects the x axis a t  

klk23 . 
x = - -  (25) 

y - k13 

provided 3 < y/k1, and otherwise has the hor izonta l  a sympto te  

/ y  - 3kI (26) 
Y = ~ 8 - 1  " 

The  lat ter  requires tha t  8 < I. 

Along  p = 0, y is a solut ion of  the equat ion  

a(x)y  a + b(x)y  2 + c(x)y  + d(x)  = 0 (27) 

where 

X 
a(x) - 1 + x 3 

x 
b(x) =- 1 + x 

(28) 

~,x k13 c(x) =- k2 + x 

7x  
d(x)  ~ k2 + x 

Clearly b(x) > 0 and d(x) > 0 for  x > 0, a(x) > 0 for  x > 3/(1 - 3), and  
c(x) > 0 for  x > f lkd(;,/kl - ~). Genera l ly  k2 > 1 and so a(x) >I c(x). The n u m b e r  
o f  posit ive roots  o f  (27) gives the n u m b e r  of  intersections o f p  = 0 with any  vertical 
line x = cons tant ;  this n u m b e r  varies with x as follows. 

x ~ (0, 3/(1 - #)): one or three posi t ive real roots  
x ~ (fl/(1 - 3), 3kJ(y/k~ - 3)): zero or  two posit ive real roots  (29) 
x ~ ([3kd(y/kl - 3), ~ ) :  no posit ive real roots .  

I t  is easily seen tha t  the solut ion y (x )  of  p = 0 can be m o n o t o n e  increasing or  
m o n o t o n e  decreasing for  all x > 0 only if 3 > 1. F rom (20) one sees tha t  Gu > F~ 
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for y sufficiently small and therefore, y ( x )  can never be monotone decreasing for 
all x > 0. If  y is always monotone increasing along the isocline~ the results of the 
previous section preclude the possibility of periodic solutions. Accordingly, we 
shall only consider the case 8 < 1, which gives the generic locus shown in Figure I b. 

The vertical asymptote of)) = 0 is at 

8 (30) X = l _  8 

and the horizontal asymptotes, if any exist, are positive solutions of  

ay  a + by  2 + ey  + d = O. (31) 

Here a - (I - 8), b ~ 1, c - Y - k18 and d = 7. Equation (31) has either two or 
zero real positive roots, according as the discriminant 

A(8, 7, k l )  = 18abcd - 4b3d - 4ac a + b2c 2 - 27ad ~, (32) 

is positive or negative. This discriminant is a quartic polynomial in 8 and is difficult 
to analyze in general. However, if there is no low-activity form of the enzyme, 
7 - 0 and y = 0 is one branch o f p  = 0. In this case one solution of (31) is y = 0 
and the other positive solution is 

- t  + x/ l  + 4kU3(l - 8) (33) 
Y = 2(1 - 8) " 

If  7 is small and positive the x axis is no longer invariant~ but by continuity, (31) 
has two positive roots and the )) = 0 isocline is as shown in Figure 2~ Clearly if the 
steady state lies on the upper branch of p = 0, as shown, solutions that begin 
sufficiently close to the x axis approach the lower branch of)) = 0 asymptotically 
and x ~ ~ as t---~oo. In general, whenever (.31) has two positive roots and 8 is 
sufficiently large, unbounded solutions will exist for some initial conditions. 
Moreover, their existence is independent of whether or not the steady state is stable. 

The steady state (x* ,  y * )  is the solution of the equations 8 -- F ( x ,  y )  = G ( y ) .  

From these one finds that 

8 (34) Y * f f i ~ - 8  

~0 

~' f-O 

Fig. 2. The phase plane for a case in which unbounded 
solutions exist 
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and that x* satisfies 

1 ] (35) 
8 -- kl + y---'"~ ~ + 1 + x] ~ 

Certainly y* is positive if and only if/3 > 8 and x* is positive and finite provided 
that 

1 
8 < kl + (y*)~ [y + (Y*)q" (36) 

Replacing the inequality with an equality yields a relation between 8 and fl that 
defines the locus along which x* ~ oo. Solving for/3 gives 

1 - 8  
f t .  --- 8(1 + J k ~ a - ~ - ~ ) .  (37) 

Since y < kl, there is no positive steady state if 8 > 1 or if/3 > / 3 , .  The absence 
of a steady State arises because the p -- 0 isocline has two horizontal asymptotes 
and the ~ = 0 isocline passes between them. Thus the region whose boundary is 
given by (37) necessarily lies within the region where A > 0. If y and k~ are fixed at 
0.I and 1.0, respectively, the region A > 0 is found to be {(8,/3) 10 < 8 < 1; 
0.74 ~/3  < 1}. The region in which there is no positive steady state is shown in 
Figure 3 for the same choice of parameters. As 3 increases across the left-hand 
boundary of the hatched region, the steady state leaves the lower branch of p = 0 
at x = oo and at the right-hand boundary it reappears ori the upper branch. If 
/3 > 0.74 and 8 lies to the right of the hatched region, any solution that begins 
beneath the lower branch o fp  -- 0 is unbounded as t ---, co. Thus F(x, 0) > 0 is not 
sufficient to preclude unbounded solutions. 

For the same values o f y  and kl, there are nohorizontal  asymptotes of 0 = 0 when 
/3 < 0.74, and all the hypotheses of Proposition 2 are satisfied. Consequently, all 
solutions that originate in Qi ~ remain bounded for all t > 0, and it only remains to 
determine the stability of the steady state as a function of 8 and 13. From results of 
the preceding section we know that the steady state is stable at low and high fluxes 
and perhaps unstable at intermediate values. The boundary of the region of 
instability is given by the solution of the simultaneous equations 

= F(x,  y )  
8 = 6 ( y )  (38) 
trace K = =(F~ - Gu) - F~ = 0. 

There is no alternative to solving these numerically and this has been done for 
= 0.1, kl = 1.0, ~ = 0.1 and ks = 10.0. The resulting locus of marginal 

(oscillatory) stability is the solid curve shown in Figure 3. At fixed/3, trace K > 0 
between the left and right branches of this locus. 

Suppose that 3 is fixed at some value larger than the minimum on this locus. As 
we remarked in the preceding section, if d(trace K)/d8 # 0 on the locus trace K = 0, 
the Hopf theorem guarantees the existence of a periodic solution for 8 near this 



182 H.G. Othmer and J. A. Aldridge 

i.o 

0,5 I~ 
DELTA 

Fig. 3. The 8--/3 plane for kz = 1.0, k2 = 10.0, ~, = 0ol. 
No positive steady state exists for 8 > # or for (8, #) in 
the hatched region. The solid curve shows the locus 
trace K = 0 

locus. However, the direction and stability of the bifurcating periodic solution 
must be established separately. In the Appendix we outline the procedure for 
doing this; the results are as follows. The bifurcating solution is stable along the- 
entire locus of marginal stability. Along the left branch the bifurcating solution 
exists only to the fight of the bifurcation point while on the right branch the solu- 
tion exists only to the left of the bifurcation point. Thus a stable periodic solution 
appears along the left branch and disappears along the right branch. Throughout 
the region trace K > 0 the steady state is unstable, and the Poincare-Bendixson 
theorem implies the existence of at least one stable periodic solution. In principle, 
there could also be unstable solutions and other stable solutions, all of whose 
orbits are concentric, but numerical computations indicate that there is only one 
periodic solution. 

The differential equations were integrated for ~ = 0.6 at various values of 8 in the 
unstable region. Both the root-mean-square amplitude and the period were com- 
puted; the results are shown in Figure 4. Near the left boundary of the unstable 
region the amplitude first rises sharply, grows more slowly as 8 increases, and then 
shrinks to zero at the right boundary~ There is no evidence that periodic solutions 
exist when 8 lies outside the unstable region~ The period first increases sharply and 
then begins a slow decrease, until, near the fight boundary, it drops sharply to the 
period of the linear system. 

The periodic solutions are shown in Figure 5 for fl = 0.6 and several 8 values. 
Separate plots of the x component versus time show that near the left and right 
bifurcation points the waveform is nearly sinusoidal, even though the amplitude 
is large~ while near the center of the region of instability the solution is more like 
a relaxation oscillation. It is apparent in Figure 5 that as the flux increases, x* 
decreases and y* increases. One can see that the net effect of increasing the flux 
from some value below the lower bifurcation point to  a value above the upper 
bifurcation point is a transition from a steady state of large x and small y to one 
of small x and large y. The transition between these states, as 8 increases across the 
unstable region, occurs via a sequence of periodic states of varying amplitude and 
period. 
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Fig. 4. The dependence of amplitude and period on the flux 8./~ -- 0.6 and other parameters 
are as in Figure 3. The bifurcation points are 8 = 0.1205 and 8 = 0.237 

Qualitatively the computational results agree with observations on glycolytic 
oscillations. It is known that oscillations only exist over a range of input fluxes 
in yeast cell extract (Hess and Boiteux, 1973) and it has been shown that the 
oscillations vanish if glucose uptake is inhibited in intact cells (Aldridge, 1976). 
The period dependence on flux shown in Figure 4 also agrees qualitatively with 
results for yeast extract, at least in the intermediate regime where period decreases 
as the input flux increases (Hess and Boiteux, 1973). It would be difficult to obtain 
sufficiently accurate data to determine whether the initial sharp increase in period near 
the left bifurcation point occurs in reality. However, such qualitative agreement 
could be achieved with a wide variety of  models of the kind studied in the preceding 
section and hence it cannot be regarded as confirmation of the particular mechanism 
we have analyzed. Since we are more interested in the generic properties of models 
like this, we shall not pursue a quantitative comparison of theory and experiment, 
but instead, we turn to an analysis of  the role of cell density. 



]84 

3 

Y 

H. G. Othmer and .T.A. Aldridge 

! Y = O  ( a )  

I 

z , l  

I 
I 
I 

) l 

i ~\~~'"'"- ~ ,  o 7 
i L~ -- - ~  ......... 

IO 20 30 40 
X 

2 

IO 2O 4O 
• 

Fig. 5. The periodic solutions in the x->'plane, (a) 8 = 0.121. (b) 8 = 0.2.?.o (c) 8 = 0.23, Other 

parameters are as in Figure 4; ~ --- 0.I throughout 



The Effects of Cell Density and Metabolite Flux on Cellular Dynamics 

3 (c) 

u 

2 

I' 

~ o ,  l l , , ,  

IO 20 30 

Fig, 5. (continued) 

! 

4O 
• 

185 

4. The Role of Cell Density 

A. General Analysis 

The conclusions of the preceding sections are valid under the assumption that the 
reacting mixture is homogeneous, as for instance, in experiments using yeast cell 
extract. However, as we have already noted, sustained oscillations of intracellular 
components are observed even in intact cell suspensions (Aldridge, 1976). Even if 
the cells are virtually identical, still, some mode of intercellular communication is 
needed to damp out inevitable concentration disturbances that-would otherwise 
destroy the synchrony of the suspension. Since there is no apparent contact between 
cells, the communication must occur indirectly via the extracellular medium. 
Unfortunately, no messenger substances have been identified to date. For this 
reason, and because such indirect communication is likely to be important in many 
other systems, we carry the analysis here as far as possible using an arbitrary 
kinetic mechanism. Only later will we restrict ourselves to a two-variable, positive- 
feedback mechanism. 

Consider a suspension of N identical cells, each of volume I:1, in a well-mixed 
medium of volume Vo. Suppose that there are n species involved in the intracellular 
reactions, that there is no reaction in the extracellular medium, and that one or 
more of the reacting species can diffuse across the cell membrane. Let ~ be the 
dimensionless net rate of production of the ith species, P~ the dimensionless per- 
meability, xl the dimensionless concentration of species i in the j th  cell, and x ~ its 
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concentration in the medium. The equations governing the dynamics of the suspen- 
sion are 

dx  j 
d-"~ = #?(xJ) + P ( x ~  - x j )  j = 1 . . . . .  N (39) 

( i x  o 
= , t ' ( ~  - x ~  ( 4 0 )  

where 

x j - i , ~ ( x O  - i 

\ x U  \~ . (xO/  

P2 ~ - ~ xJ. 

~ 

. 0  . - .  P,~ 

~=- V~N/Vo. 

(41) 

The volumetric ratio ~ provides a suitable measure of  the relative cell density in the 
suspension. The dimensionless permeabilities Pi are related to their dimensional 
version by P, = A ~ d V 1 ,  where A is the area of a ceil. We do not consider the 
possibility of coupling between species in the rate of transport, nor do we consider 
more complicated modes of  transport. Each of  these possibilities may be important 

in some contexts. 

I f  the cell density is small (, << 1), it follows from (40) that x ~ varies slowly com- 
pared to x j and the medium functions as a constant-concentration bath. At the 
other extreme, when e >> 1, (40) shows that x ~ varies rapidly compared to x i and 
in the limit �9 ~ oo, x ~ -*  g. We shall analyze the dynamical behavior between these 

extremes. 

First consider the stability of a steady state in which the concentrations in all cells 
are identical and equal to those in the medium. Let X b e  the solution ofg t (X)  = 0, 
set x j = X + ~J, and linearize (39); the result is the linear system 

dJZ' KeJ + P(r176 - r 
dr  = 

dr ~ = , P ( ~ -  to),  
dr  

where K~j - b R d e x j t x j . x j .  

By adding the N equations at (42) one gets 

a j  K~ + p(r _ ~). 
dr -- 

j = 1, . . . , N  (42) 

(43) 

( 4 4 )  
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If this is subtracted from each of the N equations in (42), the result is 

du j 
= ( K -  P)u j j = 1, . . . ,  N (45) 

where 

u'-= e j - ~. (46) 

and Z~=~ u s = 0. 

Consequently, (45) contains n ( N -  1) independent equations. The remaining 2n 
equations needed are gNen by (43) and (44). Notice that the latter equations con- 
tain only ~ and ~0. 

Evidently the evolution of disturbances of the steady state is governed by the 
eigenvalues of the matrix K - P and those of  

[ K - P I P ]  (47) 
L -= eP - eP " 

A distinction must be made here between the case of one cell in a medium and the 
multicellular case. In the former, only the eigenvalues of  (47) come into considera- 
tion, because N - 1 = 0 and (45) is trivial. Later we shall see the consequences of 
this difference, but  for the present we assume N >1 2. 

Changes in the cell density only affect the eigenvalues of L. If  we write L in the 
product form 

I 0 

then 

= ( -  e)" det P det K (49) 

where det L denotes the determinant of" L. Therefore, L has a zero eigenvalue if 
and only if one of  the three factors in (49) vanishes. 

The eigenvalues of L are the solutions of  

det [h2I + A(P - K + gP) - 8PK] = 0. (50) 

At e -- 0 (Vo = oo), this reduces to 

det [;~2I + A(P - K)] -- 0 (51) 

and therefore, to zero order in ~, 

Aj = h~ c-P j = 1 . . . . .  n 
)tj = 0 j = n + 1, . . . , 2 n .  (52) 

(Here and hereafter hi~ denotes the j th  eigenvalue of  A.) To find the first-order 
terms for the zero eigenvalues, assume that the solutions of (50) are distinct for 



188 H . G .  Othmer and J. A. Aldridge 

small e; the general case is only slightly more difficult. In this case (50) defines an 
algebraic function with 2n distinct branches for �9 small. Of these, ~ are given above: 

aj ~ a f  -P + o(e) (53) 

where f(e) ~ ~(e) means that 

lira f(e--)) (54) 
a'-~O �9 

is bounded. 

To find the remaining n, set A = eX in (50); then X satisfies 

det [,~(P - K )  - P K ]  = 0 (55) 

and if P - K is non-singular, Xj = A } e - ~ - ~ e K .  Therefore 

aj ~ ~X, + r  
,., eA}e -K , -~eK + O(e2). (56) 

If  P - K is singular, (50) must first be rescaled~ A similar analysis can be done to 
find asymptotic expansions for the eigenvalues of L when �9 is large. The results 
for both cases are summarized in the following table, along with the e-independent 
eigenvalues. 

Consider first the limit ~ ~ ao, in which the cells are closely packed. All the per- 
meabilities Pj are non-negative and so n modes decay rapidly, unless some Pj -= 0. 
For such a mode the next terra has to be checked. The remaining modes have 
eigenvalues A~c or A~ r- e and if the steady state is unstable in the absence of exchange 
with the medium, it remains unstable in its presence. On the other hand, even if K 
has only eigenvalues in the left-hand plane, the steady state will be unstable if 
K - P has any eigenvalues with a positive real part. Such an instability is the first 
example of how indirect coupling between cells can affect cellular dynamics; if 
only one cell is present this instability can arise only in the limit e---> 0, whereas 
it exists for all e in tile multicellular case. An example done later in this section will 
illustrate this~ 

The table shows that in the limit e ---> 0 there is no difference between the single cell 
and multicellular cases~ Because the eigenvalues of K alone do not appear in this 
limit, the possibility seems to exist of choosing e and P so as to stabilize a steady 
state that would be unstable in the absence of transport to the extracetlular medium. 

Table 1o Asymptotic expansions for the eigenvalues 

�9 --~0 ~--~aO 

,~ = ~ - e  j =  1 . . . . .  n ( N -  I times) 

ht ~ r + r Aj = -eP~ + ~(1) 
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That  is, the presence of the extracetlular medium may serve to quench instabilities 
that exist in the kinetic mechanism. Such quenching will occur whenever P and e 
can be chosen such that all the eigenvalues of  K - P and of L have negative real 
parts, even though one or more eigenvatues of K has a positive real part. A P always 
exists for which the eigenvalues of K - P have negative real parts; simply choose 
P = p/ ,  p a scalar, and make p sufficiently large. However, this choice of P may 
not ensure that all the eigenvalues of  L have negative real parts, and in some cases, 
no choice of  P will sul~fice for this. 

Proposition 4. Suppose that K is non-singular and that it has an odd number of  real 
positive eigenvalues. Then L has an odd number of  real positive eigenvalues for all 
e > 0 .  

Proof. Suppose first that P is non-singular. Since det A = I-I hi 4, (49) can be 
rewritten 

l--[a~ = (-.)" h (57) 
i-I 

Since every Pj is positive, then for �9 > 0 

sgn ~t~ = ( -  1) ~ sgn a f  . 

I f  n is even K must have an odd number of  real negative eigenvalues while if n is 
odd it has an even number; in either.case 

sgn ~ = - 1 (58) 

and so L has an odd number of  real negative eigenvalues. Since L has 2n eigenvalues, 
it must also have an odd number of  real positive eigenvalues. 

Next, suppose that m < n permeabilities Pj are zero; without loss of generality it 
can be assumed that they are the last m. By deleting the last m rows and columns 
of  L, one obtains the reduced matrix 

�9 rKn-P* K12 P* J 
t * =  ] K21 K22 0 - (59) 

L uP* 0 - u P *  

Here K has been partitioned to conform with P* : K n  is (n - m) x (n - m), K2a 
is m x m, etc. One finds by expanding (59) that 

det L* = ( -  , ) " -  = det P*  det K. (60) 

Therefore, 

2.-= "-= ' ~  f~ / 
t ~ 1  X J = I  / , J = l  ! 

Since all P~- in P *  are positive, 

sgn / 1-7 = ( -1)- -= sgn (62) 
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Now the argument applied when P is non-singular can be used, except that here 
there are four cases since either n or m can be even or odd. This proves the proposio 
tion. 

The proposition implies that eigenvalues of L can only cross the imaginary axis in 
pairs as r is k, aried. When~ > 0 and Pj > 0 (Pj 1> 0), de tL (det L*) could vanish 
only if det K = 0. But det K > 0 and therefore, only complex conjugate pairs of 
eigenvalues can cross as ~ varies. Consequently, changes in cell density can affect 
the collective dynamics qualitatively only by suppressing sustained oscillations that 
exist in the kinetic mechanism, or by generating sustained oscillations even though 
none are present in an isolated cello Both possibilities are illustrated in the following 
example. For similar conclusions concerning the effect of capacitance terms on 
stability in different contexts, see Luss (1974); Othmer (1976) and Perelson (1976)o 

B. Generation and Suppression o f  Sustained Oscillations- 

Consider first the case of a single cell in the medium. Suppose that the intracellular 
reactions are described by (18) and that only x diffuses across the cell membrane. 
The equations that describe this situation are 

dx 
d"-r = 8 - F(x ,  y )  + P ( x  ~ - x)  

d_y = ~[F(x,  y )  - G(y)] (63) 
dr 

dx o 
= ~ P ( x  ~ - x )  

where F and G are given by (19) and x, y, x ~ and P are scalars. 

The steady state (x*, y*, x ~ is the solution of the system 

x ~ -- x* (64) 
8 = F(x* ,  y* )  = G(y*)  

and the matrix for the linearization of (63) around this steady state is 

L * =  ] k~l k22 �9 (65) 

L eP 0 - eP 

Here 

k21 = ~Fx (66) 

The characteristic equation for L* is 

~3 + at~Z + a2~ + a~ = 0 (67) 
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where 

a~ = ( 1  + , ) P -  T K 
as = D K -- e P T  x - Pk22 

aa = e P D  K 

and 

(68) 

T K - trace K = kl i  + k22 = ~(F~ - G~) - Fx 
D E - det K = k l l k22  - klak2x = ~FxG~. 

According to the Routh-Hurwitz criterion, the roots of (67) all have negative real 
parts if and only if 

al > 0  
as > 0 ~ (69) 
H2 = alas  - as >" O. 

Since P > 0 and D x > O, a3 > 0 for e > O, and we only have to check the first 
and third conditions. First suppose that the kinetic mechanism is stable at (x*, y*). 
T h e n  T x < 0 and at > O, which leaves 

H z ( e , P )  = - - e2e2TK -- , P [ P T  ~r + Pks2 - (TK) s] -- (D ~r - e k s 2 ) ( r  x - P )  (70) 

as the critical parameter. The locus in parameter space along which/-/2 --- 0 is the 
locus of marginal oscillatory instability and the Hopf theorem (see the Appendix) 
predicts that upon crossing this, a periodic solution usually appears or disappears. 
According to (66), kl~ < 0 but ksz can have either sign. If k2: < 0, then since 
D ~r > 0 and T K < 0, Hs > 0 for all (e, P)  > (0, 0). Therefore a necessary condition 

f o r  oscil latory instabil i ty  when the k inet ics  are stable is k:2 > 0. Furthermore, one 
can see from (70), by interchanging the roles of 1 and 2, that if the self-activating 
species (the one with k~l > 0) diffuses into the medium rather than the self-inhibiting 
species, then /-/2 > 0 for all (,, P) > (0, 0). If both species diffuse then (69) and 
(70) no longer apply, because the system is four-dimensional, but the general 
conclusion is similar: i f  the self- inhibit ing species diffuses f a s t  enough relative to the 

sel f -act ivat ing species, an osci l latory instabil i ty m a y  exist ,  even though the k inet ics  

are stable. 

Accordingly, suppose that the parameters 7, kx, k2, 8 and 13 are so chosen that 
T [  < 0 and k2s > 0. For y = 0.1, kx --- 1.0 and ks = 10.0, this region is shown in 
Figure 6. Let 5 (p)  be: the discriminant of (70), regarded as a quadratic in e, and let 
P be the larger of the: largest root of  5 (P)  = 0 and zero. Further, let 

P ~ DK/k22 

and when klx + 2kaa > 0, let 

k11 + 2k22' (71) 
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Fig. 6. The 8--// plane shown in Figure 4, with the 
addition of the locus k22 = 0 (broken curve), k~a > 0 
between the left and right branches 

Then A(P) > 0 for P > P, the coefficient of  the linear term in (70) is negative for 
P > P, and the constant term in (70) is negative for P > P. From this one concludes 
that 

(i) i f P  > P, then/ ' /2 < 0 for e e (0, ez), where ez is the unique positive 
root of/-/2 = 0, 

(ii) if max (P,  P} < P < ,~, then/-/2 < 0 for ~ ~ (~1, ~2), where el and (72) 
e2 are the positive roots o f / / 2  = 0, 

(iii) i f P  < rain [max {P, /~}, P],  H2 > 0 for all ~ > 0. 

As T ~ --~ 0,/~ -~ 0 and P -~ 0, and e2 --~ oo in (ii). For any fixed (fl, 8) in the region 
T x ~< 0 and k22 > 0, the locus //2 = 0 is one o f  those shown in Figure 7a, b 
and c. 

A similar analysis can be done when the kinetics are unstable by virtue of having 
T K > 0. From (68), al > 0 if P > TK/(1 + ~) and if we choose T ~c </~, the locus 
H2 -- 0 is as shown in Figure 7d. All the Routh-Hurwitz  conditions are satisfied 
inside the horseshoe-shaped region. The transition from (a)--~ (b)--~ (c ) -~  (d) in 
Figure 7 is accomplished by increasing k22o 

Consider what happens as the volume of  the extracellular medium is increased 
(8 is decreased) at some fixed P. For the case shown in Figure 7a, the steady state 
is stable for all r > 0 as long as P </~. For  P = P~ >/~o a periodic solution 
bifurcates as e crosses el. In every case like this for which we computed the direction 
of  bifurcation, we found that the bifurcating solution exists for e > el and is 
unstable. It may be that there is an ~2 > ,I at which the unstable solution merges 
with a stable solution so that there are no periodic solutions f o r ,  > e2. We have 
not pursued this aspect because, as we shall see, these periodic solutions are of  
interest only in a single-cell system. 

When max (/~,/~} < P, as in Figure 7b, the computations show that a stable 
periodic solution appears as ~ crosses e 2 from above, and a stable periodic solution 
disappears as �9 crosses ,1 from above. Therefore, there is only a finite range of  r 
within which communication with the external medium leads to oscillatory 
instabilities. On the other hand, if the kinetics are unstable a n d ,  and P are chosen 
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Fig. 7. Schematics of the generic/'/2 = 0 loci. (a) kxl + 2ka2 < 0, (b) kxx + k22 < 0 < kxx + 
2k22, (c) kxl + k22 : O, (d) kxx + ka2 > 0 

to lie within the region H2 > 0 in Figure 7d, the steady state is stable and disturb- 
ances of sufficiently small amplitude all decay. However we cannot say that all 
oscillations are suppressed for such (e, P)  pairs, since we have been unable to prove 
that the steady state is globally stable under these conditions. 

If  there is more than one cell present we have to examine the eigenvalues of  K - P 
as well. These are independent of 8 and the analysis is straightforward. One finds 
that 

(i) if T~ < 0, both eigenvalues of K - P have negative real parts if 
P < ? ,  and one is real and positive if P > ? ,  

(ii) i fT~  > 0, both eigenvalues have a positive real part i fP  < T ~r, both (73) 
have a negative real part if T ~ < P </~,  and one is real and positive 
i f P  > P. 

This information can be superimposed on that given in Figure 7 when dealing 
with a multicellular system. For example, the periodic solutions that arise in the 
case shown in Figure 7a are uninteresting in a multiceltular system because the 
steady state is unstabie for all P > P and any 8 > 0. However, the conclusion on 
suppression of small amplitude oscillations, reached in connection with Figure 7d, 
applies equally well to a multicellular system when P ~ (T ~, P). 

The fact that changes in the cell density can give rise to sustained oscillations over 
a finite range of densities, as in Figure 7b, may be relevant to observations on 
intact yeast cell suspensions. In Figure 8, experimental results on the amplitude and 
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Fig~ 8o The amplitude (A) and frequency (A) dependence on cell density for intact yeast cell 
suspensions. Density is in mg wet weight of ceUs/ml solution. (After Aldridge and Pye (1976)) 

frequency of glycolytic oscillations are shown as a function of the cell density. 
Evidently the oscillations exist only over a limited range in the density~ For com- 
parison, we computed the periodic solution for a single cell with/~ = 0.6, ~ = 0.239, 
P = 0.023 and the remaining parameters as given in Figure 6Xo [This point lies very 
close to the locus trace K -- 0 in the 8 - / 3  plane.] The results for the period and 
amplitude are shown in Figure 9o Qualitatively the amplitude dependence on 8 is 
quite similar to the experimental results shown in Figure 8. By adjusting the 
parameters somewhat one could extend the range over which the computed 
periodic solutions exist to better match the experimental results. However) there is 
little point in doing this at present, because there is as yet no concrete information 
on the identity of the molecule(s) used for intercellular communication. It is 
undoubtedly not F6P, but it has been suggested that a peptide may play the role in 
some yeasts (Kraepelin and Franck, 1973). 

5. Discussion 

The results of our analysis can be viewed from two perspectives. On the one hand, 
they establish the qualitative dynamical behavior of a whole class of models that 
includes many of those used to model the control steps in the glycolytic pathway. 
One can see, for example, what general properties the rate functions Fand  G must 
have in order for the model to predict that periodic solutions exist only over a 
limited range of the input flux. Furthermore, we have shown that the experimental 
observations on the density dependence of the oscillations can be qualitatively 

t The effect of additional cells, when all are identical and begin in phase, is simply to rescale 
the density. 
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Fig. 9. The computed amplitude and period dependence on cell density for = = 0.1, ~ = 0.6, 
= 0,239, P -- 0.023 and other parameters as in Figure 4 

reproduced with simple models that include exchange between the cell and the 
medium. The only generic requirements of a two-variable kinetic model that are 
needed to reproduce the density effect are that one of the species be self-activating 
at the steady state and that this species diffuses slowly enough compared with the 
self-inhibiting species. Even these requirements can be relaxed if three-variable 
kinetic models are admitted. One can show that periodic solutions that arise 
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because of coupling between the cells and the medium are possible even if all three 
species are self-inhibiting (Othmer, 1977b). 

On the other hand, the qualitative conclusions may be applicable in the broader 
context of growth and differentiation control in cell and tissue cultures. Cell 
proliferation in normal tissues must be controlled to maintain a homeostatic state 
and, as Folkman and Greenspan (1975) have emphasized, growth can be regulated 
at many levels. For example, the concentration of available glucose has been found 
to be important in initiation of DNA synthesis in 3"1"3 cells (Hoiley and Kiernan, 
1974). Another factor whose effect may be similar is the presence of a diffusion 
boundary layer surrounding the cell. Stoker (1973) has demonstrated this effect 
very elegantly and conclusively by showing that division can be stimulated by 
exposing cells to a moving stream of the nutrient medium~ Apparently this moving 
stream ensures a sufficient flux of some metabolite important in the mitotic cycle. 

In other systems geometric factors appear to be the important variables. For 
instance, some cells fail to divide when freely suspended in a nutrient medium, but 
proliferate once a sufficiently large object is present which they can attach to and 
spread over. Conceivably the surface/volume ratio controls division via the supply 
rate of essential nutrients. A similar effect is observed for certain tumor cells: two- 
dimensional cultures can proliferate indefinitely but in three dimensions the tumor 
size is limited by the rate at which nutrients can be supplied. A mathematical model 
that predicts this effect and suggests new experiments to test the relative importance 
of various factors in growth control is given in Shymko and Glass (1976). 

Our results demonstrate that even simple models lead to the prediction that 
nutrient supply rate and cell density can serve as control variables for cellular 
activity. As one can see from Figures 4 and 9, small changes in either of these 
variables can switch cells from a quiescent, time-independent state to an oscillatory 
state, or vice-versa. If cells are mitotically-active in one of these states, say the 
oscillatory state~ but not the other, one can see how proliferation could be turned 
on or off by manipulating the control variables~ Moreover, because cell density can 
function in this way~ a proliferating population growing in a finite volume has a 
built-in mechanism for size regulation~ 

Suppose, for instance, that the kinetic parameters in a system are specified so that 
the P vs. �9 diagram is as shown in Figure 7b. I fa  culture begins at too low a density, 
proliferation can never occur and eventually the cells die out; this is as observed 
experimentally (Sanford et al., 1948). If the cells are initially at or above a critical 
density el, proliferation occurs and can continue until the density reaches a second, 
higher critical value e2, where it ceases~ Thus there is density-dependent regulation 
of proliferation. Now if the density increases further~ perhaps due to further growth 
of the non-proliferating cells, the point is reached where the cells will be close 
enough to form junctions of the kind mentioned in the Introduction. At this point 
one would expect the permeability between cells to be quite high, the change being 
as shown by the dotted line in Figure 7b. From the preceding section we know that 
if P >/~, the uniform, quiescent steady state is unstable and a nonuniform state 
develops. In this state the cells are differentiated into two subpopulations that 
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differ from each other in the concentration of one or more species. In this ter- 
minally-differentiated state the cells may synthesize some product specific to their 
function in the organism, as is the case, for instance, with postmitotic myoblasts 
(Cohen et al., 1977). Density-dependent differentiation like that predicted by our 
model has been found experimentally~ Nicolas et alo (1976) observed that differen- 
tiation of teratocarcinoma cells in vitro begins only after the culture reaches a 
critical cell mass, and that the differentiated cells have lost their tumorogenicity. 
Whether or not cell-to-cell junctions are involved is not known. 

The sequence of changes that individual cells undergo as density varies from zero 
to confluence is shown schematically in Figure 10. As we have indicated, each of 
the individual steps is known to occur in various systems. It would provide strong 
support for the kind of regulative mechanism we have suggested if the entire 
sequence of changes were found to occur in a single system. To date we know of no 
such system. 

Acknowledgement. This r{.~earch was supported under an N I H  grant (#GM 21558) to H. G. 
Othmer. We are indebted to Mark Schlesinger for doing all the numerical computations. 

Appendix 
The fundamental result on existence of  periodic solutions is given by the following 
theorem. 

Theorem [Hopf]. Let  x' = F(x, i~) be a real analytic autonomous system of  differen- 
tial equations with x, F E R ~ and t~ E R. Suppose that F(O, i ~) = 0 for t~ ~ [ - c ,  c], 
c > 0 and let A ~ )  be the linearization o fF(x ,  t~) around (0, Iz). Suppose that A(I~) 
has one pair of  complex conjugate eigenvalues A~.2(t~) = ~ )  + ioJ(~) for which 
~(0) = O, ~'(0) ~ O, and all other eigenvalues Aj, j = 3 . . . . .  n, have negative real 
parts for i~ ~ I--c, c]. 

Under these conditions there exists an % > 0 and a functional relation t~ =/~(e) 
such that for each e ~ ( -co ,  co) there exists a periodic solution ~(t, e) with period 
T(e) of x' = F(x, t~)..At e = 0 we have f,(0) --- 0, ~(t, 0) = 0 and T(0) = 2~r/oJ0, 
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and $(t, ~) # 0 for all sufficiently small ~ # 0. Moreover/z(~), s e) and T(e) are 
analytic at ~ = 0. These periodic solutions exist either only for t2 > 0, or only for 
t~ < 0, or only for/~ = 0. Furthermore, for each L > T(0) there exist a > 0, b > 0 
such that if I~,1 < b then, except for the bifurcating periodic solutions $(t, ~) with 
�9 > 0, there is no non-constant periodic solution with period less than L which 
lies entirely in {x: llxll < a}. 

For the proof  of this, see Hopf  (1942)-or Ruelle and Takens (1971)~ 

The theorem establishes existence and uniqueness of  the bifurcating solutions, but 
gives no information on the direction of  bifurcation (i.e. whether the periodic 
solution exists for ~ < O, for t~ = O, or for/~ > O) or the stability of the bifurcating 
solution. 

Consider the expansion of  p(8): 

/~(e) = / ~ l e  + / z ~ e  2 + p~e s + - - ' .  ( A I )  

Hopf  proved that the coefficient of  the leading term is zero and so if p2 # 0, the 
direction of bifurcation is determined by sgn p2. The characteristic exponents of  
the periodic solution can be written 

~(~)  =- 0 
~(~)  _- ~ ,  + f ~  + . . .  (A2) 
flJ(,) = Aj(0)T + 0(4) j = 3 . . . . .  . .  

H o p f  established that fix = 0 and that 

/~2 = -2~ ,# (0 ) .  (A3) 

Therefore, the bifurcating period solution is stable if/z2a'(0) > 0 and unstable if 
/*2a'(0) < 0. If  f12 vanishes f14 must be computed. Thus in general the direction and 
stability of the bifurcating solution is determined by sgn/~2 and sgn ~'(0). 

Poore 0976) has derived an expression for/~=a'(0) that is particularly convenient 
for numerical computation~ Let u and v denote any two left and right eigenvectors, 
respectively, of  A(0) corresponding to Ax(0) = ioJ(0), normalized so that ~ u,v, = I. 
Then Poore's result is that 

sgn ~2a'(0)) = sgn Re { -uFx . xvv~  + 2uFxxv(A(O))-ZFx~,v~ 
+ uF**V(A(O)- 2i,,,(O)l)-XF.~,vv} (A4) 

where (F.)tj m aF,]ax~, (Fxx)tj, =-82F,]axj Ox. and (F***) tm-  8aF,/Ox~ ax.  axt. 
Furthermore, 

a~F' - (A4) uFxxxVVV -- L ut i.J.kd = x ~X~ ~X~ CXl ViVjVZ' 

where ~ is the complex conjugate of  v~. Finally, it is elementary to show that 

~'(0)  --  R e  t .  \ d ~  ! ~ = o 3" 
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The desired informat ion abou t  direction and stability of  the bifurcating periodic 
solutions can thus be ,determined f rom (A5) and (A4). These quantities were corn  
puted numerical ly along the locus ~(0) = 0 in parameter  space to arrive at  the 

conclusions given in the text. 
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