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A B S T R A C T

Recent experimental work has shown that numerous cell types can use different modes to move in different
environments. Some cells crawl and some swim, but many can do both, and understanding how they interrogate
their environment and determine how to move in response to information acquired is central to understanding
basic processes ranging from early development to cancer metastasis. Cell movement usually involves shape
changes, which are determined by both intra- and extracellular forces. Intracellular forces are transmitted to
the membrane via tractions exerted on the membrane by the cell cortex, a thin composite of actin filaments,
motor proteins and various linker proteins underlying the membrane, and herein we determine how surrogates
for the normal and tangential components of cortical forces determine the shape of cells.
. Introduction

Cell shape plays an important role in numerous cell processes,
ncluding locomotion, cell division and tissue structure. Locomotion in
urn plays an essential role during embryonic development, angiogen-
sis, tissue regeneration, the immune response, and wound healing in
ulticellular organisms. Movement is a complex process that involves

he spatial and temporal control and integration of a number of sub-
rocesses, including the transduction of chemical or mechanical signals
rom the environment, intracellular biochemical responses, and trans-
ation of the intra- and extracellular signals into a mechanical response.
he essential ingredient for motion is that a cell must be able transmit
orce to its surroundings, and this can be done in many ways [1–3].

hile many single-celled organisms use flagella or cilia to swim, there
re two basic modes of movement used by eukaryotic cells that lack
uch structures — mesenchymal and amoeboid. The former, which can
e characterized as ‘crawling’ in fibroblasts or ‘gliding’ in keratocytes,
nvolves the extension of finger-like pseudopodia and/or broad, flat
amellipodia, whose protrusion is driven by actin polymerization at the
eading edge. The amoeboid mode is less reliant on strong adhesion,
nd cells are more rounded and may employ shape changes to move —
n effect ’jostling through the crowd’ or ‘swimming’. However, recent
xperiments have shown that numerous cell types display enormous
lasticity in locomotion, in that they sense the mechanical properties
f their environment and adjust their mode of movement accord-
ngly. Thus pure crawling and pure swimming are the extremes on

continuum of locomotion strategies, but many cells can sense their
nvironment to determine the most effective strategy for moving in that
nvironment. In view of the complexity of the processes involved in
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different modes, theoretical models are essential for synthesizing what
is known to unify observations and for making predictions that can
guide further experimental work.

Swimming by protrusions has been analyzed using a 2D model [4],
and the results show that Dictyostelium discoideum (Dd) cells can swim
by propagating protrusions down their body length. The model gives
insights into how characteristics of the protrusions such as their height
affect the swimmer’s speed and efficiency. Moreover, other types of
shape changes are also used. Leukocytes can use the mesenchymal
mode in the extracellular matrix, but can also migrate in vivo without
adhering to a surface after adhesion molecules have been knocked
out, using a ’flowing and squeezing’ amoeboid mode [5]. Simplified
theoretical models of such movement have been analyzed to determine
how interactions with obstacles affect the motion [4,6].

Protrusions and other shape changes require forces that must be
correctly orchestrated in space and time to produce net motion, and to
understand this orchestration one must couple the intracellular dynam-
ics with the state of the surrounding fluid or tissue microenvironment.
Tension in the membrane and the underlying cortex has emerged as an
important factor in the orchestration, and these tensions play a very
clear role in some cells. For example, membrane flow that is probably
generated by tension gradients can drive amoeboid cell movement [9].
It is also observed that Dd cells can swim without shape changes for
several body lengths [10], and this leads to the third mode of amoeboid
movement, which is driven by a tension gradient in the membrane [11].
Examples of the morphologies observed in various cases are shown in
Fig. 1.

These examples raise a number of interesting questions. For in-
stance, can one predict the balance of forces within a cell needed to
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Fig. 1. Two types of stable-bleb morphologies in which the cell movement in
confinement is driven by tension gradients. (a) The Ruprecht-type shape, and (b) the
Liu-type A2. Reproduced with permission from [7]. (c) A Dd cell moving by retraction
of one pseudopod and extension of another.
Source: Reproduced with permission from [8].

produce the various shapes shown in Fig. 1, and to what extent are
the shapes fixed by the mechanical feedback from interrogation of the
microenvironment of the cell? We address the first of these here by
investigating how imposed forces meant as surrogates for cortical forces
control the shapes of cells.

1.1. Cortical forces

The membrane of cells is a lipid bilayer ∼10 nm thick that is at-
ached to the cortex, which is 200–300 nm thick (Fig. 2). The cortex
s composed of a cross-linked filamentous actin network, embedded
ith the motor protein myosin-II (myo-II). Myo-II confers rigidity to

he network, but can also contract and exert tension in the network.
embrane-bound proteins such as Myo-I – a small motor protein that

inds to both actin and the membrane [12] – or linker proteins such
s ERMs (ezrin, radixin, and moesin) and talin [13], tether the cortex
o the membrane, but the connections are dynamic and the cortical
ctin filaments are continuously turned over by treadmilling [14]. Both
ctin turnover and myosin contraction involve ATP consumption, and
he result is a dynamic network that can exert normal and tangential
orces on the membrane, but can also slide tangentially under the
embrane [15,16]. The cortical forces are the primary determinant

f cell shape in amoeboid cells [17], and local modulation of cortical
echanics is known to drive cell deformations during cell division, mi-

ration, and tissue morphogenesis [18–21]. In many cells these forces
enerate cell-level flows that are also involved in cell polarization and
ocalization of components involved in shape changes.

A model that incorporates a detailed description of all these factors
ould be very complex, and the details of the interactions described are
ot well understood at present. Here we separate the details of cortical
tructure from the mechanics and simply use a high-level description
f the cortex to investigate how cortical forces and heterogeneity of
embrane properties determine the shape of cells in quiescent fluids.
his enables us to vary the cortical forces directly, irrespective of
hether they arise from cortical flows or simply from static tension
radients in the cortex.

Computational results from an earlier 2D model using a free-energy-
ased description of the membrane show that cells can swim under
arious combinations of tension gradient in the membrane and het-
rogeneity of the bending rigidity [11,23]. Moreover the direction

f migration depends on the balance between the cortical tension b

2

gradient and the variation of the bending rigidity, which may provide
an explanation of the observation that some cells move using a small
cap in the front, while other cells move with the large bleb in front
[24]. The model predicts a cell velocity of 6.0 μm/min when the tension
radient is 10 pN∕μm2, which is consistent with recent experiments.
urthermore, with a suitable spatial variation of the rigidity the cell
an evolve to the asymmetric stable-bleb shape, and this also agrees
ith experimentally-determined values. Overall, the results suggest a

olution to the problem raised in [10], and this leads to the third mode
f amoeboid movement, which is driven by a tension gradient in the
embrane [11].

In this paper we extend these results in several directions. In [11] we
tudied the individual effects of imposed normal and tangential forces
eparately, and here the first step is to incorporate them simultaneously
n a 3D model so as to understand the effect of their interaction on
ell shape. The 2D computations also show that viscous forces on a
oving cell have very little effect on the cell shape and thus we focus

n the shapes in the absence of movement. Here we find that imposed
ormal and tangential forces can have opposing effects that can lead to
ancellation of their effects on the shape. The degree of deformation
n response to normal or tangential forces is generally unequal for
imilar force magnitudes, with tangential forces producing larger defor-
ations, although this depends on the stiffness of the cell membrane.

mposed normal forces induce changes in the pressure drop across the
embrane, and may serve as a surrogate to represent osmotic pressure
ifferences. We also study the impact of variations in the bending and
aussian curvature moduli. Variation of these quantities can lead to

ignificant shape changes, even in the absence of any applied forces.
he computational algorithm used for studying the effects of the forces
hat arise due to the variable moduli for general 2D surfaces appears
o be novel.

As applications of the techniques developed we discuss the influence
f anisotropy of active stresses in relation to mitotic furrowing. While
he model of furrowing is somewhat simplistic, our results indicate that
sotropic tensions are insufficient to cause furrowing, while anisotropic
tresses can readily lead to furrow formation. We also show that
ealistic levels of the applied forces can induce end-to-end pressure
ifferences of the order of 100 Pa within a moving cell, and pressure
ifferences across the membrane on the order of several hundred pas-
als. Experimentally-measured differences across the membrane range
rom a few hundred pascals [19] to several thousand [25], depending
n the cell type. There is controversy concerning the relaxation of pres-
ure differences following perturbation of a cell [26,27], but we do not
ddress the time-dependent response of the pressure to perturbations.

. The mathematical model

.1. The free energy functional and the shape equations

Amoeboid cells have a less-structured cytoskeleton (CSK) than mes-
nchymal cells, and thus the cell shape is primarily determined by
he distribution of internal forces in the membrane and the forces
n the cortex. A detailed description of the actin dynamics, myosin
otor dynamics, and cortical-network interactions, combined with the

ransport of actin monomers and other components in the CSK, will be
ery complex, and to date the most detailed description of the cortex
as been as an active gel in simplified treatments [28–30]. While this
roduces some insights, the biochemical details are embedded in an
ctive component of the stress tensor for the gel, and thus the relative
mportance of the individual processes involved cannot be investigated.

e also do not attempt to develop a detailed model here, but rather, we
se an alternate high-level description of the cortex to investigate how
ortical forces and heterogeneity of membrane properties determine the
hape of cells in quiescent fluids.

The determination of the steady-state shapes of vesicles and red

lood cells has been thoroughly studied, both in the absence of fluid
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Fig. 2. The plasma membrane (purple) is attached to the actin cortex (green) by linker proteins (black hashes). The cortex is enriched in myosin motors (red), which generate
contractile forces. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Source: Reproduced with permission from [22].
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motion and in imposed flows [31–35]. In a quiescent fluid the shapes
are computed as minimizers of the free energy of the membrane,
typically given by a Canham–Helfrich (CH) functional described below,
and in a flow they represent shapes that lead to minimum energy
dissipation.1 However, vesicles have no cortical layer and red blood
cells have a very thin layer of spectrin – which contains no molecular
motors – attached to the membrane. When there is a cortical flow
and membrane-cortex tethers are actively formed and broken, there
are dissipative processes involved and the membrane-cortex forces are
not conservative. Thus we use a virtual work argument to determine
stationary shapes in the presence of non-conservative forces.

The membrane has four modes of deformation: dilatation, shear,
bending and torsion, but only the bending mode is dominant in most
analyses and we follow this practice here. Because a membrane is two-
dimensional, it can bend into three-dimensional shapes with variation
of the curvature along the membrane, and in addition to the bending
energy, which to lowest order is proportional to the square of the local
curvature of the membrane, there are contributions to the free energy
corresponding to the work associated with area and volume changes
when these are conserved.

We let 𝛺 ⊂ 𝑅3 denote the volume occupied by the cell and let 
enote its boundary. We assume that  is a smooth, compact, two-
anifold without boundary, parameterized by the map 𝛷 ∶ 𝐷 ⊂ 𝑅2 →
. The position vector 𝒙 to any material point on the membrane is given
y 𝒙 = 𝒙(𝑢1, 𝑢2) for a coordinate pair (𝑢1, 𝑢2) ∈ 𝐷. We let 𝒏 denote the
utward normal on  and define basis vectors on the surface via

𝑖 =
𝜕𝒙
𝜕𝑢𝑖

𝑖 = 1, 2. (1)

The free energy associated with bending, which was first set forth
or membranes in [38] and later in [39], has the following form

𝐵 = ∫
1
2
𝑘𝑐 (𝐻 − 𝐶0)2𝑑𝑆 + ∫

𝑘𝐺𝐾𝑑𝑆 (2)

here the area element 𝑑𝑆 =
√

𝑔𝑑𝑢1𝑑𝑢2, and 𝑔 is the determinant of
he metric tensor 𝐠 of the surface. Define 𝜅1 and 𝜅2 as the principal
urvatures. Then 𝐻 = (𝜅1 + 𝜅2)∕2 is the mean curvature, and 𝐾 = 𝜅1𝜅2
s the Gaussian curvature. 𝐶0 is a phenomenological parameter called
he spontaneous curvature, 𝑘𝑐 is the bending rigidity — which may
e stress-dependent [40], and 𝑘𝐺 is the Gaussian rigidity, which may
lso vary over the membrane. When 𝑘𝐺 is constant, the integral of the

Gaussian curvature is constant if  does not change topological type
under deformation, and the integral can be ignored.

To account for applied forces we add the virtual work term ∫ 𝐟 ⋅
𝒙 𝑑𝑆, where 𝜹𝒙 = 𝛼𝑖𝒆𝑖 + 𝛽𝒏, to reflect the work done by the applied
orce under an infinitesimal deformation of a reference configuration.
nder the constraints of constant surface area 𝐴0 and volume 𝑉0 of the

cell, the free energy then takes the form

 = 𝐵 + ∫
𝛬
(√

𝑔 −
√

𝑔0
)

𝑑𝑢1𝑑𝑢2

+ 𝑃
(

∫𝛺
𝑑𝑉 − 𝑉0

)

+ ∫
𝐟 ⋅𝜹𝒙 𝑑𝑆. (3)

1 In the mathematics literature a functional based on one component of the
H energy leads to the Willmore flow [36,37].
3

Here 𝑔0 is the determinant of the metric tensor in a reference configura-
ion with area 𝐴0. 𝛬 has units of force/length, which defines a tension,
ut it is not a surface tension in the usual sense, but rather an in-plane
tress of a two-dimensional surface. Further, 𝑃 ≡ 𝑝ext−𝑝in is the pressure

difference across the membrane, which we assume is constant over the
membrane. Typically 𝑝in is a few hundred pascals higher than 𝑝𝑒𝑥𝑡 [19].

he constant term 𝑃𝑉0 simply translates the free energy and can be
gnored, since it disappears after the first variation of (3) is taken.

A stable equilibrium shape of a cell is a minimizer of  , and thus a
olution of 𝜹∕𝜹𝒙 = 0 for any infinitesimal deformation 𝜹𝒙 of . This
eads to the following shape equations for the normal and tangential
omponents of the membrane forces.2

− 𝛿
𝛿𝛽

= −𝛥𝑠
[

𝑘𝑐
(

2𝐻 − 𝐶0
)]

− 𝑘𝑐
(

2𝐻 − 𝐶0
)

(2𝐻2 + 𝐶0𝐻 − 2𝐾)

−𝛥𝑠 𝑘𝐺 + 2𝛬𝐻 − 𝑃 + 𝑓 𝑛 (4)
≡ 𝐹 𝑛(𝐻,𝐾, 𝑃 , 𝛬, 𝑘𝑐 , 𝑘𝐺 , 𝑢1, 𝑢2) + 𝑓 𝑛 (5)

− 𝛿
𝛿𝛼𝑖

= 1
2
(

2𝐻 − 𝐶0
)2 ∇𝑠,𝑖𝑘𝑐 +𝐾∇𝑠𝑘𝐺 + ∇𝑠,𝑖𝛬 + 𝑓 𝑡𝑖 (6)

≡ 𝐹 𝑡𝑖 (𝐻,𝐾, 𝑃 , 𝛬, 𝑘𝑐 , 𝑘𝐺 , 𝑢
1, 𝑢2) + 𝑓 𝑡𝑖 𝑖 = 1, 2. (7)

ere 𝛥𝑠, 𝛥𝑠, and ∇𝑠 are the surface Laplacian and gradient, resp., as
efined in Appendix A. In the first equation one sees that 𝛬 enters the
ormal component via the term 2𝛬𝐻 , which couples areal distension
o the curvature in the normal component of the force. In light of how
he variation is defined, the resultant forces are defined per unit area.

We assume hereafter that 𝐶0 = 0, and when the bending and
aussian moduli are constant Eqs (4) & (6) simplify to

𝑛 = − 𝛿
𝛿𝛽

= −2𝑘𝑐𝛥𝑠𝐻 − 4𝑘𝑐𝐻
(

𝐻2 −𝐾
)

+ 2𝛬𝐻 − 𝑃 + 𝑓 𝑛 (8)

𝐹 𝑡𝑖 = ∇𝑠,𝑖𝛬 + 𝑓 𝑡𝑖 𝑖 = 1, 2. 𝑖 = 1, 2, (9)

and these equations have been derived in [41,42] and others. Un-
der constant 𝑘𝑐 , 𝑘𝐺, and 𝐶0, the normal component reduces to a
generalization of Laplace’s law given by

𝑝𝑖𝑛 − 𝑝𝑒𝑥𝑡 = −2𝛬𝐻 − 𝑓𝑛 + 4𝑘𝑐𝐻(𝐻2 −𝐾) + 2𝑘𝑐𝛥𝑠𝐻. (10)

When the applied normal component is inward 𝑓𝑛 < 0 and the ap-
plied force elevates the interior pressure. In a cell one contribution
to this force can be the osmotic pressure, depending on the cellular
environment.

To find the stationary shapes for the free energy we define the
pseudo-flow

𝜇𝑑
𝑑𝛽(𝑢1, 𝑢2)

𝑑𝜏
= 𝐹 𝑛(𝐻,𝐾, 𝑃 , 𝛬, 𝑘𝑐 , 𝑘𝐺 , 𝑢1, 𝑢2) + 𝑓 𝑛 (11)

𝜇𝑑
𝑑𝛼𝑖(𝑢1, 𝑢2)

𝑑𝜏
= 𝐹 𝑡𝑖 (𝐻,𝐾, 𝑃 , 𝛬, 𝑘𝑐 , 𝑘𝐺 , 𝑢

1, 𝑢2) + 𝑓 𝑡𝑖 𝑖 = 1, 2. (12)

hen the cortical forces are incorporated the resulting evolution is
o longer a gradient flow, and one simply looks for steady states of
11) and (12), which in general are not minimizers of the CH free

2 See Appendix A for a sketch of the derivation of these equations.
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energy. The quantity 𝜇𝑑 is a drag-coefficient that essentially acts to set
the characteristic velocity of the pseudo-flow. We set 𝜇𝑑 = �̄�𝑇0∕𝑅4

0 ∼
160 kg∕(𝑚2𝑠) where �̄� = 1 × 10−19𝐽 , 𝑇0 = 1𝑠 and 𝑅0 = 5 μm are the
haracteristic energy, time, and length scales. Note that our numerical
ethods do not directly solve this equation, but rather treat the cell

s being imbedded in a viscous fluid. Under the constraints of volume
nd local area conservation, steady-states of Eqs. (11) and (12) are
ound directly, or by first imbedding the membrane in a fluid should
e equivalent, since in either case, the velocity of the membrane (and
urrounding fluid) tends to zero. When 𝑓 𝑛 and 𝑓 𝑡𝑖 are zero, the solutions
ay be understood as solutions of the Euler–Lagrange equations for the
H functional.

As a characteristic length scale of the problem similar to the ones of
esicles [43] and microswimmers [44,45], we use an effective 3D cell
ize 𝑅0, which is defined via a sphere of volume equal to the specified
olume,

= 4
3
𝜋𝑅3

0 (13)

where 𝑉 is the specified volume of a cell. The shape equations can be
put into dimensionless form by using this characteristic length 𝑅0 and
defining a characteristic bending energy �̄� (with units of force ⋅ length,
or equivalently energy). The new * variables are 𝐿∗ = 𝐿∕𝑅0, 𝛥∗ =
𝑅2
0𝛥, 𝑘

∗
𝑐 = 𝑘𝑐∕�̄�, 𝛬∗ = 𝑅2

0𝛬∕�̄�, 𝑝
∗ = 𝑅3

0𝑝∕�̄�, 𝑓 𝑛∗ = 𝑓 𝑛𝑅3
0∕�̄� , 𝑓 𝑡∗𝑖 =

𝑓 𝑡𝑖𝑅
3
0∕�̄� and 𝜏∗ = 𝜏∕𝜏m. For a reference bending energy �̄� = 10−19𝐽

and a reference radius of 𝑅0 = 10 μm, a dimensionless force equal
to 1 corresponds to a dimensional force of 10−4pN/μm2. The resulting
shape equations are made scale-free by defining the dimensionless time
𝜏∗ = 𝜏∕𝜏m, where 𝜏m ≡ 𝜇𝑑𝑅4

0∕�̄� defines a characteristic time unit scaled
by a constant characteristic bending rigidity. The resulting forms of
(11) and (12) in starred variables are then

𝑑𝜓∗(𝑢1, 𝑢2)
𝑑𝜏∗

= 𝐹 𝑛∗(𝐻∗, 𝐾∗, 𝐶∗
0 , 𝑃

∗, 𝛬∗, 𝑘∗𝑐 , 𝑘
∗
𝐺 , 𝑢

1, 𝑢2) + 𝑓 𝑛∗ (14)

𝑑𝛼𝑖∗(𝑢1, 𝑢2)
𝑑𝜏∗

= 𝐹 𝑡∗𝑖 (𝐻∗, 𝐾∗, 𝐶∗
0 , 𝑃

∗, 𝛬∗, 𝑘∗𝑐 , 𝑘
∗
𝐺 , 𝑢

1, 𝑢2) + 𝑓 𝑡∗𝑖

𝑖 = 1, 2. (15)

For reasonable estimates of the parameters 𝜏𝑚 is ∼ 0.5 seconds. In the
subsequent sections we omit the ∗ notation and assume that quantities
are non-dimensional unless otherwise stated.

3. Computational methods

Since the force terms due to bending involve fourth order deriva-
tives of the surface coordinates and are nontrivial to compute, we now
discuss the numerical method used to evolve the cell shapes. Further
details are given in Appendix B. To solve the governing equations,
we use a parametric finite-element method approach to discretize the
surface and compute the relevant force terms [46].

The surface is approximated by a triangulation,  ℎ consisting of
non-overlapping triangles such that each edge is contained in two
adjacent triangles, and ℎ is a numerical parameter indicating the size
of the triangles. The discretized surface ℎ defined as

ℎ =
⋃

𝑇 ℎ𝑖 ∈
ℎ

𝑇 ℎ𝑖

This leads naturally to a piecewise linear approximation of , however,
several advantages of quadratic, or 𝑃 2 elements over linear elements
for curvature computations were note in [47]. This leads to approxi-
mating functions (including the surface position, 𝒙) in the 2-Lagrange
function space

2(ℎ) =
{

𝝍 ∈
[

𝐶0(ℎ)
]3 ⋂{

[

2(𝑇 ℎ𝑖 )
]3 ∀𝑇 ℎ𝑖 ∈  ℎ

}}

where the superscript 3 refers to the underlying spatial dimension of the
Euclidean space R3. Although the geometry and surface forces are ap-
proximated by piecewise-quadratic functions, the resulting description
 𝑭

4

only has 𝐶0 global continuity since derivatives may jump across the
edges of triangles. For later use we also define the 2-Lagrange space
of second order tensors:

2(ℎ) =
{

𝝌 ∈
[

𝐶0(𝑆ℎ)
]3×3 ⋂{

[

2(𝑇 ℎ𝑖 )
]3×3 ∀𝑇 ℎ𝑖 ∈  ℎ

}}

here each component of 𝝌 ∈ 2(ℎ) is a piecewise quadratic function
n ℎ. Finally, we found that occasional remeshing was beneficial, and
he process for doing this is described in Appendix B.

With these function spaces, the next step is to discretize the non-
inear differential operators defined by 𝛿∕𝛿𝒙. The forces are first split
nto several terms,

= 𝑭 𝑐 + 𝑭𝐺 + 𝑭𝐴 + 𝑭 𝑉

efined below. The force associated with the mean curvature energy
erm 𝑘𝑐 (2𝐻 − 𝐶0)2 will be denoted by 𝑭 𝑐 , the force associated with
aussian curvature forces by 𝑭𝐺, area conservation forces by 𝑭𝐴, and
olume conservation forces by 𝑭 𝑉 . As discussed below, we also add an
dditional elastic force, 𝑭𝐸 in some cases. The specific forms for these
orces are given in the proceeding sections, however, the first step in
ach case is to obtain a weak form


𝑭 (𝒙) ⋅ 𝝓𝑑𝑆. ∀𝝓 ∈  3

here  is a function space (e.g. 1()), and 𝑭 (𝒙) is a weak force3. The
iscretized forces are then found by restricting 𝝓 to 2(ℎ), replacing
and  by 𝒙ℎ and ℎ, and replacing any nonlinear terms by their

iscretized counterparts to yield

ℎ
𝑭 ℎ(𝒙ℎ) ⋅ 𝝓𝑑𝑆 ∀𝝓 ∈ 2(ℎ).

For conciseness, test functions 𝝓 are understood to be elements of
2(ℎ) unless otherwise specified in what follows.

We also note that 2(ℎ) is a finite-dimensional function space of
dimension 𝑁ℎ = 3𝑛ℎ where 𝑛ℎ is the number of nodal points in the
discretization. Therefore, we define a basis. First let {𝜙ℎ𝑖 }

𝑛ℎ
𝑖=1 consist of

scalar functions that are equal to 1 at a particular nodal point in the
discretization, and zero at all other nodal points. To get a vector basis,
define 𝝓ℎ𝑖,𝑘 = 𝜙ℎ𝑖 𝑬𝑘 where 𝑬𝑘 is a set of canonical basis vectors in R3

for 𝑘 = 1, 2, 3. Thus, we can write

𝒙ℎ(𝑢1, 𝑢2) =
𝑛ℎ
∑

𝑖=1
𝒙ℎ𝑖 𝜙

ℎ
𝑖 (𝑢

1, 𝑢2) =
𝑛ℎ
∑

𝑖=1

3
∑

𝑘=1
𝑥ℎ𝑖,𝑘𝝓

ℎ
𝑖,𝑘(𝑢

1, 𝑢2)

where 𝒙ℎ𝑖 are the nodal values of 𝒙ℎ. In the descriptions below, the weak
forms will be written in a continuum rather than discrete sense since
the details outlined above are sufficient to convert each into a discrete
operator once  has been triangulated. With these definitions, we also
obtain discrete forces

𝑭 ℎ𝑖 =
3
∑

𝑘=1
𝐹 ℎ𝑖,𝑘𝑬𝑘 =

3
∑

𝑘=1

[

∫ℎ
𝑭 ℎ ⋅ 𝝓ℎ𝑖,𝑘𝑑𝑆

]

𝑬𝑘.

Before defining the weak forces, we provide typical parameter
ranges for the numerical simulations in the following section in Table 1.
These are derived from [49,50] with the exception of the shear elas-
ticity modulus, which was chosen heuristically, given that resistance
of cell membranes to shear deformation is often much less than their
resistance to area change.

3 For 𝜙 ∈ 1(), it is natural to consider the weak forces as duality pairings
ather than integrals. For any element 𝐴 in the dual space, 𝐻−1(), we can
ormally write 𝐴 = 𝐴0 +

∑2
𝑖=1 𝐴𝑖∇

𝑖, for functions 𝐴0, 𝐴1, 𝐴2 ∈ 𝐿2() [48]. Then,
he duality-pairing is explicitly given as,

𝐴,𝜙⟩ = ∫
𝐴0𝜙𝑑𝑆 +

2
∑

𝑖=1
∫

𝐴𝑖∇𝑖𝜙𝑑𝑆 ∀𝜙 ∈ 𝐻1().

his type of duality-pairing arises after partial integration. Alternatively, when
is defined in the strong sense, the original integral notation is precise.



J. Stotsky and H.G. Othmer International Journal of Non-Linear Mechanics 140 (2022) 103907

a
m
2
i

∫

Table 1
Typical values of the physical parameters used in the numerical simulations.
Symbol Value Dimensionless value Definition

𝑅0 5 μm 5 Cell radius
𝑘𝑐 10−19 J 1 Mean curvature modulus
𝑘𝐺 10−19 J 1 Gaussian curvature modulus
𝐸0 0.01 nN/μm 10 Surface shear elasticity modulus
𝜅𝐴 1 nN/μm 1000 Surface area elasticity modulus
𝒇 0.1-100 pN/μm2 1 - 1000 Imposed surface forces
𝛾 0.01–0.1 nN/μm 1 - 10 Applied tension in mitosis simulations
𝑃 0–100 Pa 0 - 1000 Pressure difference across membrane
t
b
b
T

∫

a
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𝑭

t

𝐾

w
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t
s

∫
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3.1. Curvature forces

The first force terms we consider are

𝑭 𝑐 = −
(

2𝛥𝑠(𝑘𝑐𝐻) + 4𝑘𝑐𝐻(𝐻2 −𝐾)
)

𝒏 + 2𝐻2∇𝑠𝑘𝑐 (16)

which comes from Eqs. (4) and (6) with 𝐶0 = 0. Recall that ∇𝑠𝑘𝑐 =
(∇𝑠,𝑖𝑘𝑐 )𝒆𝑖 is a vector term that lies tangent to  at each point. Com-
putationally approximating this force is particularly challenging since
if defined in the strong sense, it involves fourth order derivatives of
the membrane position, 𝒙. Rather than directly discretizing the force
in Eq. (16), we employ the approach used in [51]. An effective weak
form of the forces is obtained by keeping 𝒙 and a curvature vector
𝑯 = 2𝐻𝒏 as independent variables. In particular, 𝑯 is defined weakly
as

−∫
∇𝑠𝒙 ∶ ∇𝑠𝝓𝑑𝑆 = ∫

𝑯 ⋅ 𝝓𝑑𝑆 (17)

Note also that the use of 𝑯 as an independent variable avoids pitfalls
typical of 𝐶0 finite elements that often inhibit the computation of
higher order derivatives. A proof of the convergence of this approach
is given in [51].

The weak form of 𝑭 𝑐 is eventually found as

∫
𝑭 𝑐 ⋅ 𝝓𝑑𝑆 = ∫

[

𝑘𝑐∇𝑠𝝓 ∶ ∇𝑠𝑯 − 1
2
𝑘𝑐∇𝑠𝝓

(

∇𝑠𝒙 + ∇𝑠𝒙𝑇
)

∶ ∇𝑠𝑯

+𝑘𝑐
(

∇𝑠 ⋅ 𝝓
) (

∇𝑠 ⋅𝑯
)

+
𝑘𝑐
2
|𝑯|

2∇𝑠 ⋅ 𝝓
]

𝑑𝑆.

Note that this result is highly nonlinear because the gradient terms ∇𝑠
depend on 𝒙 via the Christoffel symbols (although these need not be
explicitly computed), however, only first order derivatives of 𝒙 and 𝑯
are explicitly needed in the computation. While the result in [51] did
not consider variable bending moduli, there is nothing in the derivation
there that prohibits a variable 𝑘𝑐 when the variation in 𝑘𝑐 is not a
function of the surface geometry, but rather is merely advected as the
surface deforms.

Next, let us consider the forces, 𝑭𝐺 that result from a variable
Gaussian curvature modulus. First, if 𝑘𝐺 is constant and no topological
changes occur, this term is zero due to the Gauss–Bonnet theorem.
When 𝑘𝐺 varies, 𝑭𝐺 is defined from Eqs. (4) and (6) as

𝑭𝐺 = −
(

𝛥𝑠𝑘𝐺
)

𝒏+𝐾∇𝑠𝑘𝐺 = − 1
√

𝑔
𝜕𝑖
(

√

𝑔(2𝐻𝛿𝑖𝑗 − 𝐵
𝑖
𝑗 )𝜕

𝑗𝑘𝐺
)

𝒏+𝐾∇𝑠𝑘𝐺 .

When 𝑘𝐺 is variable, we use results from [52] to first compute
pproximations of the Gaussian curvature and then the complicated
odified Laplacian, 𝛥𝑠, which involves the curvature tensor. Note that
𝐻 = 𝑯 ⋅ 𝒏. Then, the resulting weak form for the force computation
s


𝑭𝐺 ⋅ 𝝓𝑑𝑆 = ∫

(

∇𝑠𝑘𝐺
)

⋅
(

2𝐻𝑰𝑠 −𝑾
)

⋅ ∇𝑠(𝒏 ⋅ 𝝓)𝑑𝑆

+ ∫
𝐾∇𝑠𝑘𝐺 ⋅ 𝝓𝑑𝑆 ∀𝝓 ∈ 2(ℎ)

(18)

where 𝑰𝑠 = 𝑰 − 𝒏𝒏 is the surface identity, and the second order
tensor-valued function, 𝑾 is an approximation of the Weingarten map,

∇ 𝒏 = −𝑾 .
𝑠 i

5

This is approximated weakly as

∫
𝑾 ∶ 𝝌𝑑𝑆 = −∫

∇𝑠𝒏 ∶ 𝝌𝑑𝑆 = ∫
𝒏 ⋅ ∇𝑠 ⋅ 𝝌𝑑𝑆 − ∫

𝑯 ⋅ 𝝌 ⋅ 𝒏𝑑𝑆,

∀𝝌 ∈ 2(ℎ)

Recall that 2(ℎ) is the space of piecewise quadratic second-order
ensor-valued functions. The first integral in Eq. (18) can be simplified
y integrating against a scalar valued test function 𝜙𝑛. This is possible
y noting that ∇𝑠(𝝓⋅𝒏) = ∇𝑠𝜙𝑛 and using the fact that 𝐹 𝑛𝒏⋅𝜙𝑛𝒏 = 𝐹 𝑛𝜙𝑛.
he resulting formula yields the weak force,


𝑭𝐺 ⋅ 𝝓𝑑𝑆 = ∫

(

∇𝑠𝑘𝐺
)

⋅
(

2𝐻𝑰𝑠 −𝑾
)

⋅ ∇𝑠𝜙𝑛𝑑𝑆 + ∫
𝐾∇𝑠𝑘𝐺 ⋅ 𝝓𝑑𝑆

nd in the numerical algorithm, the normal and tangential integral
erms are computed separately and then summed to yield,

ℎ
𝐺,𝑖 =

[

∫ℎ
(

∇𝑠𝑘𝐺
)

⋅
(

2𝐻ℎ𝑰ℎ𝑠 −𝑾
ℎ) ⋅ ∇𝑠𝜙ℎ𝑖 𝑑𝑆

]

𝒏ℎ𝑖

+
3
∑

𝑘=1

[

∫ℎ
𝐾ℎ∇𝑠𝑘𝐺 ⋅ 𝝓ℎ𝑖,𝑘𝑑𝑆

]

𝑬𝑘.

The Gaussian curvature can be approximated by using the iden-
ity [52]

= 1
2
(

|𝑯|

2 − |𝑾 |

2)

here |𝑾 | is the Frobenius norm of 𝑾 . In the discrete setting, this
s computed at each nodal point in the discretization, ℎ. To our
nowledge, the approximation of the forces due to a variable Gaussian
ending modulus is novel.

We find that the approximation of 𝐾 appears to be accurate, and
he differential geometry identity for sufficiently smooth genus zero
urfaces,


𝐾𝑑𝑆 = 4𝜋

s well approximated in the discrete setting even when the surface 
ndergoes significant deformation. In future work, it may be worth-
hile to consider approximations of 𝑾 with discontinuous-Galerkin

DG) methods since it involves computing first derivatives of the 2()
asis functions. This was not pursued here for simplicity and because
he FEM-software we used does not yet support DG methods.

.2. Surface area conservation, volume conservation, and surface elasticity

Many cells can only sustain small changes in membrane area before
upturing, while others have membrane reservoirs to accommodate
olume changes. In Eqs. (4) and (6), the following forces account for
rea and volume conservation

𝑭𝐴 = 2𝛬𝐻𝑵 + ∇𝑠𝛬

𝑉 = −𝑃𝒏

hile it is possible to formulate numerical methods that conserve
olume and area, and treat 𝛬 and 𝑃 as Lagrange multipliers, we found
t easier numerically to allow for small volume and area deviations and
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define 𝛬 and 𝑃 as functions of 𝒙. Since cells do not precisely conserve
volume and area, we believe the approximations detailed below are
sufficiently realistic.

To inhibit large changes in surface area under deformation, we
modify the energy functional in Eq. (3) as

𝐸𝐴 = ∫
𝛬
(√

𝑔,
√

𝑔0
)

×
(√

𝑔 −
√

𝑔0
)

𝑑𝐴

here 𝑑𝐴 = 𝑑𝑢1𝑑𝑢2 and define a specific form of 𝛬 by

(

𝑔, 𝑔0
)

= 𝜅𝐴

√

𝑔 −
√

𝑔0
√

𝑔0

s in [11], though here in 3D rather than 2D. 𝜅𝐴 is a stiffness co-
fficient, and if it is large the membrane behaves as though nearly
ncompressible, whereas if 𝜅𝐴 is small significant area dilatation may
ccur. To obtain a force, we compute the variation of 𝐸𝐴 with respect
o the surface shape and find that


𝑭𝐴 ⋅ 𝝓𝑑𝑆 = 𝜅𝐴 ∫

(√

𝑔 −
√

𝑔0
√

𝑔0

)

∇𝑠𝒙 ∶ ∇𝑠𝝓𝑑𝑆.

This formulation prevents large changes in global surface area as well
as local surface area since

√

𝑔 and
√

𝑔0 cannot differ by too much at any
point on the surface. However, it is sometimes convenient to consider
solely global surface area changes. In that case, a similar derivation
leads to a force of the form

∫
𝑭𝐴 ⋅ 𝝓𝑑𝑆 = 𝜅𝐴

(

𝐴 − 𝐴0
𝐴0

)

∫
∇𝑠𝒙 ∶ ∇𝑠𝝓𝑑𝑆.

where 𝐴 and 𝐴0 are the current and reference areas of the membrane.
n extension of our results might define 𝛬(𝑔, 𝑔0) to be a nonlinear

function of 𝑔 and 𝑔0 to account for effects like membrane folding,
lthough we have not considered that here.

Computational results suggest that in many cases the shapes ob-
ained using resistance to global vs local surface area change are not

very different, but the tangential deformation patterns that arise in
the surface can be quite different. The forces that resist local surface
changes are able to balance tangential forces on the surface, thus
restricting surface flow, whereas, the global surface area conservation
force has no tangential component, and thus allows for significant
tangential surface flows.

Volume conservation is imposed weakly via

∫
𝑭 𝑉 ⋅ 𝝓𝑑𝑆 = 𝜅𝑉 (𝑉0 − 𝑉 )∫

𝒏 ⋅ 𝝓𝑑𝑆,

where 𝑉 and 𝑉0 are the current and initial volumes, and 𝜅𝑉 is a
onstant. When 𝜅𝑉 is sufficiently large, volume is conserved to well
ithin 1% during simulations.

In some of our simulations, we also include a simple model of
esistance to in-plane shear deformation. For a surface, the deformation
radient is defined as [53]

𝑠0𝒙(𝑡) = 𝒆𝑖(𝑡)⊗ 𝒆𝑖

where summation over 𝛼 = 1, 2 is implied and ⊗ indicates a tensor
roduct. Various elasticity tensors can be derived from the deformation
radient, and we use the simple example from [54],

0
𝑭𝐸 ⋅ 𝝓𝑑𝑆0 = −∫0

𝐸0

(

1 −

√

2
|∇𝑠0𝒙(𝑡)|

)

∇𝑠0𝒙(𝑡) ∶ ∇𝑠0𝝓𝑑𝑆0

where 𝐸0 is an elasticity modulus and 𝑑𝑆0 =
√

𝑔0𝑑𝑢1𝑑𝑢2. Integration
over ℎ0 is easily done by storing the starting surface, 𝒙ℎ(0). Since

√

𝑔
is approximately conserved, whether we measure forces relative to unit
area on  at time 𝑡 or time 0 is inconsequential (c.f. Theorem 2.6
f [55]). Therefore 𝑭𝐸 can be thought of as a force density acting on 
t time 𝑡. While not studied in detail here, the interaction between cur-
ature and elasticity forces requires further investigation. The presence
f elasticity generally makes the membrane stiffer and more difficult to
eform.
 w

6

3.3. Time stepping

With all of the forces defined, the spatially discrete evolution equa-
tions are written as

∫ℎ
𝜕𝒙ℎ
𝜕𝜏

⋅ 𝝓𝑑𝑆 = ∫ℎ
𝑭 ℎ(𝒙ℎ) ⋅ 𝝓𝑑𝑆 + ∫ℎ

𝒇ℎ ⋅ 𝝓𝑑𝑆

∀𝝓 ∈ 2(ℎ). (19)

ubject to the geometric consistency condition,

∫ℎ
∇𝑠𝒙ℎ ∶ ∇𝑠𝝍𝑑𝑆 = ∫ℎ

𝑯ℎ ⋅ 𝝍𝑑𝑆 ∀𝝍 ∈ 2(ℎ)

nfortunately, we found that after discretizing in time, very small
imesteps were required for stability whenever the applied forces
ere nonzero. Since this restriction remained even when implicit

ime-stepping was used, a different approach was taken.
Rather than solving the shape equations for the surface evolution

o a steady-state, time-stepping was done in a two-stage procedure. We
irst assume that the membrane is embedded in a viscous fluid, and at
ach point on the membrane, the velocity is equal to the fluid velocity
denoted 𝑽 ),

𝜕𝒙(𝑢1, 𝑢2, 𝑡)
𝜕𝑡

= 𝑽 (𝒙(𝑢1, 𝑢2), 𝑡)

The fluid velocity field is obtained by solving Stokes equations with a
single-layer potential on  of density 𝑭 (𝒙) at each instant in time. This
eads to an abstract evolution equation for the membrane velocity

𝜕𝒙
𝜕𝑡

= ∫
𝑼 (𝒙 − 𝒚)𝑭 (𝒚)𝑑𝑆

here 𝑼 is the Stokes equation Green’s function with a delta-function
orce. Its explicit form is given in Appendix B.

To obtain a workable numerical method, we expand 𝒙ℎ in terms of
he nodal basis vectors,

ℎ(𝑢1, 𝑢2, 𝑡) =
𝑛ℎ
∑

𝑖=1
𝒙ℎ𝑖 (𝑡)𝜙

ℎ
𝑖 (𝑢

1, 𝑢2)

he integration over  is approximated via the Method of Regularized
tokeslets (MRS) [56,57]. This entails replacing the singular kernel

by a regularized kernel, denoted 𝑼 𝛿 , and then approximating the
ingle-layer integral via a quadrature method. The regularized kernel is
btained by convolving 𝑼 with a smooth, radially symmetric function
s discussed in Appendix B. Discretizing the time derivative via the
orward Euler method leads to an update formula of the form

𝒙ℎ,𝑛+1𝑖 − 𝒙ℎ,𝑛𝑖
𝛿𝑡

=
𝑛ℎ
∑

𝑗=1
𝑼 𝛿(𝒙

ℎ,𝑛
𝑖 − 𝒙ℎ,𝑛𝑗 )𝑭 ℎ,𝑛𝑗

where 𝒙ℎ,𝑛 = 𝒙ℎ(𝑡𝑛), and the forces at time-step 𝑛, 𝑭 ℎ,𝑛𝑗 are defined as

ℎ,𝑛
𝑗 = ∫ℎ

𝑭 ℎ,𝑛(𝒙ℎ,𝑛) ⋅ 𝝓𝑗𝑑𝑆

his is essentially a form of mass-lumping since for 𝒓 ∈ R3, we are
pproximating

ℎ

[

𝑼 𝛿(𝒓 − 𝒙ℎ)𝑭 ℎ,𝑛
]

⋅ 𝝓ℎ𝑖 𝑑𝑆 ≈ 𝑼 𝛿(𝒓 − 𝒙ℎ𝑖 ) ⋅ ∫ℎ
𝑭 ℎ,𝑛 ⋅ 𝝓ℎ𝑖 𝑑𝑆.

The most costly aspect of this numerical procedure is the ((𝑁ℎ)2)
perations needed to evaluate 𝑼 𝛿(𝒙

ℎ,𝑛
𝑖 −𝒙ℎ,𝑛𝑗 ) for all 𝑖 and 𝑗 at each time

tep. With several thousand points, each time-step takes about 2 sec-
nds on a standard computer or laptop. In the future, improved compu-
ational efficiency could be obtained by approximating the summation
ia a fast algorithm.

While this method appears more numerically stable than direct
olution of the shape equations, the time step still must be kept fairly
mall (on the order of 10−5 to 10−4 relative to the characteristic
ime scale). This is due to nonlinearities in the force computation as
ell as the CFL condition of the forward Euler method. Thus, typical
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Fig. 3. Equilibrium shapes for prolate spheroids with reduced volumes 𝛤 = 0.85, 0.65, 0.55, and base parameters otherwise. The color map in this and subsequent figures characterizes
the modulus of the mean curvature, with areas of high curvature yellow and low curvature blue. Length units here and hereafter are in μm and curvature in μm−1. Note that the
shapes are axisymmetric about the 𝑥-axis. The second row consists of the outline of the shapes in the first row. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Fig. 4. The spatial variation of 𝑘𝑐 when the variation of the bending modulus is
𝛥𝑘𝑐 = 8.

simulations involve 104 to 5 × 104 timesteps and take several hours to
day to run.

To check that the steady-state shapes obtained by the MRS are
ood approximations of the shape equations, we employed a second
tage of the solution procedure where we evolve the discretized shape
volution equations (Eqs. (14) and (15)) starting from the ‘‘steady-
tate’’ as determined by the MRS. The goal is to check that the viscous
nteractions inherent in the MRS do not alter the stationary shape
ignificantly.

The advantage of this approach is that the fluid viscosity appears
o stabilize the membrane deformations — thus it is computationally
asier to evolve the surface according to the MRS. The second stage is
rimarily a check that a stationary shape has indeed been determined,
ut these checks can be numerically-expensive since very small time
teps are sometimes needed for stability when there are large applied
orces on the membrane. Thus the shape equation was only run for

relatively short amount of time in some cases. However, in previ-
us work [23] it was shown that under physiological conditions the
ffect of fluid on the cell shapes is small, and thus we do not expect
hat significant shape changes will occur even if such simulations
ould be extended in time. Because of these considerations, we only
sed this additional step to test that the resulting shapes (from the
RS simulations) are similar to those obtained by directly solving the

hape equations in a few example cases. Larger numbers of simulations
7

are then conducted with the MRS time-stepping to study how the
steady-state shapes vary as parameters are changed.

On the other hand, under strong fluid flow, the steady-state shapes
can differ significantly from those obtained by the shape equation
solution. For instance, red blood cells are known to deform significantly
in response to fluid–structure interactions under imposed flows, and
thus steady-state shapes found via a shape equation would not apply
there.

4. Computational results

In this section we discuss the shapes that result under various
prescriptions of the intrinsic and extrinsic properties and forces. As a
baseline, we take 𝑘𝐺 = 𝑘𝑐 = 1, 𝒇 = 𝟎, 𝐸0 = 0, and 𝜅𝐴 = 1000 as
default values of the parameters — all in non-dimensional units. For
all objects of a given volume, a sphere has the least surface area, and
the combination 𝑉 ∕𝐴3∕2 = 1∕(6

√

𝜋) is dimensionless. Thus, we define
the reduced volume 𝛤 = 6

√

𝜋𝑉 ∕𝐴3∕2 where 𝑉 and 𝐴 are the volume
and surface area of . All results herein are obtained computationally,
and we begin with the role of intrinsic properties.

4.1. Cell shapes in the absence of applied forces

The simplest case, which serves as a reference case throughout, is
obtained when the membrane properties are constant across the surface
and there are no applied forces. If the initial shape is a sphere, which
has 𝛤 = 1, it remains spherical, but starting from prolate ellipsoids of
varying eccentricity (and hence reduced volume) at 𝜏 = 0, the resulting
equilibrium shapes are as shown in Fig. 3. As the reduced volume is
decreased, pill-like shapes, followed by dumbbell-like shapes result.
Even though one of the principal curvatures is negative on the saddles
in (b) and (c), the other is large enough to make their sum positive.

In living cells, the cellular cortex need not be distributed evenly,
and variations in cortical thickness can occur [24]. We expect that
these variations can locally increase or decrease the effective bending
moduli of the membrane-cortex system, and we next describe how this
is incorporated in our model.

If 𝑘𝑐 and 𝑘𝐺 vary individually or in concert, significant deviations
from these shapes result. In what follows, we prescribe the variation
of the moduli in the form 𝑘𝑐 (𝑢1, 𝑢2) = 1 + 𝛥𝑘𝑐𝜅(𝑢1, 𝑢2), where 𝜅 is a
scalar-valued surface function with 0 ≤ 𝜅 ≤ 1, and 𝛥𝑘𝑐 specifies the
magnitude of variation (and similarly for 𝑘 ). Fig. 4 shows the result
𝐺
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Fig. 5. Changes of shape resulting from a variable 𝑘𝑐 and 𝑘𝐺 . The top row depicts the equilibrium shape, and the bottom row an outline looking down on the shape. On the left
𝑘𝑐 = 8 and 𝛥𝑘𝐺 = 0, middle has 𝛥𝑘𝑐 = 0, 𝛥𝑘𝐺 = 8, and right has 𝛥𝑘𝑐 = 𝛥𝑘𝐺 = 8. In each case, the bending moduli are smallest on the left and largest on the right.
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or the case in which 𝑘𝑐 varies from 1 at the left end to 9 at the right
nd.

In Fig. 5 we show the effect of imposing different variations in
he bending moduli, with 𝛤 = 0.75. In this figure we see significant
ifferences in the effect of variation in the bending modulus as com-
ared with the Gaussian curvature modulus. While the form of the
orces depends in each case in quite complex ways on the surface
eometry, one apparent effect of the bending modulus variation is that
he curvature radius increases where the bending modulus is large. In
ontrast, the Gaussian curvature modulus tends to produce saddle-like
egions where one principal curvature is positive and the other negative
r close to zero.

An important outcome of these examples is that the shape changes
ccurring do not depend on any external (e. g., active) forces — they
re solely the result of varying intrinsic membrane properties across
he membrane. The initiation of motion through variation in mem-
rane mechanical properties may be a means in which cells can move,
n addition to the more commonly studied active forces induced by
ytoskeletal activity.

.2. Cell shapes under applied forces

Active forces are also very important for understanding observed
ell shapes and the motion of cells. We use surrogates for cortical forces
y imposing normal and tangential force fields on the cell membrane,
nd then compute the corresponding deformation and steady-state
hapes. These fields can be normally oriented, tangentially oriented,
r some combination of normal and tangential components.

This can be done by computing the normal and tangential vectors
t each point on the surface,  and adding forces of the form
𝑛 = 𝑓 (𝑢1, 𝑢2)𝒏

r
𝑡
𝑖 = 𝑓 (𝑢1, 𝑢2)𝒆𝑖

here the function 𝑓 (𝑢1, 𝑢2) is a scalar-valued function of the surface
coordinates that gives the force strength at each point on the surface.
In Fig. 6, this type of force is shown where 𝑓 (𝑢1, 𝑢2) is simply a linearly-
increasing function from the left to the right of the cell. However, it is
not just the applied forces that determine the cell shape, but also how
the intrinsic membrane forces interact with the applied forces. In Fig. 7
we show the magnitudes of the different force types at selected points

on an axial cross-section curve for a selected set of parameters.

8

Some results of simultaneously varying normal forces and tangential
orces are shown in Fig. 8, where varying levels of the forces are
pplied to the same starting shape, which is a prolate ellipsoid with
= 0.75. Interestingly, normal and tangential forces seem to have

oughly opposite effects on the cell shape. Furthermore, under certain
ombinations of normal and tangential forces, the shape remains essen-
ially unchanged. It is also noteworthy that tangential force gradients
ave a greater effect on the cell shape than the normal force gradients,
s judged by a comparison of (c) and (g), noting that the tangential
orce gradient is much shallower than the normal force gradient. This
ifferent in sensitivity to normal and tangential forces depends on the
agnitude of the bending modulus 𝑘𝑐 and on the degree of surface

elasticity in the cell membrane, e. g., for a stiffer membrane modulus,
𝐸0, the difference would be reduced (the results in Fig. 8 are for 𝐸0 =
0). The normal forces are primarily counteracted by curvature forces,
whereas the tangential forces are balanced area-elasticity forces and
surface gradients of the bending moduli (if they vary). In Fig. 9, the
effect of changing 𝐸0 on a cell with tangential forces is depicted, and
we see that larger 𝐸0 leads to less deformation. In a cell, the elasticity
modulus may be effected by changes in cross-linking, or the structure
of the cytoskeleton, however further investigation of this is needed.

While cell motion and velocity was not studied in detail here, it is a
subject of future interest, and we make a few tentative comments about
the direction of cell motion due to applied forces. The cell appears to
move opposite the side of the cell that has a higher concentration of
normal forces, but towards the side that has higher tangential forces.
Thus, changing the type of force can potentially lead to changes in the
direction of cell motion.

4.3. Surface stresses during mitosis

Aside from the direct application of forces to the cell membrane, it
is also useful to think of the applied forces as being derived from stress
tensors that represent the cytoskeletal contractility. Given the surface
forces one can derive a surface tensor in 2D by the standard Cauchy
argument. To study the effect of imposed forces in this framework, we
compute the divergence of the resulting stress tensor at each point on
the surface. For instance, for an isotropic stress, of the form 𝝈𝑎 = 𝛾∇𝑠𝒙
where 𝛾 is the possibly variable surface tensor, we compute the force
weakly as a divergence, e.g.

𝒇 ⋅ 𝝓𝑑𝑆 = − 𝛾∇𝑠𝒙 ∶ ∇𝝓𝑑𝑆.
∫ ∫



J. Stotsky and H.G. Othmer International Journal of Non-Linear Mechanics 140 (2022) 103907
Fig. 6. A depiction of the applied force fields. The norm of the force density under a left-to-right gradient is shown in (a), and in (b) a sampling of the force vectors for normal
(blue) and tangential (red) applied forces. In each case the force is zero at the left and is at a maximum at the right. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 7. An illustration of the force balances at several locations along the cell
membrane. The applied forces in this figure play a small role in comparison to the
other forces.

The same weak-form approach applies even for non-isotropic stresses.
As long as 𝝈𝑎 is known, the force can be found via a weak-divergence
computation.

As an example, we consider the development of furrows during
mitosis. During mitosis, the dividing cell forms a circumferential furrow
that contracts inward, eventually leading to the severing of the cell
along its mid-line and the formation of two daughter cells. This process
occurs in part from the contraction of circumferential cytoskeletal
fibers. An interesting result that we have observed is that if these fibers
are isotropic on the cell membrane, furrowing does not occur, however,
when they are aligned azimuthally, furrowing occurs in proportion to
the contractility (measured as a surface tension) of the fibers. In Fig. 10,
an image of the mitosis process from a simulation is depicted. Of course,
our purely mechanical membrane model is too simple to capture all
of the details, and we do not expect the time-course of the process to
necessarily reflect reality, nonetheless, this gives some indication of the
importance of cytoskeletal fiber orientation during mitosis.

4.4. Intracellular pressure and velocity fields

While the focus of this article is on cell shapes, the use of the Method
of Regularized Stokeslets allows for calculation of velocity and pres-
sure fields as well. However, these results are somewhat preliminary
since effects such as viscosity contrast viscoelasticity have not been
considered.
9

The pressure Lagrange multiplier in Eq. (3) ensures volume con-
servation for the enclosed region. For a three-dimensional shape, the
bending forces can lead to negative or positive values of P, and surface
tension leads to a positive pressure inside the cell relative to the
exterior. In the presence of fluid flow, the pressure in the cell can
be non-uniform as well. This is particularly of interest in so-called
‘‘fountain flows’’, or internal front-to-back circulation inside the cell
(see Fig. 11). Note that for the fluid velocity plot we have used only
a global surface area conservation to allow for less restricted surface
flow on the membrane.

In response to uniform normal forces, the pressure inside the cell
increases with the magnitude of the applied force, as shown in Eq. (10).
In a cell the magnitude of pressure change across the membrane is gov-
erned by a combination of contractility from the cytoskeleton, osmotic
forces from concentration differences, and bending forces. As indicated
earlier, the combined effect of the osmotic forces and contractile forces
can be modeled by imposing normal forces on the membrane. In the
simulations we have conducted, the pressure difference from bending
forces is often much smaller than that from the imposed forces, and thus
the functional dependence of the pressure drop is essentially a linear
function of the applied normal force, as suggested by the generalized
Laplace law (10). The computational results are shown in Fig. 12, and
the linear relationship exists under a wide range of applied forces.
Nonetheless, with no imposed forces one can observe a small pressure
drop of order 1Pa across the membrane.

5. Discussion

We have shown how variable bending moduli and the distribution
of forces applied to a cell membrane controls the shape of the cell, and
how the applied forces determine the direction of movement of a cell.
To do this we used a high-level description of the membrane-cortex
interaction to facilitate analysis without a detailed model of the cortex.
Our aim is to first identify general principles – for example, how does
tension affect cell morphology and the intercellular pressure – before
developing more detailed models. Progress in this work in this area may
have a significant influence on how cell movement is understood, for
example in cancer metastasis, and will aid in formulating and testing
more detailed models. There are many aspects yet to be investigated,
including how the shape affects the swimming speed in a fluid or
movement in confined spaces. Thus future work will focus of these
problems, first using the high-level description of force used here,
and then a detailed model of the cortex and its interaction with the
membrane.

There are also interesting unanswered mathematical questions as-
sociated with the shape equations. In particular, earlier results have



J. Stotsky and H.G. Othmer International Journal of Non-Linear Mechanics 140 (2022) 103907

o
(
l

Fig. 8. Cell shapes in response to various combinations of normal and tangential forces at 𝛤 = 0.75. The left column has 𝑓 𝑡 equal to 0. The middle column, 𝑓 𝑡 varies in (0, 3) and
n the right 𝑓 𝑡 varies in (0, 7). The top row has 𝑓 𝑛 = 0, the middle row has 𝑓 𝑛 varying in (0, 10), and the bottom row has 𝑓 𝑛 varying in (0, 25). Coloring reflects the curvature
units μm−1). Each image has the same color scale with dark blue corresponding to 0 and bright yellow ≥ 4 μm−1. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
Fig. 9. Effect of increasing 𝐸0 on steady-state shapes. From left to right 𝐸0 = 0, 50, 100 and in all cases 𝑓 𝑡 varies from 0 on the left to 5 on the right, and 𝑓 𝑛 = 0. Notice that the
left figure is more deformed compared with the other two.
Fig. 10. Simulation of cell mitosis with (a) isotropic tension, and (b) anisotropic tension aligned with a hypothetical fiber orientation to cause constriction of the middle of the
cell. Coloring according to the mean curvature. (c) Surface tension distribution in the isotropic case.
found multiple equilibria for a given reduced volume level under
Helfrich flow, [31], and we have replicated some of these results
computationally. For instance, starting from oblate, rather than prolate
ellipsoids, the steady-state shape becomes biconcave as the reduced
volume is decreased. In Fig. 13, the evolution, starting from rather
complex starting shapes to distinct steady-state shapes at the same
reduced volume are shown. In this sense, the apparent non-uniqueness
may be the result of projecting a higher dimensional manifold of shapes
10
onto a single parameter. For instance, if one includes both reduced
volume and the starting shape, then the non-uniqueness apparently
vanishes. It would be interesting to determine what types of starting
shapes lead to different equilibria. In future work, many extensions
could be made to attempt to study this non-uniqueness in the context
of applied forces as well. Detailed phase diagrams have been computed
when there are no applied forces [31], but much remains to be done to
fully understand how external forces can alter the steady-state shapes.
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Fig. 11. Depiction of a fountain flow circulation within a cell. The velocity field shown
is obtained using the MRS. The largest velocities are on the order of 10 μm∕s.

Fig. 12. Mean pressure drop as a function of a uniform applied normal force. Note that
the 𝑦-intercept is near, but not quite at zero due to some residual pressure drop from the
bending forces. The blue asterisks represent pressure drops from individual simulations
and the black curve is merely connecting the dots. Units for the force-density and
pressure are pN/μm2.
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Appendix A. Summary of the derivations

Notation and basic quantities

A smooth surface  ⊂ 𝑅3 will be parameterized by 𝑢 = (𝑢1, 𝑢2) and
he position vector in 𝑅3 to the surface is denoted 𝒙(𝑢). The surface
angent vectors (which may be nonunitary) at each point on the surface
re defined by the parametric derivative of 𝒙 with respect to the surface
oordinates, namely,

𝑖(𝑢1, 𝑢2) =
𝜕𝒙
𝜕𝑢𝑖

(𝑢1, 𝑢2) 𝑖 = 1, 2

and the surface normal 𝒏 is defined by the relations 𝒏 ⋅ 𝒆𝑖 = 0, 𝒏 ⋅ 𝒏 ≡
⟨𝒏,𝒏⟩ = 1. The covariant metric tensor of the surface is defined as
𝑖𝑗 = 𝒆𝑖 ⋅𝒆𝑗 , the contravariant surface metric tensor is the inverse tensor
efined by the relation 𝑔𝑖𝑗𝑔𝑗𝑘 = 𝛿𝑘𝑖 , and the determinant of 𝑔𝑖𝑗 is denoted
y 𝑔 ≡ 𝑑𝑒𝑡(𝑔𝑖𝑗 ). Here and hereafter a repeated upper and lower index
enotes summation.

The Levi-Civita symbol is defined in covariant and contravariant
orm as

𝜖𝑖𝑗 = 𝑒𝑖𝑗
√

𝑔

𝜖𝑖𝑗 = 𝑒𝑖𝑗∕
√

𝑔

where 𝑒12 = −𝑒21 = 1 and 𝑒11 = 𝑒22 = 0.
The second derivative of 𝒙 is given by Gauss’ formula

𝑖,𝑗 ≡
𝜕2𝒙
𝜕𝑢𝑖𝜕𝑢𝑗

= 𝛤 𝑘𝑖𝑗𝒆𝑘 + 𝐵𝑖𝑗𝒏,

where 𝒏 is the outward normal to the surface and the factor 𝛤 𝑘𝑖𝑗 is called
Christoffel symbol and is defined as

𝑘
𝑖𝑗 = 𝒆

𝑘 ⋅
𝜕𝒆𝑖
𝜕𝑢𝑗

.

This is a surface directional derivative in the direction of 𝒆𝑖, where , 𝑖
denotes the derivative with respect to 𝑢𝑖. The components of the surface
curvature tensor 𝐵 are defined as

𝐵𝑖𝑗 = 𝒏 ⋅ 𝒆𝑖,𝑗 = −𝒏,𝑗 ⋅ 𝒆𝑖.

Weingarten’s equation relates the variation of the normal to the curva-
ture tensor via

𝒏,𝑖 = −𝐵𝑗𝑖 𝒆𝑗 .

The mean curvature is 𝐻 = 1
2𝐵

𝑖
𝑖 , and the Gaussian curvature is given

y 𝐾 = 𝑑𝑒𝑡(𝐵⋅
⋅ ).

Derivatives in the direction of the tangent vectors or their dual are
alled covariant derivatives. The components of the covariant deriva-
ive of a co- and contravariant vector 𝒘 defined on  are

∇𝑠,𝑗 (𝑤𝑖) ≡
𝜕𝑤𝑖
𝜕𝑢𝑗

−𝑤𝑘𝛤 𝑘𝑖𝑗 and ∇𝑠,𝑗 (𝑤𝑖) ≡
𝜕𝑤𝑖

𝜕𝑢𝑗
+𝑤𝑘𝛤 𝑖𝑘𝑗 ,

where in each case the second term accounts for the variation of the
basis on the surface, and the set {𝒆𝑖} is the dual basis to {𝒆𝑖}. This
leads to definitions of the gradient and divergence of a vector field
on  as follows. Hereafter we consider only contravariant vectors and
define ∇𝑠 ≡ 𝒆𝑖∇𝑠,𝑖; then the surface gradient of a scalar is the standard
arametric gradient

𝑠𝐹 = (∇𝑠,𝑖𝐹 )𝒆𝑖

nd the surface gradient of a vector is

𝑠𝑭 = ∇𝑠,𝑖(𝐹 𝑗𝒆𝑗 + 𝐹 𝑛𝒏)𝒆𝑖

= 𝐹 𝑗;𝑖𝒆𝑗𝒆
𝑖 + 𝐹 𝑛;𝑖𝒏𝒆

𝑖 + 𝐹 𝑛𝒏;𝑖𝒆𝑖 + 𝒆𝑗; 𝑖𝐹 𝑗

=
(

𝐹 𝑗;𝑖 − 𝐹
𝑛𝐵𝑗𝑖

)

𝒆𝑗𝒆𝑖 +
(

𝐹 𝑛;𝑖 + 𝐹
𝑗𝐵𝑗𝑖

)

𝒏𝒆𝑖.

here a semicolon denotes the covariant derivative, i.e., ∇𝑠,𝑖𝑤𝑗 ≡ 𝑤𝑗;𝑖.
The divergence of a vector field is given by

⋅ 𝑭 = ∇ (𝐹 𝑗𝒆 + 𝐹 𝑛𝒏) ⋅ 𝒆𝑖 = 𝐹 𝑗 − 𝐹 𝑛𝐵𝑖 = 𝐹 𝑖 − 2𝐻𝐹 𝑛
𝑠 𝑠,𝑖 𝑗 ;𝑗 𝑖 ;𝑖
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In particular we have

∇𝑠 ⋅ 𝒏 = ∇𝑠,𝑖𝒏 ⋅ 𝒆𝑖 = −𝐵𝑗𝑖 𝒆
𝑖 ⋅ 𝒆𝑗 = −𝐵𝑖𝑖 = −2𝐻

n important and related result is the surface divergence theorem. This
an be stated for closed surfaces as


∇𝑠 ⋅ 𝑭𝑑𝑆 = ∫

−2𝐻 𝑭 ⋅ 𝒏 𝑑𝑆

n terms of how we have defined 𝒏 and 𝐻 . From this, a surface Green’s
dentity (partial integration formula) may be obtained:


∇𝑠 ⋅ (𝜓𝑭 ) 𝑑𝑆 = ∫

𝜓∇𝑠 ⋅ 𝑭 + 𝑭 ⋅ ∇𝑠𝜓𝑑𝑆 = −∫
2𝐻 𝜓𝑭 ⋅ 𝒏𝑑𝑆.

Another related result for smooth scalar fields 𝐹 is

∫
∇𝑠 ⋅ ∇𝑠𝐹 𝑑𝑆 = 0

since ∇𝑠𝐹 has no normal component. Note that for arbitrary 𝑭 and
, these integration formulas are only correct on closed surfaces.
owever, since cell membranes are typically closed surfaces, we do not
ncounter any open surfaces in this article.

eformation of a surface of fixed free energy

In seeking a stable shape of a cell under imposed forces we look for
urfaces of minimum free energy as stationary surfaces of the evolution
quations for surface variations. To derive the evolution equations we
mpose an infinitesimal deformation of the surface by imposing an
nfinitesimal change in the position vector to any point on the surface
n the form

𝒙 = 𝛼𝑖𝒆𝑖 + 𝛽𝒏.

his induces changes in the factors that characterize the surface, such
s the tangent vectors, the area, etc. Those needed for the variation of
erms in the energy are as follows.

𝛿𝐞𝑗 =
(

∇𝑠,𝑖𝛼𝑘 − 𝛽𝐵𝑘𝑗
)

𝐞𝑘 +
(

𝛽,𝑗 + 𝛼𝑘𝐵𝑘𝑗
)

𝐧,

𝛿𝐧 = −
(

𝛼𝑘𝐵𝑖𝑘 + ∇𝑖𝑠𝛽
)

𝐞𝑖,
𝛿𝑔𝑖𝑗 = ∇𝑠,𝑖𝛼𝑗 + ∇𝑠,𝑗𝛼𝑖 − 2𝛽𝐵𝑖𝑗 ,

𝛿𝑔𝑖𝑗 = −∇𝑖𝑠𝛼
𝑗 − ∇𝑗𝑠𝛼

𝑖 + 2𝛽𝐵𝑖𝑗 ,

𝛿𝐵𝑖𝑗 =
(

∇𝑠,𝑖∇𝑠,𝑗 − 2𝐻𝐵𝑖𝑗 +𝐾𝑔𝑖𝑗
)

𝛽 + 𝐵𝑖𝑘∇𝑠,𝑗𝛼𝑘 + 𝐵𝑘𝑗∇𝑠,𝑖𝛼𝑘 + 𝛼𝑘∇𝑠,𝑘𝐵𝑖𝑗 ,
( 𝑖 )
𝛿𝑔 = 𝑔 2∇𝑠,𝑖𝛼 − 4𝐻𝛽 , v
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√

𝑔 =
√

𝑔
(

∇𝑠,𝑖𝛼𝑖 − 2𝐻𝛽
)

,

𝛿𝐻 =
(

2𝐻2 −𝐾
)

𝛽 + 1
2
𝛥𝑠𝛽 + 𝛼𝑘∇𝑠,𝑘𝐻,

𝛿𝐾 = (2𝐻𝛿𝑗𝑖 − 𝐵
𝑗
𝑖 )∇𝑠,𝑗∇

𝑖
𝑠𝛽 + 2𝐻𝐾𝛽 + 𝛼𝑘∇𝑠,𝑘𝐾

= 𝛥𝑠𝛽 + 2𝐻𝐾𝛽 + 𝛼𝑘∇𝑠,𝑘𝐾.

he surface Laplacian is 𝛥𝑠 ≡ ∇2
𝑠 ≡ (

√

𝑔)−1𝜕𝑖(
√

𝑔𝑔𝑖𝑗𝜕𝑗 ) and 𝛥𝑠 ≡
(
√

𝑔)−1𝜕𝑖
(√

𝑔(2𝐻𝑔𝑖𝑗 − 𝐵𝑖𝑗 )𝜕𝑗
)

and 𝑖, 𝑗 = 1, 2 throughout.
To illustrate the derivation of these, consider the first two.

𝛿𝒆𝑗 =
𝜕𝛿𝒙
𝜕𝑢𝑗

=
(

𝜕𝛼𝑖

𝜕𝑢𝑗
𝒆𝑖 + 𝛼𝑖

𝜕𝒆𝑖
𝜕𝑢𝑗

)

+
(

𝜕𝛽
𝜕𝑢𝑗

𝒏 + 𝛽 𝜕𝒏
𝜕𝑢𝑗

)

=
(

𝜕𝛼𝑖

𝜕𝑢𝑗
𝒆𝑖 + 𝛼𝑖𝛤 𝑘𝑖𝑗𝒆𝑘 + 𝛼

𝑖𝐵𝑖𝑗𝒏
)

+
(

𝜕𝛽
𝜕𝑢𝑗

𝒏 − 𝛽𝐵𝑖𝑗𝒆𝑖
)

=
(

∇𝑠,𝑗𝛼𝑖 − 𝛽𝐵𝑖𝑗
)

𝒆𝑖 +
(

𝜕𝛽
𝜕𝑢𝑗

+ 𝛼𝑖𝐵𝑖𝑗

)

𝒏,

nd for 𝛿𝒏

𝒏 = −
(

𝒏 ⋅ 𝛿𝒆𝑗
)

𝒆𝑗

= −
(

𝜕𝛽
𝜕𝑢𝑗

+ 𝛼𝑖𝐵𝑖𝑗

)

𝒆𝑗 .

Now consider an integral that involves a general quantity 𝑄 on the
urface.


𝑄𝑑𝑆

here 𝑑𝑆 =
√

𝑔 𝑑𝑢1𝑑𝑢2 is the area element and 𝑄 is some sufficiently
smooth function defined on the surface. Now consider a variation of
the surface, and assume that 𝑄 may be dependent upon the geometry.
Then we have
𝛿
𝛿𝒙 ∫𝑆

𝑄𝑑𝑆 = ∫𝑆
𝛿
𝛿𝒙

(

𝑄
√

𝑔
)

𝑑𝑢1𝑑𝑢2

= ∫𝑆
𝑄1
2
(𝑔𝑖𝑗𝛿𝑔𝑖𝑗 )

√

𝑔𝑑𝑢1𝑑𝑢2 + ∫𝑆
𝛿𝑄
𝛿𝒙

⋅ 𝛿𝒙
√

𝑔𝑑𝑢1𝑑𝑢2

= ∫𝑆
𝑄∇𝑠 ⋅ 𝛿𝒙

√

𝑔𝑑𝑢1𝑑𝑢2 + ∫𝑆
𝛿𝑄
𝛿𝒙

⋅ 𝛿𝒙
√

𝑔𝑑𝑢1𝑑𝑢2

= ∫𝑆

(

𝑄∇𝑠 ⋅ 𝛿𝒙 + 𝛿𝑄
𝛿𝒙

⋅ 𝛿𝒙
)

𝑑𝑆

= ∫𝑆

(

(

−∇𝑠𝑄 − 2𝐻𝑄𝒏
)

⋅ 𝛿𝒙 + 𝛿𝑄
𝛿𝒙

⋅ 𝛿𝒙
)

𝑑𝑆

(20)

rom this we see that there are two types of quantities, those with
alues that depend on variations of the surface such as the mean
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curvature, and those that are merely advected as the surface moves,
such as the bending modulus, which we call Lagrangian quantities.

Derivation of forces with variable bending moduli

Consider a Helfrich–Canham functional with variable 𝑘𝑐 and 𝑘𝐺. We
will assume that although 𝑘𝑐 and 𝑘𝐺 are functions of position, they are
merely advected with any deformation. In other words they are treated
like Lagrangian quantities.

First consider the term with 𝑘𝑐 . Using Eq. (20) with 𝑄 = 1
2𝑘𝑐 (2𝐻 −

𝐶0)2 yields,

𝛿𝐸𝑐 = ∫ 𝑘𝑐 (2𝐻 − 𝐶0)
𝛿𝐻
𝛿𝒙

⋅ 𝛿𝒙

+
(

−1
2
∇𝑠𝑘𝑐 (2𝐻 − 𝐶0)2 − 𝑘𝑐𝐻(2𝐻 − 𝐶0)2𝒏

)

⋅ 𝛿𝒙𝑑𝑆

where we have used the fact that 𝛿𝑘𝑐 = 0 by assumption. Substituting
the formula for 𝛿𝐻 above, using the partial integration formula twice,
and simplifying yields a formula,
𝛿𝐸𝑐
𝛿𝒙

=
[

𝛥𝑠
[

𝑘𝑐 (2𝐻 − 𝐶0)
]

+ 𝑘𝑐 (2𝐻 − 𝐶0)
(

2𝐻2 − 2𝐾 +𝐻𝐶0
)]

𝒏

−
[1
2
(2𝐻 − 𝐶0)2∇𝑠𝑘𝑐

]

he resulting forces due to this term are 𝒇 𝑐 = − 𝛿𝐸𝑐
𝛿𝒙 .

Next consider 𝑘𝐺(𝑢1, 𝑢2) as a Lagrangian function as above and
onsider the variation of

𝐾 = ∫
𝑘𝐺𝐾 𝑑𝑆.

ince this force is rarely discussed in the literature, we provide a more
etailed calculation. Here 𝑄 = 𝑘𝐺𝐾, thus, upon differentiation we

obtain

𝛿𝐸𝐾 = ∫

(

(

−∇𝑠𝑄 − 2𝐻𝑄𝒏
)

⋅ 𝛿𝒙 + 𝛿𝑄
𝛿𝒙

⋅ 𝛿𝒙
)

𝑑𝑆

= ∫

[

−∇𝑠
(

𝑘𝐺𝐾
)

− 2𝑘𝐺𝐻𝐾𝒏
]

⋅ 𝛿𝒙

+ 𝑘𝐺
(

(2𝐻𝛿𝑗𝑖 − 𝐵
𝑗
𝑖 )∇𝑠,𝑗∇

𝑖
𝑠𝛽 + 2𝛽𝐾𝐻 + 𝛼𝑖∇𝑠,𝑖𝐾

)

𝑑𝑆

= ∫
−𝐾∇𝑠𝑘𝐺 ⋅ 𝛿𝒙 + 𝑘𝐺

(

(2𝐻𝛿𝑗𝑖 − 𝐵
𝑗
𝑖 )∇𝑠,𝑗∇

𝑖
𝑠𝛽
)

𝑑𝑆

To further simplify the second term, consider the divergence integral,

∫
∇𝑖𝑠𝑘𝐺

(

(2𝐻𝛿𝑗𝑖 − 𝐵
𝑗
𝑖 )∇𝑠,𝑗𝛽

)

𝑑𝑆 = 0.

which is 0 due to the divergence theorem, and since there is no normal
component of the vector 𝑘𝐺(2𝐻𝛿

𝑗
𝑖 + 𝐵

𝑗
𝑖 )∇𝑠,𝑗𝛽. Upon using the product

rule for covariant differentiation,

∫
𝑘𝐺

(

(2𝐻𝛿𝑗𝑖 − 𝐵
𝑗
𝑖 )∇𝑠,𝑗∇

𝑖
𝑠𝛽
)

𝑑𝑆 + ∫
∇𝑖𝑠

[

𝑘𝐺(2𝐻𝛿
𝑗
𝑖 − 𝐵

𝑗
𝑖 )
]

∇𝑠,𝑗𝛽𝑑𝑆 = 0

where the first term is the normal component of 𝛿𝐸𝐾 . Next, note that
the Gauss–Codazzi formula implies that,

∇𝑠,𝑖𝐵𝑖𝑗 = ∇𝑠,𝑗𝐵𝑖𝑖 = 2∇𝑠,𝑗𝐻,

to obtain

∇𝑠,𝑖
(

2𝐻𝛿𝑖𝑗 − 𝐵
𝑖
𝑗

)

= ∇𝑠,𝑗 (2𝐻 − 2𝐻) = 0

This allows us to simplify

∫
∇𝑖𝑠

[

𝑘𝐺(2𝐻𝛿
𝑗
𝑖 − 𝐵

𝑗
𝑖 )
]

∇𝑠,𝑗𝛽𝑑𝑆 = ∫

[

(2𝐻𝛿𝑗𝑖 − 𝐵
𝑗
𝑖 )∇

𝑖
𝑠𝑘𝐺

]

∇𝑠,𝑗𝛽𝑑𝑆.

A second use of the partial integration formula yields

∫

[

(2𝐻𝛿𝑗𝑖 − 𝐵
𝑗
𝑖 )∇

𝑖
𝑠𝑘𝐺

]

∇𝑠,𝑗𝛽𝑑𝑆 + ∫

[

∇𝑠,𝑗 (2𝐻𝛿
𝑗
𝑖 − 𝐵

𝑗
𝑖 )∇

𝑖
𝑠𝑘𝐺

]

𝛽𝑑𝑆 = 0.

Combining this last term with the tangential terms yields
𝛿𝐸𝐾 = −𝐾∇ 𝑘 +

[

∇ (2𝐻𝛿𝑗 − 𝐵𝑗 )∇𝑖𝑘
]

𝒏 = −𝐾∇ 𝑘 + 𝛥 𝑘 .

𝛿𝒙 𝑠 𝐺 𝑠,𝑗 𝑖 𝑖 𝑠 𝐺 𝑠 𝑔 𝑠 𝑔

13
The modified Laplacian term can be represented concisely in vector
form by defining tensors

𝑾 = 𝐵𝑖𝑗𝒆𝑖𝒆
𝑗 , 𝑰𝑠 = 𝒆𝑖𝒆𝑖

where 𝑰𝑠 is a surface projection which projects an arbitrary vector at
point 𝒙 ∈  into the tangent space of  at 𝒙. Thus, we can define the
tangential and normal force components:

𝒇 𝑡 = 𝑰𝑠𝒇 , 𝑓 𝑛 = 𝒏 ⋅ 𝒇 = 𝒏 ⋅ (𝑰 − 𝑰𝑠)𝒇

For the Gaussian curvature force, we have that

𝑓 𝑛 = (2𝐻𝑰𝑠 −𝑾 ) ∶ ∇𝑠∇𝑠𝑘𝐺
𝒇 𝑡 = 𝐾∇𝑠𝑘𝐺 .

nterchange of the derivative is possible here due to the result above
hat ∇𝑠,𝑖(2𝐻𝛿𝑖𝑗 − 𝐵

𝑖
𝑗 ) = 0.

ppendix B. Numerical methods

ethod of regularized Stokeslets

The solution to Stokes equations in the presence of a boundary force
an be written in terms of a convolution with a tensor-valued Green’s
unction, 𝑼 as [58]

(𝒙, 𝑡) = ∫
𝑼 (𝒙 − 𝒚(𝑡))𝒇 (𝒚(𝑡), 𝑡)𝑑𝑆.

here 𝑼 satisfies (summation implied)

𝜕2𝑈𝑖𝑗
𝜕𝑥𝑘𝜕𝑥𝑘

−
𝜕𝑃𝑖
𝜕𝑥𝑗

= 𝛿𝑖𝑗𝛿(𝒙 − 𝒚)

𝜕𝑈𝑖𝑘
𝜕𝑥𝑘

= 0

where 𝑖, 𝑗, 𝑘 = 1, 2, 3. The term 𝑷 is the Green’s function pressure solu-
tion for a point force. These Green’s functions are known analytically,

𝑈𝑖𝑗 (𝒙) =
1

8𝜋𝜇

( 𝛿𝑖𝑗
|𝒙|

+
𝑥𝑖𝑥𝑗
|𝒙|3

)

, 𝑃𝑖(𝒙) =
1
4𝜋

𝑥𝑖
|𝒙|3

.

Thus, given our computation of 𝒇 above, we can compute the integral
in theory. One issue is that the kernel 𝑼 is weakly singular near 𝒙 = 𝒚,
thus standard quadrature cannot be applied. One way of removing this
difficulty is to first smooth out 𝑼 by convolving it with some smooth
approximate Dirac delta function, e.g.

𝑼 𝛿 = ∫
𝑼 (𝒙 − 𝒚)𝜁𝛿(𝒚)𝑑𝛺,

nd this is the essence behind the method of regularized Stokeslets.
sing the choice of 𝜁𝛿 introduced in [57],

𝛿(𝑟) =
15𝛿4

8𝜋(𝑟2 + 𝛿2)7∕2
,

we now compute 𝒖(𝒙, 𝑡) with the modified kernel.
In order to compute the integral, we note the output of the finite

element methods above typically yields

𝒇ℎ𝑖 = ∫ℎ
𝒇 ⋅ 𝝓𝑖𝑑𝑆

where 𝝓𝑖 is a basis function in the discretization. The integral ∫ 𝑼 𝛿(𝒙−
𝒚)𝒇 (𝒚)𝑑𝑆 is then approximated as

𝒖(𝒙) =
𝑁ℎ
∑

𝑖=1
𝑼 𝛿(𝒙 − 𝒚ℎ𝑖 )𝒇

ℎ
𝑖

since 𝒇ℎ𝑖 already includes a weighting factor that accounts for the local
surface area. This approach can be understood as a form of mass-
lumping in the sense that rather than compute the integral over the
element of 𝑼 𝛿(𝒙 − 𝒚)𝒇 (𝒚), we instead integrate 𝒇 (𝒚) first, and then
simply multiply by an individual value of 𝑼 (𝒙 − 𝒚).
𝛿



J. Stotsky and H.G. Othmer International Journal of Non-Linear Mechanics 140 (2022) 103907

v

𝐾

𝜅

e
R
b
w

o

Computer implementation details and mesh adaptivity

The simulations were run in Matlab. The finite element implemen-
tation was done using FELICITY [59]. Mesh generation was also done
using FELICITY and adaptation was done using a Delaunay-frontal
sweeping method implemented in the Jigsaw meshing library [60].
Upon adaptation, geometric consistency between the new mesh and
the associated mean-curvature approximation was enforced via the
algorithm in [47]. By geometric consistency we mean that the identity

−∫ℎ
∇𝑠𝒙ℎ ∶ ∇𝑠𝝓𝑑𝑆 = ∫ℎ

𝑯ℎ ⋅ 𝝓𝑑𝑆 ∀𝝓 ∈ 2(ℎ)

was enforced on the new mesh. To achieve geometric consistency, the
procedure is to first produce a tentative remeshing of ℎ, and then
compute the curvature,𝑯ℎ

new. The new positions, 𝒙ℎnew are then found
by inverting the Laplace–Beltrami operator while preserving area and
volume via Lagrange-multiplier constraints. For closed surfaces, 𝛥𝑠 has
a null-space consisting of constant functions. Thus, prior to inverting
𝛥𝑠, the mean value of 𝑯ℎ is subtracted off, and after solution, the mean
alue of 𝒙ℎnew is set to 0 to avoid spurious translational motion when

refining. If the center of volume of ℎ is nonzero prior to remeshing,
then after remeshing ℎnew can be translated accordingly.

After remeshing, quantities, such as the area strain 𝜖𝐴 =
√

𝑔−
√

𝑔0
√

𝑔0
,

that are not functions solely of the current geometry are interpolated
from the old mesh to the new mesh.

In addition to remeshing, spatially adaptive refinement is beneficial
when the curvature in certain portions of the surface becomes large
enough such that the shape of the surface is not well represented
by the mesh resolution. Adaptivity was achieved by approximating
the largest magnitude principal curvature. To find this note that the
mean curvature and Gaussian curvature are related to the principal
curvatures, 𝜅1 and 𝜅2 by

= 𝜅1𝜅2, 𝐻 = 1
2
(𝜅1 + 𝜅2).

Solving for 𝜅1 and 𝜅2 yields

1 = 𝐻 +
√

𝐻2 −𝐾

𝜅2 = 𝐻 −
√

𝐻2 −𝐾.

In practice, we take the absolute value of 𝐻2 − 𝐾 since numerical
rror can cause this quantity to become slightly negative on occasion.
emeshing is done by setting the maximum element diameter to be
ounded by a decreasing function of 𝜅 = max

(

|𝜅1|, |𝜅2|
)

. In our case,
e found that the function min

(

1
𝜅2
, 𝜅∕4.5

)

worked well, but this is
heuristic and found via trial and error.

To run the simulation, we start in each case with a timestep of
𝛿𝑡 = 10−10 and allow 𝛿𝑡 to grow over time to a maximum 𝛿𝑡 = 2 × 10−4.
This allows us to capture any fast dynamics that are known to arise in
Helfrich flows, but also allows us to capture longer time scales with
fairly reasonable computational cost. Nonetheless, larger forces and
more extreme deformations may necessitate smaller timesteps, finer
spatial discretization, and hence more costly simulations. The transition
between the small and large time steps was done by multiplying 𝛿𝑡𝑛 =
𝛿𝑡𝑛−1 × 𝑐𝑛 until 𝛿𝑡𝑛 ≥ 2 × 10−4. The amplification factor, 𝑐𝑛 is bounded
by 1.15, but depends on the how rapidly the membrane position
and curvature change between time steps in order to ensure that no
instabilities arise. As a precaution, we also temporarily reduce 𝛿𝑡 by a
factor of 10 after remeshing, although this was probably not needed.

Lastly, to compute the local area elements, consider the set of
nodal points, 𝒙 in the 𝑃2-Lagrange element mesh. Now subdivide each
triangular element in the original discretization into 4 subtriangles. The
value of

√

𝑔(𝒙) associated with each 𝒙 is then computed as 1/3 the sum
f the areas of each subtriangle which contains 𝒙 as a vertex.
14
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