Poisson Brackets for the Grassmann Pentagram Map

Nick Ovenhouse

University of Minnesota

October, 2019 Notre Dame
Outline

1. Background
2. Grassmann Version
3. Non-Commutative Integrability
4. Combinatorial Models
5. Recovering the Lax Invariants
The Basic Idea

Draw a polygon in the (projective) plane
Label the vertices 1,...,n
Draw diagonals connecting i, i+2
Label intersections of diagonals by 1′,...,n′

Definition [Schwartz]
The pentagram map sends the original polygon to the new polygon.

Nick Ovenhouse (UMN) Pentagram Map October, 2019 Notre Dame 3 / 29
The Basic Idea

- Draw a polygon in the (projective) plane
The Basic Idea

- Draw a polygon in the (projective) plane
- Label the vertices 1, \ldots, n
The Basic Idea

- Draw a polygon in the (projective) plane
- Label the vertices 1, . . . , n
- Draw diagonals connecting $i, i + 2$
The Basic Idea

- Draw a polygon in the (projective) plane
- Label the vertices 1, \ldots, n
- Draw diagonals connecting \(i, i + 2\)
- Label intersections of diagonals by 1', \ldots, n'

Definition [Schwartz]
The pentagram map sends the original polygon to the new polygon.

The Basic Idea

- Draw a polygon in the (projective) plane
- Label the vertices 1, \ldots, n
- Draw diagonals connecting i, $i + 2$
- Label intersections of diagonals by $1'$, \ldots, n'
The Basic Idea

- Draw a polygon in the (projective) plane
- Label the vertices 1, \ldots, n
- Draw diagonals connecting \(i, i + 2 \)
- Label intersections of diagonals by \(1', \ldots, n' \)

\[\text{Definition [Schwartz]} \]

The *pentagram map* sends the original polygon to the new polygon.

Twisted Polygons

More generally, we consider twisted polygons.

Definition
A twisted n-gon is a bi-infinite sequence $(p_i)_{i \in \mathbb{Z}}$ of points in \mathbb{P}^2, such that $p_{i+n} = Mp_i$ for some $M \in \text{PGL}_3$. The matrix M is called the monodromy of the polygon.

Definition
PGL_3 acts on the set of twisted polygons by $A \cdot (p_i) = (Ap_i)$. Two polygons in the same orbit are called projectively equivalent. Denote by P_n the set of projective equivalence classes of twisted n-gons.
More generally, we consider *twisted polygons*.
More generally, we consider *twisted polygons*.

Definition

A *twisted n-gon* is a bi-infinite sequence \((p_i)_{i \in \mathbb{Z}}\) of points in \(\mathbb{P}^2\), such that \(p_{i+n} = Mp_i\) for some \(M \in \text{PGL}_3\). The matrix \(M\) is called the *monodromy* of the polygon.
More generally, we consider *twisted polygons*.

Definition

A *twisted n-gon* is a bi-infinite sequence \((p_i)_{i \in \mathbb{Z}}\) of points in \(\mathbb{P}^2\), such that \(p_{i+n} = M p_i\) for some \(M \in \text{PGL}_3\). The matrix \(M\) is called the *monodromy* of the polygon.

Definition

\(\text{PGL}_3\) acts on the set of twisted polygons by \(A \cdot (p_i) = (Ap_i)\). Two polygons in the same orbit are called *projectively equivalent*. Denote by \(\mathcal{P}_n\) the set of projective equivalence classes of twisted \(n\)-gons.
Integrability

Definition
A Poisson mapping $T : M \to M$ on a manifold M is called completely integrable if there are sufficiently many independent conserved quantities f_1, \ldots, f_N so that all
$\{f_i, f_j\} = 0$.

Theorem [OST] [GSTV]
The pentagram map on P_n is completely integrable.

A Poisson mapping $T: M \to M$ on a manifold M is called \textit{completely integrable} if there are sufficiently many independent conserved quantities f_1, \ldots, f_N so that all
\[
\{f_i, f_j\} = 0.
\]

\[\text{Theorem [OST]} \hspace{1em} \text{The pentagram map on } \mathbb{P}_n \text{ is completely integrable.}\]

Integrability

Definition
A Poisson mapping $T : M \to M$ on a manifold M is called completely integrable if there are sufficiently many independent conserved quantities f_1, \ldots, f_N so that all $\{f_i, f_j\} = 0$.

Theorem [OST]1[GSTV]2
The pentagram map on P_n is completely integrable.

Outline

1 Background

2 Grassmann Version

3 Non-Commutative Integrability

4 Combinatorial Models

5 Recovering the Lax Invariants
The Basic Idea

The Grassmann pentagram map sends P_1, \ldots, P_n to Q_1, \ldots, Q_n.

Theorem

The Grassmann pentagram map has a Lax representation. That is, there is a matrix whose spectral invariants are conserved quantities.
The Basic Idea

- “Draw a polygon” (choose n points $P_1, \ldots, P_n \in \text{Gr}_N(3N)$)
The Basic Idea

- “Draw a polygon” (choose \(n \) points \(P_1, \ldots, P_n \in \text{Gr}_N(3N) \))
- “Draw diagonals” (consider \(L_i \), the span of \(P_i, P_{i+2} \))
The Basic Idea

- “Draw a polygon” (choose \(n \) points \(P_1, \ldots, P_n \in \text{Gr}_N(3N) \))
- “Draw diagonals” (consider \(L_i \), the span of \(P_i, P_{i+2} \))
- “Intersect diagonals” (take intersection \(Q_i = L_i \cap L_{i+1} \))
The Basic Idea

- “Draw a polygon” (choose n points $P_1, \ldots, P_n \in \text{Gr}_N(3N)$)
- “Draw diagonals” (consider L_i, the span of P_i, P_{i+2})
- “Intersect diagonals” (take intersection $Q_i = L_i \cap L_{i+1}$)
The Basic Idea

- “Draw a polygon” (choose n points $P_1, \ldots, P_n \in \text{Gr}_N(3N)$)
- “Draw diagonals” (consider L_i, the span of P_i, P_{i+2})
- “Intersect diagonals” (take intersection $Q_i = L_i \cap L_{i+1}$)

Definition [Marí-Beffa, Felipe] ¹

The Grassmann pentagram map sends P_1, \ldots, P_n to Q_1, \ldots, Q_n.

The Basic Idea

- “Draw a polygon” (choose n points $P_1, \ldots, P_n \in \text{Gr}_N(3N)$)
- “Draw diagonals” (consider L_i, the span of P_i, P_{i+2})
- “Intersect diagonals” (take intersection $Q_i = L_i \cap L_{i+1}$)

Definition [Marí-Beffa, Felipe] ¹

The Grassmann pentagram map sends P_1, \ldots, P_n to Q_1, \ldots, Q_n.

Theorem [Marí-Beffa, Felipe] ¹

The Grassmann pentagram map has a Lax representation. That is, there is a matrix whose spectral invariants are conserved quantities.

Twisted Grassmann Polygons

Again, we consider more generally twisted polygons:

Definition
A twisted Grassmann n-gon is a bi-infinite sequence \((P_i)_{i \in \mathbb{Z}}\) of points in \(\text{Gr}_N(3^N)\), together with some \(M \in \text{PGL}_{3^N}\) so that \(P_i + n = MP_i\) for all \(i\).

Definition
Let \(\text{GP}_n, N\) denote the moduli space of twisted n-gons in \(\text{Gr}_N(3^N)\), up to the action of \(\text{PGL}_{3^N}\).
Again, we consider more generally *twisted polygons*:
Again, we consider more generally *twisted polygons*:

Definition

A *twisted Grassmann n-gon* is a bi-infinite sequence \((P_i)_{i \in \mathbb{Z}}\) of points in \(\text{Gr}_N(3N)\), together with some \(M \in \text{PGL}_{3N}\) so that \(P_{i+n} = MP_i\) for all \(i\).
Again, we consider more generally *twisted polygons*:

Definition

A *twisted Grassmann n-gon* is a bi-infinite sequence \((P_i)_{i \in \mathbb{Z}}\) of points in \(\text{Gr}_N(3N)\), together with some \(M \in \text{PGL}_{3N}\) so that \(P_{i+n} = MP_i\) for all \(i\).

Definition

Let \(\mathcal{GP}_{n,N}\) denote the moduli space of twisted \(n\)-gons in \(\text{Gr}_N(3N)\), up to the action of \(\text{PGL}_{3N}\).
If $P_1, \ldots, P_n \in Gr_N(3N)$ are vertices, choose a lift $V_1, \ldots, V_n \in \text{Mat}_{3N \times N}$. If the polygon is “generic”, then the combined columns of V_i, V_i+1, V_i+2 are a basis of \mathbb{R}^{3N}. Then there are $A_i, B_i, C_i \in \text{GL}_N$ so that $V_i+3 = V_i+1 A_i + V_i B_i + V_i+2 C_i$.

Lemma
The lift can be chosen so that $C_i = \text{Id}_N$ for all i. So then for all i, $V_i+3 = V_i+1 X_i + V_i Y_i + V_i+2 C_i$, and there is a $Z \in \text{GL}_N$ so that $X_i+\pi = ZX_i Z^{-1}$ and $Y_i+\pi = ZY_i Z^{-1}$.
If $P_1, \ldots, P_n \in \text{Gr}_N(3N)$ are vertices, choose a lift $V_1, \ldots, V_n \in \text{Mat}_{3N \times N}$.

Lemma

The lift can be chosen so that $C_i = \text{Id}_N$ for all i. So then for all i,

$$V_i + 3 = V_i + 1 X_i + V_i Y_i + V_i + 2 C_i$$

and there is a $Z \in \text{GL}_N$ so that $X_i + n = Z X_i Z^{-1}$ and $Y_i + n = Z Y_i Z^{-1}$.
If $P_1, \ldots, P_n \in \text{Gr}_N(3N)$ are vertices, choose a lift $V_1, \ldots, V_n \in \text{Mat}_{3N \times N}$.

If the polygon is “generic”, then the combined columns of V_i, V_{i+1}, V_{i+2} are a basis of \mathbb{R}^{3N}.

Lemma
The lift can be chosen so that $C_i = \text{Id}_N$ for all i. So then for all i,

$$V_{i+3} = V_i + X_i V_{i+1} + Y_i V_{i+2},$$

and there is a $Z \in \text{GL}_N$ so that $X_i + n = ZX_i Z^{-1}$ and $Y_i + n = ZY_i Z^{-1}$.
If $P_1, \ldots, P_n \in \text{Gr}_N(3N)$ are vertices, choose a lift $V_1, \ldots, V_n \in \text{Mat}_{3N \times N}$.

If the polygon is “generic”, then the combined columns of V_i, V_{i+1}, V_{i+2} are a basis of \mathbb{R}^{3N}.

Then there are $A_i, B_i, C_i \in \text{GL}_N$ so that $V_{i+3} = V_{i+1}A_i + V_iB_i + V_{i+2}C_i$.

Lemma

The lift can be chosen so that $C_i = \text{Id}_N$ for all i. So then for all i,

$V_{i+3} = V_{i+1}X_i + V_iY_i + V_{i+2}C_i$,

and there is a $Z \in \text{GL}_N$ so that $X_i + n = ZX_iZ^{-1}$ and $Y_i + n = ZY_iZ^{-1}$.

Nick Ovenhouse (UMN)

Pentagram Map

October, 2019 Notre Dame
If $P_1, \ldots, P_n \in \text{Gr}_N(3N)$ are vertices, choose a lift $V_1, \ldots, V_n \in \text{Mat}_{3N \times N}$.

If the polygon is “generic”, then the combined columns of V_i, V_{i+1}, V_{i+2} are a basis of \mathbb{R}^{3N}.

Then there are $A_i, B_i, C_i \in \text{GL}_N$ so that $V_{i+3} = V_{i+1}A_i + V_iB_i + V_{i+2}C_i$.
If $P_1, \ldots, P_n \in \text{Gr}_N(3N)$ are vertices, choose a lift $V_1, \ldots, V_n \in \text{Mat}_{3N \times N}$.

If the polygon is “generic”, then the combined columns of V_i, V_{i+1}, V_{i+2} are a basis of \mathbb{R}^{3N}.

Then there are $A_i, B_i, C_i \in \text{GL}_N$ so that $V_{i+3} = V_{i+1}A_i + V_iB_i + V_{i+2}C_i$.

Lemma

The lift can be chosen so that $C_i = \text{Id}_N$ for all i. So then for all i,

$$V_{i+3} = V_{i+1}X_i + V_iY_i + V_{i+2},$$

and there is a $Z \in \text{GL}_N$ so that $X_{i+n} = ZX_iZ^{-1}$ and $Y_{i+n} = ZY_iZ^{-1}$.
Expression for the Map

The Grassmann pentagram map transforms the matrices X_i, Y_i by

$$X_i \mapsto X_i + Y_i + 1 - X_i + Y_i + 1 = X_i + 2Y_i + 3.$$

$$Y_i \mapsto X_i + Y_i + 1 - Y_i + 1 = X_i + 2Y_i + 3.$$

In what follows, we will consider this as a transformation on a set of formal noncommutative variables.
The Grassmann pentagram map transforms the matrices X_i, Y_i by
The Grassmann pentagram map transforms the matrices X_i, Y_i by

$$X_i \mapsto (X_i + Y_{i+1})^{-1} X_i (X_{i+2} + Y_{i+3})$$
$$Y_i \mapsto (X_i + Y_{i+1})^{-1} Y_{i+1} (X_{i+2} + Y_{i+3})$$
The Grassmann pentagram map transforms the matrices X_i, Y_i by

\[
X_i \mapsto (X_i + Y_{i+1})^{-1} X_i (X_{i+2} + Y_{i+3}) \\
Y_i \mapsto (X_i + Y_{i+1})^{-1} Y_{i+1} (X_{i+2} + Y_{i+3})
\]

In what follows, we will consider this as a transformation on a set of formal noncommutative variables.
Outline

1. Background
2. Grassmann Version
3. Non-Commutative Integrability
4. Combinatorial Models
5. Recovering the Lax Invariants
If \(A \) is any associative algebra, then the commutator bracket
\[
[a, b] = ab - ba
\]
is always a Poisson bracket.

Theorem [Farkas, Letzter]

Let \(A \) be an associative, but non-commutative, prime ring. Then the only Poisson bracket on \(A \) (up to scalar multiple) is the commutator bracket \([a, b]\). In the commutative case, this reduces to the trivial Poisson bracket.

Question: What is the right notion of Poisson structure for a non-commutative algebra?

Nick Ovenhouse (UMN)
Pentagram Map
October, 2019 Notre Dame
12 / 29
If A is any associative algebra, then the commutator bracket $[a, b] = ab - ba$ is always a Poisson bracket.
If A is any associative algebra, then the commutator bracket $[a, b] = ab - ba$ is always a Poisson bracket.

Theorem [Farkas, Letzter]¹

Let A be an associative, but non-commutative, prime ring. Then the only Poisson bracket on A (up to scalar multiple) is the commutator bracket $[a, b]$.

If A is any associative algebra, then the commutator bracket $[a, b] = ab - ba$ is always a Poisson bracket.

Theorem [Farkas, Letzter]1

Let A be an associative, but non-commutative, prime ring. Then the only Poisson bracket on A (up to scalar multiple) is the commutator bracket $[a, b]$.

In the commutative case, this reduces to the trivial Poisson bracket.

If A is any associative algebra, then the commutator bracket $[a, b] = ab - ba$ is always a Poisson bracket.

Theorem [Farkas, Letzter]¹

Let A be an associative, but non-commutative, prime ring. Then the only Poisson bracket on A (up to scalar multiple) is the commutator bracket $[a, b]$.

In the commutative case, this reduces to the trivial Poisson bracket.

Question: What is the right notion of Poisson structure for a non-commutative algebra?

Let A be an associative algebra. Denote $A^\natural := A/\mathbf{[}A, A\mathbf{]}$, the cyclic space. Elements are cyclic words in A, since $x_1 \ldots x_n = x_n x_1 \ldots x_{n-1} \pmod{\mathbf{[}A, A\mathbf{]}}$.

Each $a^\natural \in A^\natural$ gives a GL_n-invariant function $\text{tr}(a^\natural)$ on $\text{Hom}(A, \text{Mat}_n)$, and hence a function on $\text{Rep}_n(A) := \text{Hom}(A, \text{Mat}_n)/\text{GL}_n$.

Definition [Crawley-Boevey]

An H_0-Poisson structure on A is a Lie bracket $\mathbf{[}-,-\mathbf{]}$ on A^\natural such that each $\mathbf{[}a^\natural,-\mathbf{]}$ is induced by a derivation of A.

Theorem [Crawley-Boevey]

An H_0-Poisson structure on A induces a Poisson bracket on $\text{Rep}_n(A)$ given by

$$\{\text{tr}(a^\natural), \text{tr}(b^\natural)\} = \text{tr}\mathbf{[}a^\natural, b^\natural\mathbf{]}.$$
Let A be an associative algebra.
H_0-Poisson Structures

Let A be an associative algebra.
- Denote $A^\bullet := A/[A, A]$, the *cyclic space*.

[10.1016/j.jalgebra.2010.09.033]
Let A be an associative algebra.

- Denote $A^\natural := A/[A, A]$, the *cyclic space*.
- Elements are cyclic words in A, since $x_1 \cdots x_n = x_n x_1 \cdots x_{n-1} \mod [A, A]$.

Definition [Crawley-Boevey]

An H_0-Poisson structure on A is a Lie bracket $[-,-]$ on A^\natural such that each $[a^\natural, -]$ is induced by a derivation of A.

Theorem [Crawley-Boevey]

An H_0-Poisson structure on A induces a Poisson bracket on $\text{Rep}_n(A)$ given by

$$\{\text{tr}(a), \text{tr}(b)\} = \text{tr}[a^\natural, b^\natural]$$
Let A be an associative algebra.

- Denote $A^\natural := A/[A, A]$, the *cyclic space*.
- Elements are cyclic words in A, since $x_1 \cdots x_n = x_n x_1 \cdots x_{n-1} \mod [A, A]$.
- Each $a^\natural \in A^\natural$ gives a GL_n-invariant function $\text{tr}(a)$ on $\text{Hom}(A, \text{Mat}_n)$, and hence a function on $\text{Rep}_n(A) := \text{Hom}(A, \text{Mat}_n)/\text{GL}_n$.

Let A be an associative algebra.

- Denote $A^\natural := A/[A, A]$, the *cyclic space*.
- Elements are cyclic words in A, since $x_1 \cdots x_n = x_n x_1 \cdots x_{n-1}$ mod $[A, A]$.
- Each $a^\natural \in A^\natural$ gives a GL_n-invariant function $\text{tr}(a)$ on $\text{Hom}(A, \text{Mat}_n)$, and hence a function on $\text{Rep}_n(A) := \text{Hom}(A, \text{Mat}_n)/\text{GL}_n$.

[10.1016/j.jalgebra.2010.09.033]
H_0-Poisson Structures

Let A be an associative algebra.

- Denote $A^\natural := A/[A, A]$, the cyclic space.
- Elements are cyclic words in A, since $x_1 \cdots x_n = x_n x_1 \cdots x_{n-1} \mod [A, A]$.
- Each $a^\natural \in A^\natural$ gives a GL_n-invariant function $\text{tr}(a)$ on $\text{Hom}(A, \text{Mat}_n)$, and hence a function on $\text{Rep}_n(A) := \text{Hom}(A, \text{Mat}_n)/\text{GL}_n$.

**Definition [Crawley-Boevey]1

An H_0-Poisson structure on A is a Lie bracket $[-, -]$ on A^\natural such that each $[a^\natural, -]$ is induced by a derivation of A.

Let A be an associative algebra.

- Denote $A^\sharp := A/[A, A]$, the *cyclic space*.
- Elements are cyclic words in A, since $x_1 \cdots x_n = x_n x_1 \cdots x_{n-1} \mod [A, A]$.
- Each $a^\sharp \in A^\sharp$ gives a GL_n-invariant function $\text{tr}(a)$ on $\text{Hom}(A, \text{Mat}_n)$, and hence a function on $\text{Rep}_n(A) := \text{Hom}(A, \text{Mat}_n)/\text{GL}_n$.

Definition [Crawley-Boevey]¹

An H_0-Poisson structure on A is a Lie bracket $[\cdot, \cdot]$ on A^\sharp such that each $[a^\sharp, \cdot]$ is induced by a derivation of A.

Theorem [Crawley-Boevey]¹

An H_0-Poisson structure on A induces a Poisson bracket on $\text{Rep}_n(A)$ given by

$$\{\text{tr}(a), \text{tr}(b)\} = \text{tr}[a^\sharp, b^\sharp]$$

By a non-commutative integrable system in A, we mean a map $T: A \to A$ such that there is an infinite family of invariants $t^\#_1, t^\#_2, \ldots, t^\#_i, \ldots \in A$ (i.e. $t^\#_i = T(t^\#_i) \mod [A, A]$).

There is an H_0-Poisson structure so that $[t^\#_i, t^\#_j] = 0$ for all i, j.

Consider the expression for the Grassmann pentagram map in the X, Y matrices formally as a map on the free skew field in the indeterminates X_i, Y_i.

Theorem \cite{Ovenhouse}

The Grassmann pentagram map is a non-commutative integrable system in the free skew field.
By a *non-commutative integrable system* in A, we mean a map $T: A \to A$ such that

1. There is an infinite family of invariants $t_{\blacklozenge 1}, t_{\blacklozenge 2}, ..., t_{\blacklozenge i}, ... \in A$ (i.e. $t_i = T(t_i) \mod [A, A]$).
2. There is an H_0-Poisson structure so that $[t_{\blacklozenge i}, t_{\blacklozenge j}] = 0$ for all i, j.

Consider the expression for the Grassmann pentagram map in the X, Y matrices formally as a map on the free skew field in the indeterminates X_i, Y_i.

Theorem [Ovenhouse]

The Grassmann pentagram map is a non-commutative integrable system in the free skew field.
By a *non-commutative integrable system* in A, we mean a map $T: A \to A$ such that

- There is an infinite family of invariants $t_1^\#$, $t_2^\#$, \ldots, $t_i^\#$, $\ldots \in A^\#$
 (i.e. $t_i = T(t_i) \mod [A, A]$)
By a *non-commutative integrable system* in A, we mean a map $T: A \rightarrow A$ such that

- There is an infinite family of invariants $t_1^\triangledown, t_2^\triangledown, \ldots, t_i^\triangledown, \ldots \in A^\triangledown$ (i.e. $t_i = T(t_i) \mod [A, A]$)
- There is an H_0-Poisson structure so that $[t_i^\triangledown, t_j^\triangledown] = 0$ for all i, j.

Non-Commutative Integrability

By a *non-commutative integrable system* in A, we mean a map $T: A \to A$ such that

- There is an infinite family of invariants t_1, t_2, \ldots, t_i, $\ldots \in A$ (i.e. $t_i = T(t_i) \mod [A, A]$)
- There is an H_0-Poisson structure so that $[t_i, t_j] = 0$ for all i, j.

Theorem [Ovenhouse]

The Grassmann pentagram map is a non-commutative integrable system in the free skew field.

By a *non-commutative integrable system* in A, we mean a map $T: A \to A$ such that

- There is an infinite family of invariants $t_1^\mathbb{h}, t_2^\mathbb{h}, \ldots, t_i^\mathbb{h}, \ldots \in A^\mathbb{h}$
 (i.e. $t_i = T(t_i) \mod [A, A]$)
- There is an H_0-Poisson structure so that $[t_i^\mathbb{h}, t_j^\mathbb{h}] = 0$ for all i, j.

Consider the expression for the Grassmann pentagram map in the X, Y matrices formally as a map on the free skew field in the indeterminates X_i, Y_i.

__
By a non-commutative integrable system in A, we mean a map $T: A \rightarrow A$ such that

- There is an infinite family of invariants $t_1^\#$, $t_2^\#$, \ldots, $t_i^\#$, $\ldots \in A^\#$ (i.e. $t_i = T(t_i) \mod [A, A]$)
- There is an H_0-Poisson structure so that $[t_i^\#, t_j^\#] = 0$ for all i, j.

Consider the expression for the Grassmann pentagram map in the X, Y matrices formally as a map on the free skew field in the indeterminates X_i, Y_i.

Theorem [Ovenhouse] ¹

The Grassmann pentagram map is a non-commutative integrable system in the free skew field.

Outline

1. Background
2. Grassmann Version
3. Non-Commutative Integrability
4. Combinatorial Models
5. Recovering the Lax Invariants
Consider the following graph embedded on a torus:

\[
\begin{array}{c}
V_1 & V_2 & V_3 & V_4 & V_5 \\
A_1 & A_3 & B_1 & B_2 & B_4 \\
C_1 & C_2 & C_3 & C_4 & C_5 \\
G_{-1} & G_1 & G_{-1} & G_1 & G_{-1} \\
X_1 & X_2 & X_3 & X_4 & X_5 \\
Y_1 & Y_2 & Y_3 & Y_4 & Y_5 \\
Z_1 & Z_2 & Z_3 & Z_4 & Z_5 \\
\end{array}
\]

Recall the relations
\[
V_i + 3 \equiv V_i + 1 \pmod{G_i},
\]

If we change the lift $V_i \mapsto V_i G_{-1}$...

Do this repeatedly to cancel the C_i's...
Consider the following graph embedded on a torus:

Recall the relations $V_{i+3} = V_{i+1}A_i + V_iB_i + V_{i+2}C_i$.
Consider the following graph embedded on a torus:

Recall the relations $V_{i+3} = V_{i+1}A_i + V_iB_i + V_{i+2}C_i$.
Consider the following graph embedded on a torus:

Recall the relations $V_{i+3} = V_{i+1}A_i + V_iB_i + V_{i+2}C_i$.
Consider the following graph embedded on a torus:

Recall the relations $V_{i+3} = V_{i+1}A_i + V_iB_i + V_{i+2}C_i$.

If we change the lift $V_i \mapsto V_iG...$
Consider the following graph embedded on a torus:

Recall the relations $V_{i+3} = V_{i+1}A_i + V_iB_i + V_{i+2}C_i$.

If we change the lift $V_i \mapsto V_iG...$
Consider the following graph embedded on a torus:

Recall the relations $V_{i+3} = V_{i+1}A_i + V_iB_i + V_{i+2}C_i$.

If we change the lift $V_i \mapsto V_iG$...

Do this repeatedly to cancel the C’s...
Consider the following graph embedded on a torus:

Recall the relations $V_{i+3} = V_{i+1}A_i + V_iB_i + V_{i+2}C_i$.

If we change the lift $V_i \mapsto V_iG$...

Do this repeatedly to cancel the C's...
Let A be an associative algebra. A double bracket on A is a bilinear operation $\{\cdot, \cdot\}$:

\[
\{a, bc\} = \{a, b\} (1 \otimes c) + (b \otimes 1) \{a, c\}
\]

\[
\{ab, c\} = \{a, c\} (b \otimes 1) + (1 \otimes a) \{b, c\}
\]

\[
\tau(x \otimes y) \tau = y \otimes x
\]

\[
\{a, b\} = -\{b, a\}
\]

Nick Ovenhouse (UMN)
October, 2019 Notre Dame
Definition [Van den Bergh]¹

Let A be an associative algebra. A *double bracket* on A is a bilinear operation

$$\{\cdot, \cdot\} : A \otimes A \rightarrow A \otimes A$$

such that:

Definition [Van den Bergh]\(^1\)

Let \(A \) be an associative algebra. A **double bracket** on \(A \) is a bilinear operation

\[
\{ - , - \} : A \otimes A \to A \otimes A
\]

such that:

- \(\{ b , a \} = - \{ a , b \}^\tau \)
- \((x \otimes y)^\tau = y \otimes x \)

Definition [Van den Bergh]\(^1\)

Let \(A\) be an associative algebra. A *double bracket* on \(A\) is a bilinear operation

\[
\{ - , - \} : A \otimes A \to A \otimes A
\]

such that:

- \(\{ b , a \} = - \{ a , b \}^\tau\)
- \(\{ a , bc \} = \{ a , b \} (1 \otimes c) + (b \otimes 1) \{ a , c \}\)
- \(((x \otimes y)^\tau = y \otimes x)\)

Definition [Van den Bergh]¹

Let A be an associative algebra. A *double bracket* on A is a bilinear operation

$$\{ - , - \} : A \otimes A \rightarrow A \otimes A$$

such that:

- $\{b, a\} = - \{a, b\}^\tau$
- $\{a, bc\} = \{a, b\} (1 \otimes c) + (b \otimes 1) \{a, c\}$
- $\{ab, c\} = \{a, c\} (b \otimes 1) + (1 \otimes a) \{b, c\}$

Van den Bergh’s Double Brackets

Definition [Van den Bergh]¹

Let A be an associative algebra. A *double bracket* on A is a bilinear operation

$$\{ - , - \} : A \otimes A \rightarrow A \otimes A$$

such that:

- $\{ b , a \} = - \{ a , b \}^\tau$
- $\{ a , bc \} = \{ a , b \} (1 \otimes c) + (b \otimes 1) \{ a , c \}$
- $\{ ab , c \} = \{ a , c \} (b \otimes 1) + (1 \otimes a) \{ b , c \}$

Definition [Van den Bergh]¹

Let A be an associative algebra. A *double bracket* on A is a bilinear operation

\[\{ -, - \} : A \otimes A \to A \otimes A \]

such that:

- \[\{ b, a \} = - \{ a, b \}^\tau \quad \text{\((x \otimes y)^\tau = y \otimes x\)} \]
- \[\{ a, bc \} = \{ a, b \} (1 \otimes c) + (b \otimes 1) \{ a, c \} \]
- \[\{ ab, c \} = \{ a, c \} (b \otimes 1) + (1 \otimes a) \{ b, c \} \]

Double Brackets from Networks

Let Q be a network drawn on a cylinder, so that Boundary vertices are univalent. One boundary component has only sources, the other only sinks. All internal vertices are trivalent, and neither sources nor sinks:

Let A be the algebra generated by the arrows. Define a double bracket on A by

$$\{\{y, z\}\} = y \otimes z$$

and

$$\{\{b, c\}\} = c \otimes b$$

By composing with multiplication and the quotient map, we get an operation on $A^{\#} = A / [A, A]$

$$\langle a, b \rangle := \mu(\{\{a, b\}\}^{\#})$$
Let Q be a network drawn on a cylinder, so that
Let Q be a network drawn on a cylinder, so that
Let Q be a network drawn on a cylinder, so that
- Boundary vertices are univalent.

Double Brackets from Networks

Let Q be a network drawn on a cylinder, so that
- Boundary vertices are univalent.
Let Q be a network drawn on a cylinder, so that
- Boundary vertices are univalent.
- One boundary component has only sources, the other only sinks.
Let Q be a network drawn on a cylinder, so that
- Boundary vertices are univalent.
- One boundary component has only sources, the other only sinks.
- All internal vertices are trivalent, and neither sources nor sinks:

\[
\begin{align*}
\{\{y, z\}\} &= y \otimes z \\
\{\{b, c\}\} &= c \otimes b
\end{align*}
\]

By composing with multiplication and the quotient map, we get an operation on $A \cong A / [A, A]$:

\[
\langle a, b \rangle := \mu(\{\{a, b\}\}) \cong
\]

Nick Ovenhouse (UMN)

Pentagram Map

October, 2019 Notre Dame
Double Brackets from Networks

- Let Q be a network drawn on a cylinder, so that
 - Boundary vertices are univalent.
 - One boundary component has only sources, the other only sinks.
 - All internal vertices are trivalent, and neither sources nor sinks:

![Network Diagram](image)

- Let A be the algebra generated by the arrows.

Define a double bracket on A by

$$\{\{y, z\}\} = y \otimes z$$

and

$$\{\{b, c\}\} = c \otimes b$$

By composing with multiplication and the quotient map, we get an operation on $A^\#$:

$$\langle a, b \rangle := \mu(\{\{a, b\}\})^\#$$
Let Q be a network drawn on a cylinder, so that
- Boundary vertices are univalent.
- One boundary component has only sources, the other only sinks.
- All internal vertices are trivalent, and neither sources nor sinks:

Let A be the algebra generated by the arrows.
Define a double bracket on A by $\{y, z\} = y \otimes z$ and $\{b, c\} = c \otimes b$.
Let Q be a network drawn on a cylinder, so that
- Boundary vertices are univalent.
- One boundary component has only sources, the other only sinks.
- All internal vertices are trivalent, and neither sources nor sinks:

Let A be the algebra generated by the arrows.

Define a double bracket on A by $\{ y, z \} = y \otimes z$ and $\{ b, c \} = c \otimes b$.

By composing with multiplication and the quotient map, we get an operation on $A^\# = A/[A, A]$:

$$\langle a, b \rangle := \mu(\{ a, b \})^\#$$
An H_0 Poisson Bracket
An H_0 Poisson Bracket

Let $\mathcal{L} \subset A$ the subspace spanned by loops.
Let $\mathcal{L} \subset A$ the subspace spanned by loops. Choosing a vertex of the graph \bullet, let \mathcal{L}_\bullet be the space of loops based at \bullet. It is a subalgebra.
An H_0 Poisson Bracket

Let $\mathcal{L} \subset A$ the subspace spanned by loops.
Choosing a vertex of the graph \bullet, let \mathcal{L}_{\bullet} be the space of loops based at \bullet. It is a subalgebra.
If $f, g \in \mathcal{L}$ intersect at a point p, then $f_p g_p$ represents the loop which follows f, then g, based at p.

Theorem
The induced bracket $\langle -,- \rangle$ on \mathcal{L}_{\bullet} is a Lie bracket, and it is given by:

$$\langle f, g \rangle = \sum_{p \in f \cap g} \varepsilon_p(f, g) f_p g_p$$

The coefficients $\varepsilon_p(f, g)$ are given by:

$$\varepsilon_p(f, g) = \begin{cases} 1 & \text{if } p \text{ is a common point of } f \text{ and } g \\ 0 & \text{otherwise} \end{cases}$$
An H_0 Poisson Bracket

Let $\mathcal{L} \subset A$ the subspace spanned by loops.
Choosing a vertex of the graph \bullet, let \mathcal{L}_\bullet be the space of loops based at \bullet. It is a subalgebra.

If $f, g \in \mathcal{L}$ intersect at a point p, then $f_p g_p$ represents the loop which follows f, then g, based at p.

Theorem

The induced bracket $\langle - , - \rangle$ on \mathcal{L}_\bullet is a Lie bracket, and it is given by:

$$\langle f , g \rangle = \sum_{p \in f \cap g} \varepsilon_p(f , g) f_p g_p$$
An H_0 Poisson Bracket

Let $\mathcal{L} \subset A$ the subspace spanned by loops.
Choosing a vertex of the graph \bullet, let \mathcal{L}_\bullet be the space of loops based at \bullet. It is a subalgebra.
If $f, g \in \mathcal{L}$ intersect at a point p, then $f_p g_p$ represents the loop which follows f, then g, based at p.

Theorem

The induced bracket $\langle - , - \rangle$ on \mathcal{L}_\bullet is a Lie bracket, and it is given by:

$$\langle f, g \rangle = \sum_{p \in f \cap g} \varepsilon_p(f, g) f_p g_p$$

The coefficients $\varepsilon_p(f, g)$ are given by:

$$\varepsilon_p(f, g) = 1$$

$$\varepsilon_p(f, g) = 0$$
The X, Y Coordinates

The X_i and Y_i variables represent the pictured cycles. Their brackets are given by

\[
\langle X_i + 1, X_i \rangle = X_i + 1 X_i
\]
\[
\langle Y_i + k, Y_i \rangle = Y_i + k Y_i \quad \text{for } k = 1, 2
\]
\[
\langle Y_i + k, X_i \rangle = Y_i + k X_i \quad \text{for } k = 0, 1
\]
\[
\langle X_i + k, Y_i \rangle = X_i + k Y_i \quad \text{for } k = 1, 2
\]

\[
\langle X_3, X_2 \rangle = X_3 Z - 1 X_2 Z
\]
\[
\langle Y_3, Y_2 \rangle = Y_3 Z - 1 Y_2 Z
\]
The X, Y Coordinates

The X_i and Y_i variables represent the pictured cycles. Their brackets are given by

$$
\langle X_i + 1, X_i \rangle = X_i + 1 \quad X_i
$$

$$
\langle Y_i + k, Y_i \rangle = Y_i + k \quad Y_i
$$

for $k = 1, 2$

$$
\langle Y_i + k, X_i \rangle = Y_i + k \quad X_i
$$

for $k = 0, 1$

$$
\langle X_i + k, Y_i \rangle = X_i + k \quad Y_i
$$

for $k = 1, 2$

$$
\langle X_3, X_2 \rangle = X_3 - 1 \quad X_2
$$

$$
\langle Y_3, Y_2 \rangle = Y_3 - 1 \quad Y_2
$$
The X_i and Y_i variables represent the pictured cycles.
The X_i and Y_i variables represent the pictured cycles. Their brackets are given by

\[
\begin{align*}
\langle X_{i+1}, X_i \rangle &= X_{i+1}X_i \\
\langle Y_{i+k}, X_i \rangle &= Y_{i+k}X_i \quad \text{for } k = 0, 1 \\
\langle X_{i+k}, Y_i \rangle &= X_{i+k}Y_i \quad \text{for } k = 1, 2 \\
\langle Y_{i+k}, Y_i \rangle &= Y_{i+k}Y_i \quad \text{for } k = 1, 2 \\
\langle X_3, X_2 \rangle &= X_3Z^{-1}X_2Z \\
\langle Y_3, Y_2 \rangle &= Y_3Z^{-1}Y_2Z
\end{align*}
\]
Given a path p in the network, let $w_t(p)$ be the product of the edge weights (in order). Let $W_t(p) := w_t(p)^{\lambda d_p}$, where d_p is the "winding number" of the path.

The boundary measurement matrix $B(\lambda) = (b_{ij}(\lambda))$ is given by $b_{ij}(\lambda) = \sum_{p : i \rightarrow j} W_t(p)$.
Given a path p in the network,
Boundary Measurements

Given a path p in the network,

- Let $wt(p)$ be the product of the edge weights (in order).

Let $WT(p) := wt(p)^\lambda d(p)$, where $d(p)$ is the "winding number" of the path.

The boundary measurement matrix $B(\lambda) = (b_{ij}(\lambda))$ is given by

$$b_{ij}(\lambda) = \sum_{p: i \rightarrow j} WT(p)$$
Given a path p in the network,

- Let $\text{wt}(p)$ be the product of the edge weights (in order).
- Let $\text{WT}(p) := \text{wt}(p) \lambda^{d_p}$, where d_p is the “winding number” of the path.
Boundary Measurements

Given a path p in the network,

- Let $\text{wt}(p)$ be the product of the edge weights (in order).
- Let $\text{WT}(p) := \text{wt}(p) \lambda^{d_p}$, where d_p is the “winding number” of the path.
Boundary Measurements

Given a path p in the network,

- Let $\text{wt}(p)$ be the product of the edge weights (in order).
- Let $\text{WT}(p) := \text{wt}(p) \lambda^{d_p}$, where d_p is the “winding number” of the path.

The boundary measurement matrix $B(\lambda) = (b_{ij}(\lambda))$ is given by

$$b_{ij}(\lambda) = \sum_{p: i \to j} \text{WT}(p)$$
We perform the following sequence of local transformations ("Postnikov moves") of the network, considered on a torus:

"Square Move"

"White-swap"

"Black-swap"

\[\Delta := b + adc \]
We perform the following sequence of local transformations ("Postnikov moves") of the network, considered on a torus:
We perform the following sequence of local transformations ("Postnikov moves") of the network, considered on a torus:

- **"Square Move"**

\[\Delta := b + adc \]
We perform the following sequence of local transformations ("Postnikov moves") of the network, considered on a torus:

- "Square Move"

- "White-swap"
We perform the following sequence of local transformations (“Postnikov moves”) of the network, considered on a torus:

- **“Square Move”**

- **“White-swap”**

- **“Black-swap”**
After this sequence, we end up with the same network, but with weights
\[
\tilde{X}_i = (X_i + Y_i) - 1 \quad X_i (X_i + 2 + Y_i + 2)
\]
\[
\tilde{Y}_i = (X_i + 1 + Y_i + 1) - 1 \quad Y_i + 1 (X_i + 3 + Y_i + 3)
\]
These are the expressions for the pentagram map (up to a shift of indices $Y_i \mapsto Y_i + 1$).
After this sequence, we end up with the same network, but with weights

\[\tilde{X}_i = (X_i + Y_i)^{-1}X_i(X_{i+2} + Y_{i+2}) \]

\[\tilde{Y}_i = (X_{i+1} + Y_{i+1})^{-1}Y_{i+1}(X_{i+3} + Y_{i+3}) \]
After this sequence, we end up with the same network, but with weights

\[\tilde{X}_i = (X_i + Y_i)^{-1}X_i(X_{i+2} + Y_{i+2}) \]

\[\tilde{Y}_i = (X_{i+1} + Y_{i+1})^{-1}Y_{i+1}(X_{i+3} + Y_{i+3}) \]

These are the expressions for the pentagram map (up to a shift of indices \(Y_i \mapsto Y_{i+1} \)).
Integrability

The sequence of moves we performed do not change the boundary measurements. But moving the edges/vertices around on the torus can change the matrix up to conjugation. So although the entries of $B(\lambda)$ are not invariants, the spectral invariants are.

Let $\text{tr}(B(\lambda) i) = \sum t_{ij} \lambda^j$.

Theorem [Ovenhouse] $t_{ik}^\flat, t_{j\ell}^\flat \rangle = 0$ for all i, j, k, ℓ.

The proof is combinatorial and topological in nature. It is done by enumerating the paths with given homology classes (on the torus), and examining their intersections.

Nick Ovenhouse (UMN)
The sequence of moves we performed do not change the boundary measurements. But moving the edges/vertices around on the torus can change the matrix up to conjugation.

Let $\text{tr}(B(\lambda)) = \sum t_{ij} \lambda^j$.

Theorem [Ovenhouse] $\langle t \uplus k, t \uplus j \ell \rangle = 0$ for all i, j, k, ℓ. The proof is combinatorial and topological in nature. It is done by enumerating the paths with given homology classes (on the torus), and examining their intersections.
The sequence of moves we performed do not change the boundary measurements. But moving the edges/vertices around on the torus can change the matrix up to conjugation.

So although the entries of $B(\lambda)$ are not invariants, the spectral invariants are.
The sequence of moves we performed do not change the boundary measurements. But moving the edges/vertices around on the torus can change the matrix up to conjugation.

So although the entries of $B(\lambda)$ are not invariants, the spectral invariants are.

Let $\text{tr}(B(\lambda)^i) = \sum t_{ij} \lambda^j$.

\[\text{Theorem [Ovenhouse]} \]
The sequence of moves we performed do not change the boundary measurements. But moving the edges/vertices around on the torus can change the matrix up to conjugation.

So although the entries of $B(\lambda)$ are not invariants, the spectral invariants are.

Let $\text{tr}(B(\lambda)^i) = \sum t_{ij} \lambda^j$.

Theorem [Ovenhouse]

$$\langle t_{ik}, t_{j\ell} \rangle = 0 \text{ for all } i, j, k, \ell.$$
The sequence of moves we performed do not change the boundary measurements. But moving the edges/vertices around on the torus can change the matrix up to conjugation.

So although the entries of $B(\lambda)$ are not invariants, the spectral invariants are.

Let $\text{tr}(B(\lambda)^i) = \sum t_{ij} \lambda^j$.

Theorem [Ovenhouse]

$$\langle t_{ik}, t_{j\ell} \rangle = 0 \text{ for all } i, j, k, \ell.$$

The proof is combinatorial and topological in nature. It is done by enumerating the paths with given homology classes (on the torus), and examining their intersections.
Outline

1. Background
2. Grassmann Version
3. Non-Commutative Integrability
4. Combinatorial Models
5. Recovering the Lax Invariants
Another View of the Moduli Space

A polygon, and a choice of lift V_i, determines the 2^{n+1} matrices X_i, Y_i, Z. However, simultaneously changing all V_i by $V_i \mapsto V_i G$ for some fixed $G \in \text{GL}_N$, induces $X_i \mapsto G^{-1} X_i G$, $Y_i \mapsto G^{-1} Y_i G$, and $Z \mapsto G^{-1} Z G$. So the matrices X_i, Y_i, Z are only well-defined up to simultaneous conjugation.

The moduli space is identified with $\text{GP}_n, \sim = \text{GL}_{2^{n+1}} \text{N} / \text{GL}_N$. If A is the group algebra of the free group on 2^{n+1} generators, then this is $\text{Rep}_N(A)$. So by Crawley-Boevey's theorem, the H_0-Poisson bracket induces a Poisson bracket on GP_n, \sim so that

$$\{\text{tr}(a), \text{tr}(b)\} = \text{tr}(\langle a, b \rangle)$$
Another View of the Moduli Space

A polygon, and a choice of lift V_i, determines the $2n + 1$ matrices X_i, Y_i, Z.
Another View of the Moduli Space

A polygon, and a choice of lift V_i, determines the $2n + 1$ matrices X_i, Y_i, Z.

However, simultaneously changing all V_i by $V_i \mapsto V_i G$ for some fixed $G \in \text{GL}_N$, induces $X_i \mapsto G^{-1}X_i G$, $Y_i \mapsto G^{-1}Y_i G$, and $Z \mapsto G^{-1}ZG$. So the matrices X_i, Y_i, Z are only well-defined up to simultaneous conjugation.
Another View of the Moduli Space

A polygon, and a choice of lift V_i, determines the $2n + 1$ matrices X_i, Y_i, Z.

However, simultaneously changing all V_i by $V_i \mapsto V_i G$ for some fixed $G \in \text{GL}_N$, induces $X_i \mapsto G^{-1}X_i G$, $Y_i \mapsto G^{-1}Y_i G$, and $Z \mapsto G^{-1}ZG$. So the matrices X_i, Y_i, Z are only well-defined up to simultaneous conjugation.

The moduli space is identified with $\mathcal{GP}_{n,N} \cong \text{GL}^{2n+1}_N / \text{GL}_N$.
A polygon, and a choice of lift V_i, determines the $2n + 1$ matrices X_i, Y_i, Z.

However, simultaneously changing all V_i by $V_i \mapsto V_i G$ for some fixed $G \in \text{GL}_N$, induces $X_i \mapsto G^{-1}X_i G$, $Y_i \mapsto G^{-1}Y_i G$, and $Z \mapsto G^{-1}Z G$. So the matrices X_i, Y_i, Z are only well-defined up to simultaneous conjugation.

The moduli space is identified with $\mathcal{GP}_{n,N} \cong \text{GL}_N^{2n+1}/\text{GL}_N$.

If A is the group algebra of the free group on $2n + 1$ generators, then this is $\text{Rep}_N(A)$. So by Crawley-Boevey’s theorem, the H_0-Poisson bracket induces a Poisson bracket on $\mathcal{GP}_{n,N}$ so that

$$\{ \text{tr}(a), \text{tr}(b) \} = \text{tr}(\langle a, b \rangle)$$
Interpreting the Invariants

Since the invariants t_{ij} are (noncommutative) polynomials in the X_i's and Y_i's, we can interpret the traces $\text{tr}(t_{ij})$ as functions on GP_n, N_n, and by Crawley-Boevey’s theorem, \{\text{tr}(t_{ij}), \text{tr}(t_{k\ell})\} = 0.

Marí-Beffa and Felipe’s Lax matrix was constructed as follows. Form the matrix V_i whose columns are V_i, $V_i + 1$, and $V_i + 2$.

Consider the “shift” matrix $L_i = \begin{pmatrix} 0 & 0 & Y_i & \text{Id} \\ X_i & 0 & \text{Id} & N \\ \text{Id} & N & \text{Id} & 0 \end{pmatrix}$.

Then $V_i + 1 = V_i L_i$, and the action of the monodromy matrix is given by $M V_i = V_i L_1 L_2 \cdots L_n$.

Nick Ovenhouse (UMN)

Pentagram Map

October, 2019 Notre Dame
Interpreting the Invariants

Since the invariants t_{ij} are (noncommutative) polynomials in the X_i’s and Y_i’s, we can interpret the traces $\text{tr}(t_{ij})$ as functions on $\mathcal{GP}_{n,N}$, and by Crawley-Boevey’s theorem, $\{\text{tr}(t_{ij}), \text{tr}(t_{k\ell})\} = 0$.
Interpreting the Invariants

Since the invariants t_{ij} are (noncommutative) polynomials in the X_i’s and Y_i’s, we can interpret the traces $\text{tr}(t_{ij})$ as functions on $\mathcal{GP}_{n,N}$, and by Crawley-Boevey’s theorem, $\{\text{tr}(t_{ij}), \text{tr}(t_{k\ell})\} = 0$.

Marí-Beffa and Felipe’s Lax matrix was constructed as follows. Form the matrix V_i whose columns are V_i, V_{i+1}, and V_{i+2}.
Interpreting the Invariants

Since the invariants t_{ij} are (noncommutative) polynomials in the X_i’s and Y_i’s, we can interpret the traces $\text{tr}(t_{ij})$ as functions on $\mathcal{GP}_{n,N}$, and by Crawley-Boevey’s theorem, $\{\text{tr}(t_{ij}), \text{tr}(t_{k\ell})\} = 0$.

Marí-Beffa and Felipe’s Lax matrix was constructed as follows. Form the matrix V_i whose columns are V_i, V_{i+1}, and V_{i+2}.
Consider the “shift” matrix

$$L_i = \begin{pmatrix} 0 & 0 & Y_i \\ \text{Id}_N & 0 & X_i \\ 0 & \text{Id}_N & \text{Id}_N \end{pmatrix}$$
Interpreting the Invariants

Since the invariants t_{ij} are (noncommutative) polynomials in the X_i’s and Y_i’s, we can interpret the traces $\text{tr}(t_{ij})$ as functions on $\mathcal{GP}_{n,N}$, and by Crawley-Boevey’s theorem, $\{\text{tr}(t_{ij}), \text{tr}(t_{k\ell})\} = 0$.

Marí-Beffa and Felipe’s Lax matrix was constructed as follows. Form the matrix V_i whose columns are $V_i, V_{i+1},$ and V_{i+2}. Consider the “shift” matrix

$$L_i = \begin{pmatrix} 0 & 0 & Y_i \\ \text{Id}_N & 0 & X_i \\ 0 & \text{Id}_N & \text{Id}_N \end{pmatrix}$$

Then $V_{i+1} = V_i L_i$, and the action of the monodromy matrix is given by

$$M V_i = V_i L_1 L_2 \cdots L_n$$
Scaling Parameter

Consider the modified matrices, with a scaling parameter:

\[L_i(\lambda) = \begin{bmatrix} 0 & 0 & \lambda Y_i & 0 \\ 0 & 0 & 0 & \lambda X_i \\ Id & N & 0 & Id \\ 0 & Id & N & 0 \end{bmatrix} \]

The product \(L(\lambda) = L_1(\lambda) \cdots L_n(\lambda) \) is the Lax matrix of Marí-Beffa and Felipe.

Proposition

The product \(L(\lambda) \) is conjugate to the boundary measurement matrix \(B(\lambda) \).
Consider the modified matrices, with a scaling parameter:

\[
L_i(\lambda) = \begin{pmatrix} 0 & 0 & \lambda Y_i \\ \text{Id}_N & 0 & \lambda X_i \\ 0 & \text{Id}_N & \text{Id}_N \end{pmatrix}
\]

The product \(L(\lambda) = L_1(\lambda) \cdots L_n(\lambda) \) is the Lax matrix of Marí-Beffa and Felipe.
Consider the modified matrices, with a scaling parameter:

\[L_i(\lambda) = \begin{pmatrix} 0 & 0 & \lambda Y_i \\ \text{Id}_N & 0 & \lambda X_i \\ 0 & \text{Id}_N & \text{Id}_N \end{pmatrix} \]

The product \(L(\lambda) = L_1(\lambda) \cdots L_n(\lambda) \) is the Lax matrix of Marí-Beffa and Felipe.

Proposition

The product \(L(\lambda) \) is conjugate to the boundary measurement matrix \(B(\lambda) \).
Thank You!