Quiz 3

1. Let $f(x) = \sqrt{x}$. Find f' and f''.

2. Let $f(x) = (x + 1)e^x$. Find f'.

3. The figure shows the graphs of f, f', and f''. Identify each curve. You do NOT need to explain your choices.
(1) \[f(x) = \frac{3}{12} = \frac{1}{4} \]
\[
 f'(x) = \frac{4}{3} x^{\frac{1}{3}-1} = \frac{4}{3} x^{-\frac{2}{3}}
\]
\[
 f''(x) = \frac{4}{3} \left(-\frac{2}{3} \right) x^{-\frac{2}{3}-1} = -\frac{2}{9} x^{-\frac{5}{3}}
\]

(2) \[f(x) = (x+1) e^x \]
\[
 f'(x) = (x+1)' e^x + (x+1) (e^x)'
\]
\[
 = 1 \cdot e^x + (x+1) e^x
\]
\[
 = (x+2) e^x
\]

(3) Based on the facts that
- derivative measures the rate of change of a function
- the rate of change is positive if the function is increasing, and is negative if the function is decreasing,
we conclude that
- the graph of \(f \) is \(c \),
- the graph of \(f' \) is \(a \),
- the graph of \(f'' \) is \(b \).