1. Given a function $f(x, y) = e^{x+y} \cos(xy)$,

 (i) Compute the gradient vector ∇f.

 (ii) Calculate the directional derivative $D_{\vec{a}} f$ at point $(0,0)$ in the direction of vector $\vec{a} = \langle 2, -1 \rangle$.

 (iii) Calculate the directional derivative $D_{\vec{b}} f$ at point $(0,0)$ in the direction of vector $\vec{b} = \nabla f(0,0)$.
2. Given a function \(f : \mathbb{R}^2 \to \mathbb{R}^3 \), \(f(x, y) = (xy, x + y^2, \sin y) \),

(i) Compute the derivative matrix (or Jacobian matrix) \(Df \).

(ii) Find the derivative matrix of \(f \) at point \((1,0)\).

(iii) Calculate the linear approximation \(L(x, y) \) of \(f \) at point \((1,0)\).

(iv) Use the linear approximation above to estimate \(f(1, -0.1) \).
3. Given a function \(z = f(x, y) = x^2 - xy + y^2 \) and a point \(A(1, -1, 3) \) which lies on its graph.

(a) The cross section \(x = 1 \) of the graph is a curve. Write a direction vector of the tangent line to this curve at point \(A \).

(b) The cross section \(y = -1 \) of the graph is a curve. Write a direction vector of the tangent line to this curve at point \(A \).

(c) Write a parametric equation of the plane tangent to the graph at \(A \).

4. Let \(f \) be the same function as in Problem 3. Define \(g(x, y, z) = z - f(x, y) \).

(a) What is the level set \(g(x, y, z) = 0 \) in relation to the graph of function \(f \)?

(b) Using the principle “a level set is perpendicular to the gradient vector”, determine a normal vector of this level set at point \(A(1, -1, 3) \).

(c) What is the (cartesian) equation of the tangent plane of the graph of \(f \) at point \(A \)?
5. Let $f : \mathbb{R}^2 \to \mathbb{R}$. Put $x = ts$, $y = t + s$ and $g(t, s) = f(x, y) = f(ts, t + s)$. Express the
\[
\frac{\partial g}{\partial t}, \quad \frac{\partial g}{\partial s}, \quad \frac{\partial^2 g}{\partial t \partial s}
\]
in terms t, s and partial derivatives of f.