HOMEWORK #1 (DUE FRIDAY, SEPT. 23).

9/11/2011

Note: Turn in only the “starred” problems; out of these, only selected problems will be graded.

1.* Find all subgroups of the additive group \(\mathbb{Z} \times \mathbb{Z} \).

2. Let \(G \) be group and let \(H \) be a subgroup in \(G \).
 (a) Show that there is a bijection between the sets of left and right cosets of \(H \) in \(G \). In particular, one can define the index \((G : H)\) as the cardinality of the set of right cosets.
 (b) Show that a subgroup of index two is always normal.

3.* Let \(G \) be a group, \(H \) a subgroup in \(G \), and let \(N_H \) be the normalizer of \(H \).
 (a) Show that if \(K \subset G \) is a subgroup such that \(H \) is a normal subgroup of \(K \), then \(K \subset N_H \), i.e., \(N_H \) is the largest subgroup of \(G \) in which \(H \) is normal.
 (b) If \(K \) is a subgroup contained in \(N_H \), then \(KH \) is a group and \(H \) is a normal subgroup in \(KH \).
 (c) If \(G \) is finite and \(K \subset N_H \), then
 \[
 |KH| = \frac{|H||K|}{|H \cap K|}.
 \]

4. Determine all (nonisomorphic) finite groups with order at most 8.

5.* Problem 7, page 75 in Lang.

6.* Problem 9, page 75 in Lang.

7.* (Divisible groups) An abelian group \((G, +)\) is said to be divisible if for any \(y \in G \) and \(n \in \mathbb{Z}, n \neq 0 \), there is an \(x \) in \(G \) with \(nx = y \). (The simplest example is \((\mathbb{Q}, +)\).)
 (a) Show that any divisible group \(G \) is infinite, and that \(G \) has no subgroups of finite index other than \(G \) itself.
 (b) Let \(U = \mathbb{Q}/\mathbb{Z} \). Show that every element of \(U \) is a torsion element, that is, every element has finite order (or finite period, in the terminology in Lang’s book). For each \(n \geq 1 \) show that \(U \) has a unique subgroup of order \(n \), and that this subgroup is cyclic.
 (c) For a prime \(p \), let \(U_p \) be the subgroup of \(U \) consisting of all \(p \)-torsion elements, that is, all elements whose order is a power of \(p \). Show that \(U_p \) is a divisible group, and describe all its subgroups.
 (Remark: We’ll revisit divisible groups (in a more general context) towards the end of the Spring semester when we’ll do a bit of Homological Algebra, and we’ll use the results in this problem at that time. We’ll also show then that any divisible group is a direct sum of copies of \(\mathbb{Q} \) and \(U_p \) for various \(p \).)

8.* Let \(G \) be a finite abelian group which is not cyclic. Prove that there is a prime number \(p \) and a subgroup \(H \) of \(G \) with \(H \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \).