Problem 5, Lang, p. 546.

Let E be an n-dimensional vector space over a field k. Suppose that $T : E \rightarrow E$ is a linear map with $T^m = 0$ for some number m. We'll show that there exists a basis B of E such that $M_B(T)$ is strictly upper triangular.

We can assume that m was chosen to be the smallest non-negative integer such that $T^m = 0$. In case $m = 0$, we get $\text{id}_E = T^0 = 0$. Then $E = \{0\}$ and $T = \text{id}_E : \{0\} \rightarrow \{0\}$. The only basis of E is $B = \emptyset$. Then $M_B(T)$ doesn't have any meaning! Thus we consider only the case $m > 1$.

If $m = 1$ then $T = 0$. Then $M_B(T) = 0$ for any choice of basis B. The zero matrix is strictly upper triangular. Now we consider the case $m > 2$.

By the observation that $T^2 = 0$ implies $T^2 = 0$, we have

$$0 \subset \ker T \subset \ker T^2 \subset \ldots \subset \ker T^{m-1} \subset \ker T^m = E.$$

We'll show that $\ker T^{l+1} \neq \ker T^l$ for $1 \leq l \leq m$. Suppose by contradiction that $\ker T^{l+1} = \ker T^l$ for some $1 \leq l \leq m$. Then for every $u \in \ker T^{l+1}$, $T^{l+1}(u) = 0$. Thus $T^l = \ker T^l$. Thus $T^l = 0$. Thus $u \in \ker T$. Thus $\ker T^{l+1} \subset \ker T^l$. Applying this result again and again, we get...
\[
\ker T^{l-1} = \ker T^l = \ker T^{l+1} = \ldots = \ker T^m = E. \quad \text{This is a contradiction because } m \text{ was chosen such that } m \text{ is minimal nonnegative integer satisfying } T^m = 0. \text{ Therefore } \ker T^{l+1} \neq \ker T^l \text{ for all } 1 \leq l \leq m. \quad \text{Because } E \text{ is a vector space, each } \ker T^{l-1} \text{ has a direct summand in } \ker T^l. \quad \text{We put }
\]
\[
V_0 = \ker T, \quad \ker T = V_0,
\]
\[
\ker T^2 = \ker T \oplus V_1,
\]
\[
\ker T^3 = \ker T^2 \oplus V_2,
\]
\[
\vdots
\]
\[
\ker T^m = \ker T^{m-1} \oplus V_{m-1}.
\]

Then \(V_0, V_1, \ldots, V_{m-1} \neq \{0\}^3\) and \(E = V_0 \oplus V_1 \oplus \ldots \oplus V_{m-2}\). Let
\[
\{e_i \mid 0 \leq i < k_1\} \text{ be a basis of } V_0,
\]
\[
\{e_i \mid k_1 \leq i < k_2\} \text{ be a basis of } V_1,
\]
\[
\{e_i \mid k_{m-1} < i \leq k_m = n\} \text{ be a basis of } V_{m-1}.
\]

Then \(B = \{e_1, e_2, \ldots, e_n\}\) is a basis of \(E\). We'll show that \(M_{gs}(T)\) is strictly upper triangular. For each \(i = 1, 2, \ldots, n\), there is \(j_i\) is an index \(j\) such that \(k_j < i \leq k_{j+1}\). Then \(e_i \in V_j \subset \ker T^{j+1}\). Then \(T^{j+1}(e_i) = 0\). Then
\[
T e_i \in \ker T^j = V_0 \oplus \ldots \oplus V_{j-1}.
\]

If \(j = 0\) then \(T e_i = 0\).

If \(j > 1\) then \(T e_i\) is a linear combination of \(e_s \mid 0 < s \leq k_j\). Thus the column vector \([T e_i]_B\) has the following form.
Thus if we put the matrix \(M = (m_{ij})_{1 \leq i,j \leq n} = M_b(T) = ([Te_1]_b \ldots [Te_n]_b) \) then \(m_{ri} = 0 \) for every \(r > k_i \). Since \(i > k_j \), we get \(m_{ri} = 0 \) for every \(r > i \).

Thus \(M \) is strictly upper triangular.

(2) Problem 10, Lang, p. 546

Let \(N \) be a nilpotent \(n \times n \) matrix, (say \(N^m = 0 \) for some \(m > 1 \)). We'll show that \(I_n + N \) is invertible. We have \(N^{2m} = 0 \). Thus

\[
I_n = I_n - N^{2m} = (I_n - N) (I_n + N^2 + \ldots + N^{2m-2}) = (I_n - N) (I_n + N) (I_n + N^2 + \ldots + N^{2m-2})
\]
Thus $I + N$ is invertible and its inverse is $(I - N)(I + N + N^2 + \ldots + N^{2m-2})$.

3) Problem 12, Lang, p. 546.

Let k be a field and G be the subset of $\text{GL}(n, k)$ containing all upper triangular matrices with non-zero diagonal elements. (Every matrix in G is invertible because its determinant is the product of all elements on the diagonal, which is non-zero and hence a unit). We'll show that G is a subgroup of $\text{GL}(n, k)$ with respect to the matrix multiplication.

For $A, B \in G$, we put $C = AB$. Then for $1 \leq i, j \leq n$,

$$C_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Since A and B are upper triangular, $a_{ik} = 0$ if $i > k$,

$b_{kj} = 0$ if $k > j$. Thus if $i > j$

then $a_{ik} = 0$ or $b_{kj} = 0$ for all $k = 1, \ldots, n$.

Thus $C_{ij} = 0$ for $i > j$. Thus C is upper triangular. Since G is

det$(C) = \det(A)\det(B) \neq 0$, every diagonal element of C is non-zero.

Thus $C \in G$. For $A \in G$, we'll show that $A^{-1} \in G$. It suffices to show that A^{-1} is upper triangular. The adjoint matrix of A is $A^* = (P_{ij})$ with

$$P_{ij} = (-1)^{i+j} \det(A_{ij})$$

where A_{ij} is the matrix obtained by omitting the i'th row and the j'th column of A. For $i < j$, A_{ij} is upper triangular with one zero coefficient on the diagonal. Thus $\det(A_{ij}) = 0$ and $P_{ij} = 0$. Thus,
A^* is lower triangular. We have $A^{-1} = \frac{1}{\det(A)} A^*$. Therefore A^{-1} is lower upper triangular. We've proved that G is a subgroup of $GL(n, k)$.

Let H be the subset of G containing all matrices with one's on the diagonal. We'll show that H is a subgroup of G. For $A, B \in G$ and $C = AB$, we know that $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$

Then $C_{ii} = \sum_{k=1}^{n} A_{ik} B_{ki} = a_{ii} b_{ii}$ (because A, B are upper triangular).

In case $A, B \in H$, $a_{ii} = b_{ii} = 1 \neq 0$. Thus $C_{ii} = 1 \neq 0$. Thus CEH. Now for $A \in H$ and $B = A^{-1}$, we have $(In)_{ij} = a_{ij} b_{ji}$. Thus $1 = 1$. $b_{ii} = b_{ii}$. Thus $B \in H$. Therefore, H is a subgroup of G.

Next, we'll show that H is a normal subgroup of G. For $A \in H$, $B \in G$, we have $C = B^T A B \in G$. On the diagonal, the multiplication is simply termwise. Thus $C_{ii} = b_{ii}^{-1} a_{ii} b_{ii} = a_{ii} = 1$. Thus $C \in H$. Thus H is normal in G. Put K to be the subset of G containing all diagonal matrices with non-zero diagonal elements. Then K is a subgroup of G and $K \approx \mathbb{K}^n$ in as multiplicative groups. We see that $HK \geq \mathbb{K}^n$. We will show that $G = HK$. For $C = (c_{ij}) \in G$, we put $B = (b_{ij})$ with $b_{ij} = \begin{cases} 0 & \text{if } i \neq j \\ c_{ii} & \text{if } i = j \end{cases}$.

We put the matrix $A = (a_{ij}) \in G$ with $a_{ij} = c_{ij} c_{ij}^{-1}$ for all $1 \leq i, j \leq n$.

Then $a_{ii} = c_{ii} c_{ii}^{-1} = 1$. Thus $A E H$. We have

$$\sum_{k=1}^{n} a_{ik} b_{kj} = a_{ij} b_{ij} \quad \text{(because } b_{kj} = 0 \text{ if } k \neq j)$$

$$= c_{ij} c_{ij}^{-1} b_{ij}$$

$$= c_{ij}$$

Thus $C = AB$. Therefore $G = HK$.

Then we have a canonical group isomorphism $HK/H \cong K/(KH) \cong K$. Thus $G/H \cong K \cong (k\langle \theta_3 \rangle)^n$.

④ Problem 13, Lang, p. 568.

Let E be an n-dimensional vector space over a field k, and let $S \in End_k(E)$.

Consider the following k-algebra homomorphism $\sigma : k[t] \to End_k(E)$,

$$t \mapsto S.$$ Then σ makes E a $k[t]$-module.

(a) Suppose that S is diagonalizable, we'll show that its minimal polynomial over k is of type $q(t) = \prod_{i=1}^{m} (t - \lambda_i)$, where $\lambda_1, \ldots, \lambda_m$ are distinct elements of k.

Because S is diagonalizable, there exists a basis $B = \{ e_1, \ldots, e_3 \}$ of E such that $M_B(S)$ is diagonal. After exchanging rows and columns, we can assume that $M_B(S)$ is of the form:
Then we have \(S\epsilon_i = \lambda_i \epsilon_i \) for \(n_0 < i \leq n_1 \),
\(S\epsilon_i = \lambda_2 \epsilon_i \) for \(n_1 < i \leq n_2 \),
\(S\epsilon_i = \lambda_m \epsilon_i \) for \(n_m-1 < i \leq n_m = n \).

For each \(i = 1, \ldots, m \), we put \(F_i = \{ v \in E \mid (S-\lambda_i)v = 0 \} \). Because \(S-\lambda_i \) is a \(k \)-linear map, \(F_i \) is a vector space over \(k \). Moreover, for each \(v \in F_i \), we have
\[
(s-\lambda_i)v = S(S-\lambda_i)v \quad \text{(because \(E \) is a \(k[t] \)-module, and \(k[t] \) is commutative)}
\]
\[
= S(0) = 0
\]

Thus \(S \in F_i \). Therefore \(F_i \) is \(S \)-invariant, i.e. \(F_i \) is a \(k[t] \)-submodule of \(E \).

We have \(\epsilon_i \in F_i \) for \(n_{i-1} < i \leq n_i \). We'll show that these \(\epsilon_i \)'s form a \(k \)-basis for \(F_i \). It suffices to prove the claim for \(i = 1 \). The proof for other \(i \)'s follows by the same argument. For each \(v \in F_1 \), we write \(v = q_1 \epsilon_1 + \ldots + q_n \epsilon_n \) with \(q_1, \ldots, q_n \in k \). Then

where \(\lambda_{i-1}, \lambda_m \) are distinct.
\[0 = (S - \lambda_1)v = (S - \lambda_1)(c_1e_1 + \cdots + c_ne_n) \]
\[= \sum_{k=1}^{n} (c_kS_k - \lambda_1c_ke_k) \]
\[= \sum_{k=n+1}^{n_1} \left(c_kS_k - \lambda_1c_ke_k \right) + \sum_{k=n_1+1}^{n_2} \left(c_kS_k - \lambda_2c_ke_k \right) + \cdots + \sum_{k=n_m+1}^{n} \left(c_kS_k - \lambda_mc_ke_k \right) \]
\[= \sum_{k=n+1}^{n_1} c_k(\lambda_1 - \lambda_1)e_k + \cdots + \sum_{k=n_m+1}^{n} c_k(\lambda_m - \lambda_m)e_k \]

Since \(\{e_1, \ldots, e_n\} \) is \(k \)-linearly independent, \(c_k(\lambda_k - \lambda_1) = 0 \) for \(n_1 < k \leq n_m \).

Thus \(\{e_1, \ldots, e_n\} \) is a \(k \)-basis for \(F_k \).

Since \(\lambda_1 \neq \lambda_2 \), \(c_k = 0 \) for all \(k > n_2 \). Thus \(0 \) is just a linear combination of \(e_1, \ldots, e_{n_1} \). Thus \(\{e_1, \ldots, e_{n_1}\} \) is a \(k \)-basis for \(F_k \).

What we've shown lead to \(E = F_1 \oplus \cdots \oplus F_m \) as \(k \)-modules. We know that each \(F_i \) is also a \(k[t] \)-module of \(E \). Then \(E = F_1 + \cdots + F_m \) as \(k[t] \)-modules because \(k \subseteq k[t] \). We'll show that this sum is also a direct sum as \(k[t] \)-modules. By the definition of \(F_i \), we have

\[F_i = \{ v \in E \mid (t - \lambda_i)v = 0 \} \cong k[t]/(t - \lambda_i) \]

Since \((t - \lambda_i) \) is a maximal ideal of \(k[t] \), \(F_i \) is a simple \(k[t] \)-module. Take \(v \in F_1 \setminus \{0\} \). Then \((t - \lambda_1)v = 0 \). For \(2 \leq i \leq m \), \((t - \lambda_i)v = (t - \lambda_2)v + (\lambda_2 - \lambda_i)v \). Thus \(v \notin F_i \). Thus \(F_1, \ldots, F_m \) are all distinct. Thus we have the direct sum \(E = F_1 \oplus \cdots \oplus F_m \) as \(k[t] \)-modules.
Then \(E \cong k[t]/(t-\lambda_1) \oplus \cdots \oplus k[t]/(t-\lambda_m) \)
\[= k[t]/q(t) \quad \text{by Chinese's Remainder Theorem, where} \]
\[q(t) = (t-\lambda_1) \cdots (t-\lambda_m). \]

Thus \(q(t) \) is the (monic) minimal polynomial that annihilates \(E \) as a \(k[t] \)-module. Thus \(q(t) \) is the minimal polynomial of the presentation \((E, S)\).

(b) Now assuming that \((E, S)\) has the minimal polynomial as above, where \(\lambda_1 \ldots \lambda_m \) are distinct. We'll show that \(S \) is diagonalizable.

Because \(q(t) = (t-\lambda_1) \cdots (t-\lambda_m) \) is an exponent of \(E \) as a \(k[t] \)-module, by the structure theorem of finitely-generated torsion module over PID, we have
\[E \cong k[t]/(t-\lambda_1) \oplus \cdots \oplus k[t]/(t-\lambda_m). \]

Thus there exist \(k[t] \)-submodules \(F_1 \ldots F_m \) of \(E \) such that \(E = F_1 \oplus \cdots \oplus F_m \) as \(k[t] \)-modules. Since \(k \subseteq k[t] \), each \(F_i \) is also a \(k \)-submodule of \(E \). By the same reason, the sum \(F_1 + \cdots + F_m \) is also direct as \(k \)-modules. We'll show that \(E = F_1 + \cdots + F_m \) as \(k \)-modules. Because \(E = F_1 + \cdots + F_m \) as \(k[t] \)-modules, for each \(v \in E \), there are \(r_1(t), \ldots, r_m(t) \in k[t] \) such that
\[v = r_1(t)f_1 + \cdots + r_m(t)f_m \]
for some \(f_1, \ldots, f_m \in E \). Thus \(E = F_1 + \cdots + F_m \) as \(k \)-modules. Therefore we have
\[E = F_1 \oplus \cdots \oplus F_m \] as \(k \)-modules.
Let \(\{ e_i \mid \eta_0 < \eta_1 < \cdots < \eta_j \} \) be a \(k \)-basis of \(F_1 \),
\[\{ e_i \mid \eta_1 < \eta_2 < \cdots < \eta_k \} \) be a \(k \)-basis of \(F_2 \),
\[\vdots \]
\[\{ e_i \mid \eta_{j-1} < \eta_j = 0 \} \) be a \(k \)-basis of \(F_{j-1} \).

Then \(B = \{ e_1, \ldots, e_n \} \) is a basis of \(E \). We have \(Se_i = \lambda_i e_i \) where \(\eta_{j-1} < \eta_j \).

Therefore, the matrix representing \(S \) in basis \(B \) is diagonal, which has \(\lambda_i \)'s on its diagonal. Thus \(S \) is diagonalizable.

(c) Let \(F \) be a subspace of \(E \) that is \(S \)-invariant. Suppose that \(S \) is diagonalizable as an endomorphism of \(E \). We'll show that \(S \) is also diagonalizable as an endomorphism of \(F \).

Because \(F \) is diagonalizable as an endomorphism of \(E \), in part (a) we showed that \((E, S)\) has the minimal polynomial \(q(t) = (t-\lambda_1) \cdots (t-\lambda_m) \)
where \(\lambda_1, \ldots, \lambda_m \) are distinct. Moreover, we showed in part (a) by using Structure Theorem for finitely-generated torsion module over \(k[t] \) that
\[E = k[t]/q(t) \] as \(k[t] \)-modules. Because \(F \) is a \(k[t] \)-submodule of \(E \),
\[F = U/q(t) \] where \(U \) is an ideal of \(k[t] \) containing \(q(t) \). Since \(k[t] \) is a PID, \(U = (q(t)) \) for some polynomial \(q(t) \). Because \(q(t) \in (q(t)), q(t) \mid q(t) \).

Thus there is a polynomial \(r(t) \) such that \(q(t) = q(t) r(t) \). Then \(r(t) \) is also
of the form \((t-\beta_1) \cdots (t-\beta_k) \) with \(\beta_1, \ldots, \beta_k \) distinct.
(5) Let E be an n-dimensional vector space over k, which is an algebraically closed field. Let $A \in \text{End}_k(E)$. We'll show that A can be written as $A = S+N$ where

\[
\begin{align*}
S & \text{ is diagonalizable, } \\
N & \text{ is nilpotent, } \\
S \circ N & = N \circ S,
\end{align*}
\]

S and N are polynomials of A.

As usual, we consider the representation of $k[t]$ in E, namely a k-algebra homomorphism $\phi : k[t] \rightarrow \text{End}_k(E)$,

\[t \mapsto A.\]

This ring homomorphism allows us to consider E as a $k[t]$-module. Let $q(t)$ be the minimal polynomial of the presentation (E,A). Because k is algebraically closed, we can write $q(t) = (t-\lambda_1)^{k_1} \cdots (t-\lambda_m)^{k_m}$, where $\lambda_1, \ldots, \lambda_m$ are distinct and $k_1, \ldots, k_m \geq 1$. Note that the case $q(t) \equiv 1$ implies $E = 1.E = q(t)E = 0$. Then A is the zero endomorphism. Then S and N can be chosen as trivial endomorphisms.

Because $t-\lambda_1, \ldots, t-\lambda_m$ are distinct primes of $k[t]$, we got the prime power factorization of $q(t)$ in $k[t]$. Because $q(t)$ is an exponent of E as a $k[t]$-module, we can apply the structure theorem for finitely-generated torsion module E over the PID $k[t]$. Then
Then F_i is a vector space over k due to the linearity of $(S - \lambda_i)$. For each $v \in F_i$, we have $S(Tv) = T(Sv) = T(\lambda_i v) = \lambda_i (Tv)$.

Thus, $Tv \in F_i$. Therefore, $T(F_i) \subseteq F_i$. This means each F_i is T-invariant. We know that T is diagonalizable as an endomorphism of E. By part (c), T is also diagonalizable as an endomorphism of F_i. By the definition of F_i and the matrix (\ast), each F_i is an $(n_i - n_{i-1})$-dimensional vector space over k.

Then there exists a k-basis $B_i = (e_{i+1}, \ldots, e_{n_i})$ of F_i such that $M_{B_i}(T|_{F_i})$ is diagonal. Then we obtain a basis B of E by concatenating B_1, B_2, \ldots, B_n.

The representation matrix of T of this basis is of the form

$$
M_B(T) = \begin{pmatrix}
M_{B_1}(T|_{F_1}) & & \\
& M_{B_2}(T|_{F_2}) & \\
& & \ddots \\
& & & M_{B_m}(T|_{F_m})
\end{pmatrix}
$$

Since each block is diagonal, $M_B(T)$ is also diagonal. On each F_i, $Sv = \lambda_i v$. Thus, $M_{B_i}(S|_{F_i}) = \begin{pmatrix} \lambda_i & 0 \\ 0 & \lambda_i \end{pmatrix}$.

Therefore, $M_B(S)$ is exactly of the form (\ast). Therefore, both $M_B(S)$ and $M_B(T)$ are diagonal.
Because \(k < k[\mathcal{E}] \), each \(F_i \) is also a \(k \)-module. Thus we get
\[
E = F_1 \oplus \cdots \oplus F_m \text{ as } k\text{-modules. Let } (n_i - n_{i-1}) \text{ be the dimension of } F_i \text{ as a vector space over } k, \text{ with } n_0 = 0 \text{ and } n_m = n. \text{ For any basis } \mathcal{B} \text{ of } E \text{ obtained by concatenating the bases of } F_1, F_2, \ldots, F_m, \text{ the matrix } M_{\mathcal{B}}(A) \text{ has in blocks along its diagonal.}
\]
\[
\begin{pmatrix}
F_1 & & \\
& F_2 & \\
& & \ddots \\
& & & F_m
\end{pmatrix}
\]

For each \(i \), we have \(F_i = \{ v \in E : T_i^{k_i}v = 0 \} \) where \(T_i = A - \lambda_i I \). If we consider \(T_i \) as an endomorphism on \(F_i \), we'll have \(T_i^{k_i} = 0 \), i.e. a nilpotent endomorphism of \(F_i \). Then by Problem (1), there exists a basis \((e_{i+1}, \ldots, e_i) \) of \(F_i \) such that the representation matrix of \(T_i \) on this \(B_i \) is strictly upper triangular. Because \(A = T_i + \lambda_i I \) on \(F_i \),

\[
M_{\mathcal{B}_i}(A|_{F_i}) = \begin{pmatrix}
\lambda_i & \ast \\
0 & \lambda_i & \ast \\
& & \ddots & \ast \\
& & & \lambda_i & \ast \\
& & & & \ddots & \ast \\
& & & & & \lambda_i & \ast \\
& & & & & & \ddots & \ast \\
& & & & & & & \lambda_i & \ast \\
\end{pmatrix}_{n_i - n_{i-1}}
\]

Let \(B = (e_1, e_2, \ldots, e_n) \). Then
\[E = E(t - \lambda_1) \oplus E(t - \lambda_2) \oplus \ldots \oplus E(t - \lambda_m), \]

where \(E(t - \lambda_i) \) is the \((t - \lambda_i)\)-submodule of \(E \). For each \(i = 1, \ldots, m \), we put \[F_i = \{ \nu \in E \mid (A - \lambda_i I)^{k_i} \nu = 0 \}. \]

We'll show that \(F_i = E(t - \lambda_i) \). By similarity, it suffices to show that \(F_1 = E(t - \lambda_1) \). For every \(\nu \in F_1 \), we have \((t - \lambda_1)^{k_1} \nu = 0\). Thus \(\nu \in E(t - \lambda_1) \). Thus \(F_1 \subseteq E(t - \lambda_1) \). Conversely, for every \(\nu \in E(t - \lambda_1) \), there exists \(x \in \mathbb{N} \) such that \((t - \lambda_1)^x \nu = 0\). If \(x \leq k_1 \), then \((t - \lambda_1)^{k_1} \nu = 0\) then \(\nu \in F_1 \). If \(x > k_1 \), we put \(u = (t - \lambda_1)^{k_1} \nu \) and \(\beta = x - k_1 > 0 \). Then \((t - \lambda_1)^\beta u = 0\). Moreover, since \(q(t) \) annihilates \(E \) as \(k[t] \)-module, we have \(q(t) \nu = 0 \). Thus \((t - \lambda_1)^{k_1} \ldots (t - \lambda_m)^{k_m} u = 0 \). Because \(k[t] \) is a PID, we get \[\gcd \left((t - \lambda_1)^{k_1}, (t - \lambda_2)^{k_2}, \ldots, (t - \lambda_m)^{k_m} \right) u = 0 \]

Thus \(u = 0 \). Thus \((t - \lambda_1)^{k_1} \nu = 0\). Thus \(\nu \in F_1 \). Therefore \(F_1 = E(t - \lambda_1) \).

We have showed that
\[
E = \ker [(A - \lambda_i I)^{k_i}] \oplus \ldots \oplus \ker [(A - \lambda_m I)^{k_m}]
\]
as \(k[t] \)-modules.
Thus S is diagonalizable. Put $N = A - S = A - g(A)$. Then both S and N are polynomials of A. Also, $M_\beta(N) = M_\beta(A) - M_\beta(S)$ is strictly upper triangular. Thus this matrix is nilpotent, i.e. there is $k \in \mathbb{N}$ with $M_\beta(N)^k = 0$. Thus $M_\beta(N^k) = 0$. Thus $N^k = 0$. Thus N is a nilpotent endomorphism of E.

However, the fact that $g : k[t] \to \text{End}_E(E)$ is a $k[t]$-module homomorphism, we have $N = g(A) \circ (A - g(A)) = g(g(t)) \circ (t - g(t)) = g(g(t)(t - g(t))) = g((t - g(t))g(t)) = (A - g(A)) \circ g(A) = N \circ S$.

6. Problem 16, Lang, p. 569

Let Γ be a free abelian group of rank $n \geq 1$, and Γ' a subgroup of Γ. Let $\{v_1, \ldots, v_n\}$ be a basis of Γ, and $\{w_1, \ldots, w_n\}$ be a basis of Γ'. We put matrix $A = (a_{ij})_{1 \leq i, j \leq n}$ with coefficients in \mathbb{Z} such that

$$
\begin{pmatrix}
 w_1 \\
 \vdots \\
 w_n
\end{pmatrix}
= A
\begin{pmatrix}
 v_1 \\
 \vdots \\
 v_n
\end{pmatrix}
$$

Also, put $d = |\det A|$. We'll show that $(\Gamma : \Gamma') = d$.

We view Γ as a free module over \mathbb{Z} of rank n. Since Γ' is a
We know that \((t-\lambda_1)^{k_1}, \ldots, (t-\lambda_m)^{k_m}\) are pairwise relatively prime. Thus, by Chinese's Remainder Theorem, there exists \(g(t) \in \mathbb{K}[t]\) such that

\[g(t) \equiv \lambda_i \pmod{(t-\lambda_i)^{k_i}} \quad \forall i = 1, \ldots, m \]

Put \(S = g(A) \in \text{End}_E(E)\). For every \(v \in F_i\), we have

\[S_v = g(A)_v = (\lambda_i + r_i(t) (t-\lambda_i)^{k_i})_v = \lambda_i \cdot v \]

Thus,

\[M_{Bc}(S|_{F_i}) = \begin{pmatrix} \lambda_i & 0 \\ 0 & \lambda_i \end{pmatrix} \]

Thus

\[M_B(S) = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix} \]
\begin{align*}
\begin{pmatrix}
\vdots \\
\varepsilon_1 \\
\vdots \\
\varepsilon_n \\
\end{pmatrix}
&= B
\begin{pmatrix}
\vdots \\
\varphi_1 \\
\vdots \\
\varphi_n \\
\end{pmatrix},
\begin{pmatrix}
\vdots \\
\varphi_1 \\
\vdots \\
\varphi_n \\
\end{pmatrix}
= C
\begin{pmatrix}
\vdots \\
\varepsilon_1 \\
\vdots \\
\varepsilon_n \\
\end{pmatrix}.
\end{align*}

Then \(I_n = BC \) and \(\det B \) \(\det C \in \mathbb{R} \). Then we have
\begin{align*}
\begin{pmatrix}
\varphi_1 \\
\vdots \\
\varphi_n \\
\end{pmatrix}
&= C'
\begin{pmatrix}
\vdots \\
\varphi_1 \\
\vdots \\
\varphi_n \\
\end{pmatrix}
= C'
\begin{pmatrix}
\begin{pmatrix}
\delta_1 & 0 \\
0 & d_n \\
\end{pmatrix}
\varepsilon_1 \\
\vdots \\
\varepsilon_n \\
\end{pmatrix} =
C'
\begin{pmatrix}
\begin{pmatrix}
\delta_1 & \cdots & d_n \\
0 & \cdots & 0 \\
\end{pmatrix}
\varepsilon_1 \\
\vdots \\
\varepsilon_n \\
\end{pmatrix} B
\begin{pmatrix}
\vdots \\
\varphi_1 \\
\vdots \\
\varphi_n \\
\end{pmatrix}.
\end{align*}

Thus \(A = C'egin{pmatrix}
\delta_1 & \cdots & d_n \\
0 & \cdots & 0 \\
\end{pmatrix} B \).

Thus \(\det A = \frac{\det C'}{\pm 1} \frac{\det \begin{pmatrix}
\delta_1 & \cdots & d_n \\
0 & \cdots & 0 \\
\end{pmatrix}}{\pm 1} \).

Thus \(d = | \det A | = \delta_1 \cdots d_n \).

Next we'll show that \((\Gamma : \Gamma') = d \). Consider the following map
\begin{align*}
\varphi: \Gamma / \Gamma' &\rightarrow (\mathbb{Z}/d_1) \oplus \cdots \oplus (\mathbb{Z}/d_n) \\
v + \Gamma' &\mapsto (c_1 + d_1 \mathbb{Z}, \ldots, c_n + d_n \mathbb{Z}),
\end{align*}
where \(v = c_1 \varepsilon_1 + \cdots + c_n \varepsilon_n \), with \(c_i \in \mathbb{Z} \).

\(\text{Check if } \varphi \text{ is well-defined}. \)

Suppose \(v' = c'_1 \varepsilon_1 + \cdots + c'_n \varepsilon_n \) \(\varphi(v) = c_1 \varepsilon_1 + \cdots + c_n \varepsilon_n \). Then we seek that \(v' - v \in \Gamma' \). Then \((c'_1 - c_1) \varepsilon_1 + \cdots + (c'_n - c_n) \varepsilon_n \in \Gamma' \). Since \(\{ \varepsilon_1, \ldots, \varepsilon_n \} \) is a basis of \(\Gamma' \), there are \(r_1, \ldots, r_n \in \mathbb{Z} \) such that
submodule of \(M' \) of rank \(n \), there exists a basis \(\{e_1, \ldots, e_n\} \) of \(M' \) such that \(\{d_1 e_1, \ldots, d_n e_n\} \) is a basis of \(M' \), for some \(d_1, \ldots, d_n \in \mathbb{Z} \). As a consequence, each \(d_i \neq 0 \). Put \(f_i = d_i e_i \). We get

\[
\begin{pmatrix}
f_1 \\
\vdots \\
f_n
\end{pmatrix} =
\begin{pmatrix}
d_1 & 0 & \cdots & 0 \\
0 & d_2 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & d_n
\end{pmatrix}
\begin{pmatrix}
e_1 \\
\vdots \\
e_n
\end{pmatrix}
\]

We can assume that \(d_1 \) was chosen to be all positive. We'll show that \(d_1 \cdots d_n = d \). Since \(\{w_1, \ldots, w_n\} \) is a basis of \(M' \), each \(f_i \) is a linear combination of \(w_1, \ldots, w_n \). Thus there is a matrix \(B \) with coefficients in \(\mathbb{Z} \) such that

\[
\begin{pmatrix}
f_1 \\
\vdots \\
f_n
\end{pmatrix} = B \begin{pmatrix}
w_1 \\
\vdots \\
w_n
\end{pmatrix}
\]

Conversely, since \(\{f_1, \ldots, f_n\} \) is a basis of \(M' \), each \(w_i \) is a linear combination of \(f_1, \ldots, f_n \). Thus there is a matrix \(C \) with coefficients in \(\mathbb{Z} \) such that

\[
\begin{pmatrix}
w_1 \\
\vdots \\
w_n
\end{pmatrix} = C \begin{pmatrix}
f_1 \\
\vdots \\
f_n
\end{pmatrix}
\]

Thus \(\begin{pmatrix}
w_1 \\
\vdots \\
w_n
\end{pmatrix} = C B \begin{pmatrix}
w_1 \\
\vdots \\
w_n
\end{pmatrix} \). Thus \(\det(I_n) = \det(C') \det(B') \). Then

\[
\det(I_n) \in \mathbb{Z}, \quad \det(C') \in \mathbb{Z}, \quad \det(B') \in \mathbb{Z}
\]

Thus \(\det(C'), \det(B') \in \{-1, 1\} \). Similarly, we have two matrices \(B, C \) with coefficients in \(\mathbb{Z} \) such that
\[(t^2+1)v = (A^2+c)\bar{v} = 0 \text{ for all } v \in V.\]

Thus \((t^2+1)\) annihilates \(V\) as an \(R[t]\)-module. We know that \((t^2+1)\) is a prime ideal \(R[t]\). Thus by Structure Theorem for finitely generated torsion module \(V\) over \(R[t]\), we have

\[V \cong \left(\frac{R[t]}{(t^2+1)}\right) \oplus \left(\frac{R[t]}{(t^2+1)}\right) \oplus \ldots \oplus \left(\frac{R[t]}{(t^2+1)}\right).\]

Thus \(V = V_1 \oplus V_2 \oplus \ldots \oplus V_m\) as \(R[t]\)-modules such that \(\phi_i \cong \frac{R[t]}{(t^2+1)}\).

We know that \(R \subseteq R[t]\). Thus \(\phi_i\) is also an \(R\)-linear map. Put

\[\phi[t] = 1 + (t^2+1)R[t], \quad \phi[t] = t + (t^2+1)R[t].\]

Then for each \([\phi(t)] = f(t) + (t^2+1)R[t],\) we divide \(f(t)\) by \((t^2+1)\).

\[f(t) = g(t)(t^2+1) + (at+b), \quad a, b \in R.\]

Then \([f(t)] = [at+b] = a\phi[t] + b\phi[t].\) Thus \([1], [t]\) generates \(R[t]/(t^2+1)\) as an \(R\)-module. Moreover, if \(a\phi[t] + b\phi[t] = 0\) then \(at + b = g(t)(t^2+1)\)

for some \(g(t) \in R[t]\). By equating the degrees both sides, we must have \(a = b = 0\).

Thus \(R[t]/(t^2+1)\) has an \(R\)-basis \(\{1, t\}\). Put \(e_i = \phi_i^{-1}(1)\) and \(e^i = \phi_i^{-1}(t)\). Then \(\{e_i, e^i\}\) is a basis of \(V_i\) as an \(R\)-module. Since \(\phi_i\) is an \(R[t]\)-module, we have \(e^i = \phi_i^{-1}(1) = \phi^{-1}(t\phi_i(1)) = t\phi_i^{-1}(1) = te^i.\)

Thus \(e^i = Ae^i\). We have \(Ae_i = e^i, \quad Ae^i = A^2e_i = -e_i.\)
\((c'_1 - c_i) e_1 + \cdots + (c'_n - c_n) e_n = r_1 f_1 + \cdots + r_n f_n\)

\[= r_1 d_1 e_1 + \cdots + r_n d_n e_n.\]

Thus \(c'_1 - c_i = r_i d_i \in d_i \mathbb{Z}\). Thus \(c'_1 + d_i \mathbb{Z} = c_i + d_i \mathbb{Z}\). Thus \(\varphi(u') = \varphi(u)\).

By the definition of \(\varphi\), it is naturally a \(\mathbb{Z}\)-linear map and surjective.

Suppose that \(\varphi(v) = 0\). Then \(c_i + d_i \mathbb{Z} = 0\). Then there exists \(r_i \in \mathbb{Z}\)

such that \(c_i = d_i r_i\). Then \(v = c_1 e_1 + \cdots + c_n e_n\)

\[= r_1 d_1 e_1 + \cdots + r_n d_n e_n\]

\[= r_1 f_1 + \cdots + r_n f_n \in \Gamma'.\]

Thus \(v + \Gamma' = 0\). Thus \(\varphi\) is injective. Therefore, \(\varphi\) is a \(\mathbb{Z}\)-isomorphism.

In particular, \((\Gamma : \Gamma') = |\Z/d_1 \Z \oplus \cdots \oplus \Z/d_n \Z|\)

\[= |\Z/d_1 \Z| \cdot \left| \Z/d_2 \Z \right| \cdots \left| \Z/d_n \Z \right|\]

\[= d_1 d_2 \cdots d_n\]

\[= d.\]

\(\Box\) Problem 22, Lang, p. 540.

Let \(V\) be a vector space over \(\mathbb{R}\) of dimension \(n < \omega\). Let \(A : V \to V\) be an \(\mathbb{R}\)-linear map such that \(A^2 = -\text{id}\). Then \(A \in \text{End}_{\mathbb{R}}(V)\). Consider an \(\mathbb{R}\)-algebra homomorphism \(S : \mathbb{R}[t] \to \text{End}_{\mathbb{R}}(V), t \mapsto A\). This allows us to think of \(V\) as an \(\mathbb{R}[t]\)-module. Because \(A^2 + \text{id} = 0\), we have
Thus, as an endomorphism of V_i, A has the representation matrix in basis (e_i, e'_i) as follows: $M_{(e_i, e'_i)}(A) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Since $V = V_1 \oplus \ldots \oplus V_m$ as $R(R)$-modules, $V = V_1 \oplus \ldots \oplus V_m$ as R-modules. Thus $B = (e_1, e'_1, e_2, e'_2, \ldots, e_m, e'_m)$ is a basis as an R-basis of V. The matrix representing A in this basis has the form:

$$M_B(A) = \begin{pmatrix} 0 & -1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \end{pmatrix}$$

The dimension of V is $|B| = 2m$. Also, $V = V_1 \oplus \ldots \oplus V_m$ is a decomposition of V as a direct sum of m A-invariant subspaces.