Problem 1, Ahlfors, p. 232

Let \(D \) be a symmetric domain with respect to the real line, and \(\alpha \in \mathbb{R} \). Let \(f : D \rightarrow \mathbb{D} \) be the conformal map such that \(f(\alpha) = 0 \) and \(f'(\alpha) > 0 \).

Put \(g : D \rightarrow \mathbb{D}, \quad g(z) = \frac{1}{f(z)}. \) Then \(g \) is well-defined because both \(D \) and \(\mathbb{D} \) are symmetric with respect to the real axis. For any \(\alpha \in \mathbb{R} \), we have

\[
\lim_{z \to \alpha} \frac{g(z) - g(\alpha)}{z - \alpha} = \lim_{z \to \alpha} \frac{\frac{1}{f(z)} - \frac{1}{f(\alpha)}}{z - \alpha} = \lim_{z \to \alpha} \left(\frac{f(z) - f(\alpha)}{z - \alpha} \right) = f'(\alpha).
\]

Thus \(g \) is analytic and \(g'(z) = \frac{1}{f'(z)} \) for all \(z \in \mathbb{R} \).

Moreover, \(g \) is bijective because \(g(z) = w \)

\[
(\Rightarrow) \quad f(w) = z
\]

\[
(\Rightarrow) \quad f(\bar{w}) = \bar{z}
\]

\[
(\Rightarrow) \quad \bar{z} = f^{-1}(\bar{w})
\]

\[
(\Rightarrow) \quad z = f^{-1}(w)
\]

Thus \(g \) is a conformal map. Moreover,

\[
g(\alpha) = \frac{1}{f(\alpha)} = \frac{1}{f(\bar{\alpha})} = \bar{0} = 0,
\]

\[
g'(\alpha) = \frac{1}{f'(\alpha)} = \frac{1}{f'(\bar{\alpha})} = f'(\alpha) > 0.
\]
By the uniqueness, \(g = f \). Therefore, \(f(\overline{z}) = f(z) \) for all \(z \in \mathbb{C} \).

(2) Suppose that \(\Omega \) is a domain symmetric with respect to the point \(z_0 \).

Let \(f: \Omega \to D \) be the conformal map such that \(f(z_0) = 0 \), \(f'(z_0) > 0 \). We define \(g: \Omega \to D \), \(g(z) = -f(2z_0 - z) \). Then \(g \) is well-defined because \(\Omega \) is symmetric with respect to \(z_0 \) and \(D \) is symmetric with respect to 0. We have \(g'(z) = f'(2z_0 - z) \) by the chain rule. Thus \(g \) is analytic.

In addition, \(g \) is bijective because \(f \) is bijective. Thus \(g \) is a conformal map. Moreover, \(g(z_0) = -f(2z_0 - z_0) = -f(z_0) = 0 \), \(g'(z_0) = f'(2z_0 - z_0) = f'(z_0) > 0 \).

By the uniqueness, \(g = f \). Therefore, \(-f(2z_0 - z) = f(z) \) for all \(z \in \Omega \).

As a comment, if \(\Omega \) is symmetric with respect to the real line then \(f \) maps symmetric points to symmetric points (wrt to the real line); if \(\Omega \) is symmetric with respect to \(z_0 \) then \(f \) maps symmetric points wrt \(z_0 \) to symmetric points wrt the origin.

(3) Problem 1, additional problem.

Put \(U = \{ z \in \mathbb{C} : \Re(z) > 0 \} \) and consider a holomorphic map \(f: U \to D \) with \(f(1) = 0 \). We'll look for the maximum possible the value of \(|f(z)| \).
We know that the map \(\phi_1 : \Delta \to \mathbb{D} \),
\[
\phi_1(z) = i \frac{1-z}{1+z}
\]
is a conformal map. By rotating \(90^\circ \) about the origin, we can map \(\mathbb{D} \) onto \(U \). Thus \(\phi_2 : \mathbb{D} \to U \), is a conformal map. Thus \(\phi = \phi_2 \circ \phi_1 : \Delta \to U \) is a conformal map. We have
\[
\phi(z) = \phi_2(\phi_1(z)) = -i\phi_1(z) = \frac{1-z}{1+z}.
\]
Put \(g = \phi \circ \phi_1 : \Delta \to \Delta \). We have \(g(0) = \phi_1(\phi_0) = \phi(1) = 0 \). Therefore by Schwarz's lemma, \(|g(z)| \leq |z| \) for all \(z \in \Delta \). Thus, \(|f(\phi(z))| \leq |z| \) for all \(z \in \Delta \). If \(z \) is replaced by \(\phi^{-1}(z) \) then \(|f(z)| \leq |\phi^{-1}(z)| \) for all \(z \in U \). We have \(\phi^{-1}(z) = \phi(z) = \frac{1-z}{1+z} \). Thus,
\[
|f(z)| \leq \left| \frac{1-z}{1+z} \right|, \text{ for all } z \in U.
\]
Thus \(|f(z)| \leq \frac{1}{3} \). The equality happens when \(g(z) = z \), for which \(f = \phi^{-1} \). Thus in that case,
\[
f(z) = \frac{1-z}{1+z} \quad \forall z \in U.
\]

4. Put \(F = \{ f : \Delta \to \mathbb{C} \text{ holomorphic, } f(0)=0, \text{ diam } (f(\Delta)) \leq 2 \frac{3}{4} \} \), where
\[
\text{diam } (f(\Delta)) := \sup_{z, w \in \Delta} |f(z)-f(w)|.
\]
We see that \(F \) is a family of holomorphic functions on \(\Delta \). To show that \(F \) is a normal family, by Montel's theorem,
it suffices to show that F is locally bounded. We have

$$|f(z)| = |f(z) - f(0)| \leq \text{diam}(f(D)) \leq 2 \quad \forall z \in D, \forall f \in F.$$

Thus F is uniformly bounded in D, and hence it's a normal family.

To show that F is compact, we take a sequence (f_n) in F and show that it has a convergent subsequence to some element in F. Since F is normal, there exists a subsequence (f_{n_k}) of (f_n) that converges to some $f : D \to \mathbb{C}$ uniformly on every compact subset of D. By Weierstrass's theorem, f is holomorphic.

We have

$$f(0) = \lim_{k \to \infty} f_{n_k}(0) = \lim_{k \to \infty} 0 = 0.$$

Moreover,

$$|f(z_1) - f(z_2)| = \lim_{k \to \infty} \left| f_{n_k}(z_1) - f_{n_k}(z_2) \right| \leq \text{diam}(f_{n_k}(D)) \leq 2,$$

Thus $\text{diam}(f(D)) \leq 2$. We have showed that $f \in F$. Therefore, F is compact.

5. We consider the family $F = \{f : D \to \mathbb{C} \text{ holomorphic, } f(0) = 0 \}$. Then F is a normal family because $|f(z)| < 1$ for all $z \in D, f \in F$. Consider $f \in F$ and put $f_n(z) = f \circ f \circ \cdots \circ f(z)$. Suppose that $\lim_{n \to \infty} f_n(z) = h(z)$ for all $z \in D$.

We'll show that either $h(z) = z$ for all z, or $h(z) = 0$ for all z.

Because f_n is holomorphic and $f_n(0) = f \circ f \circ \cdots \circ f(0) = 0$, $f_n \in EF$. Since F is normal, there exists a subsequence (f_{n_k}) which converges uniformly
to h on every compact set. Thus $h: D \to \mathbb{C}$ is a holomorphic map by Weierstrass's theorem. Moreover, $h(0) = \lim_{n \to \infty} f_n(0) = 0$ and $|h(2)| = \lim_{n \to \infty} |f_n(2)| \leq 1$. By the Maximum Principle, $|h(z)| < 1$ for all $z \in D$. Thus $h: D \to D$ and $h(0) = 0$. We will consider two cases $|f(0)| = 1$ and $|f'(0)| < 1$.

$|f'(0)| = 1$.

Applying the Schwartz's Lemma for $f(t)$, there is a constant c with $|c| = 1$ and $f(z) = cz$ for all $z \in D$. Then $f_n(z) = c^n z$.

For $z \neq 0$, the sequence $c^n z^3_n$ converges if and only if the sequence $\{c^n\}$ converges. In that case, $\lim_{n \to \infty} (c^{n+1} - c^n) = 0$. Consequently, $|c^{n+1} - c^n| \to 0$.

we have $|c^{n+1} - c^n| = |c^n| |c-1| = |c-1|$. Thus $c = 1$. Then $f(z) = z$, and $f_n(z) = z$, and hence $h(z) = z$ for all $z \in D$.

$|f'(0)| < 1$.

Because $|f'(0)|$ is continuous around zero, there exists $\varepsilon > 0$ and $\delta < 1$ such that $|f'(z)| \leq \delta$ for all $z \in \Phi = B(0, \varepsilon)$.

Applying the Schwartz's Lemma to f, we have $|f(z)| \leq |z|$ for all $z \in D$. Thus $f(z) \in \Phi$ for all $z \in D$. Thus, we can view f as a
map from \mathbb{C} to \mathbb{C}. Then f_n also map \mathbb{C} to \mathbb{C} for any $n \in \mathbb{N}$.

For $z \in \mathbb{C}$, we have $f_{n+1}(z) = f(f_n(z))$. Then by the chain rule,

$$f_{n+1}'(z) = f'(f_n(z)) f_n'(z).$$

Thus

$$|f_{n+1}'(z)| \leq |f'(f_n(z))| |f_n'(z)| \leq M |f_n'(z)|.$$

Repeatedly using this result, we get

$$|f_n'(z)| \leq M |f_n'(z)| \leq M^2 |f_n'(z)| \leq \cdots \leq M^n |f'(z)| \leq p^n |f'(z)|.$$

Thus $|f_n'(z)| \leq p^n$ for all $z \in \mathbb{C}$. By Weierstrass's theorem, we also know that $h'(z) = \lim_{n \to \infty} f_n'(z)$. Thus $h'(z) = 0$ for all $z \in \mathbb{C}$. Since h' is holomorphic, and \mathbb{D} is connected, $h'(z) = 0$ for all $z \in \mathbb{D}$. Thus h is a constant function. Since $h(0) = 0$, h must be the zero function.