(1) Consider \(\dot{u} = f(u) + \varepsilon g(t,u) \) with \(f, g \in C^1, f(0) = 0, \) and \(A = Df(0) \) hyperbolic, for \(\varepsilon \) small.

(i) Show that the linearization \(\frac{d}{dt} - A \) is invertible as an operator from \(C^1(\mathbb{R}, \mathbb{R}^n) \) into \(C^0(\mathbb{R}, \mathbb{R}^n) \).

(ii) Show that there exists a small neighborhood of the origin \(U(0) \) so that for all \(\varepsilon \) sufficiently small, there exists a unique solution \(u(t) \) such that \(u(t) \in U(0) \) for all \(t \in \mathbb{R} \).

(iii) Show that \(u(t) \) is 1-periodic if \(g(t,u) \) is 1-periodic in \(t \).

(2) Consider
\[
\begin{align*}
x' &= -x + ay^2 \\
y' &= -2y + bx^2.
\end{align*}
\]

(i) Draw the phase portrait of the linearization and express trajectories as graphs \(x = h(y) \) or \(y = h(x) \).

(ii) Find the Taylor jet of the (smooth) strong stable manifold, \(x = h(y) \) for the nonlinear system up to order two.

(iii) Try to find a “weak stable” manifold tangent to \(\{y = 0\} \), by calculating a quadratic Taylor jet of \(y = h(x) \) — what goes wrong?

(iv) Set \(a = 0 \) and compute the solutions explicitly. Express \(y \) as a function of \(x \). Show that there are many invariant manifolds \(y = h(x) \) but none is \(C^2 \) because of terms of the form \(x^2 \log x \).

(3) Consider the linear equation \(\dot{x} = Ax, A = \text{diag} (\lambda_j), \lambda_1 > \lambda_2 > \ldots > \lambda_n \).

(i) Derive an equation for the projectivized flow, that is, write \(x = u \cdot |x| \) and derive an equation for \(u \in S^{n-1} \). Find all equilibria of this flow on the sphere.

(ii) Show that the Rayleigh quotient \(V(u) = -\frac{1}{2} \langle Au, u \rangle \) is a strict Lyapunov function, that is, strictly decreasing for non-equilibrium stolutions. Which equilibria are stable?

(iii) Conclude that all trajectories are heteroclinic and describe heteroclinic orbits.

(iv) Describe equilibria and heteroclinic orbits for the (non-self-adjoint) \(A = \begin{pmatrix} 0 & 1 \\ \mu & 0 \end{pmatrix} \) for all \(\mu \in \mathbb{R} \)?
(v) *Alternative to the above:* Create a phase portrait on S^2 numerically when $\lambda_j = -j$.

(4) Implement classical Runge-Kutta for the competing species problem studied in class and demonstrate numerically that the method is of order 4.

(5) Study error propagation numerically in the Lorenz model,

\[
\begin{align*}
 x' &= \sigma(y - x) \\
 y' &= x(\rho - z) - y \\
 z' &= xy - \beta z,
\end{align*}
\]

$\sigma = 10$, $\beta = 8/3$, $\rho = 28$. Therefore, start with $x = y = z = 0.1$ and integrate using Euler and/or Matlab’s RK solver. Compare the solutions at various time intervals and for various step sizes: when do solutions differ qualitatively? Now study the difference between the solutions with initial conditions $x = y = z = 0.1 + \varepsilon$, ε small. Demonstrate numerically that the difference grows exponentially for a certain time.

(6) Find (complex) stability regions for

\[
\begin{align*}
 u_{n+1} &= u_n + hf(u_n + \frac{h}{2} f(u_n)), \\
 u_{n+1} &= u_n + \frac{h}{2} (f(u_n) + f(u_{n+1})).
\end{align*}
\]

Alternative/Optional: Find the (real) stability boundaries numerically.

Homework is due on Wednesday, November 26, in class. Choose three, or more for extra credit.