1. Identify the circle S^1 with $[0,1] / \sim_1$. Let $x \in (0,1) \setminus \mathbb{Q}$, $J_0 = [0, 1 - x)$, $J_1 = (-x, 1)$. Let $R_x : S^1 \to S^1$, $R_x(x) = (x + \alpha) \mod 1$ be the rigid circle rotation.

(i) For $x \in J_1$, we determine the smallest positive integer k such that $R_x^k(x) \in J_1$. For $k \in \mathbb{N}$, write $x + k\alpha = m_k + \beta_k$ where $m_k = \lfloor x + k\alpha \rfloor$ is the integer part of $x + k\alpha$. Then

$$k = \frac{\beta_k - x + m_k}{\alpha} \in \mathbb{N}$$

If $m_k = 0$ then $k = \frac{\beta_k - x}{\alpha} < \frac{1 - (1 - x)}{\alpha} = 1$.

If $m_k = 1$ then $k = \frac{\beta_k - x + 1}{\alpha}$. To have $\beta_k \in J_1$, we require

$$\frac{x - 1}{\alpha} - 1 = \frac{(1 - x) - x + 1}{\alpha} \leq k < \frac{1 - x + 1}{\alpha} = \frac{2 - x}{\alpha}.$$

The interval $[\frac{2 - x}{\alpha} - 1, \frac{2 x}{\alpha}]$ is of length 1 and $\frac{2 - x}{\alpha} > \frac{1}{\alpha} > 1$. Thus, it contains exactly one positive integer, which is $\lfloor \frac{2 - x}{\alpha} \rfloor + 1$ if $\frac{2 - x}{\alpha} \notin \mathbb{Z}$, or $\lfloor \frac{2 - x}{\alpha} \rfloor - 1$ if $\frac{2 - x}{\alpha} \in \mathbb{Z}$.

If $m_k > 2$ then $k = \frac{\beta_k - x + m_k}{\alpha} > \frac{x - 2}{\alpha} = \frac{2 - x}{\alpha}$.

Therefore, the smallest $k \in \mathbb{N}$ such that $\beta_k \in J_1$ is found only in the case $m_k = 1$. We conclude
\[k(x) = \begin{cases} \left\lceil \frac{2-x}{\alpha} \right\rceil & \text{if } \frac{2-x}{\alpha} \notin \mathbb{Z}, \\ \left\lceil \frac{2-x}{\alpha} \right\rceil - 1 & \text{if } \frac{2-x}{\alpha} \in \mathbb{Z}. \end{cases} \tag{1} \]

Put \(l = \left\lceil \frac{1}{\alpha} \right\rceil \in \mathbb{Z}. \) We show that \(k(x) \) given by (1) assumes one of two values \(l \) or \(l+1 \). According to (1),

\[
k(x) < \frac{2-x}{\alpha} < \frac{2-(1-x)}{\alpha} = \frac{1}{\alpha} + 1, \]

\[
k(x) > \frac{2-x}{\alpha} - 1 > \frac{2-1}{\alpha} - 1 = \frac{1}{\alpha} - 1.
\]

Thus, \(k(x) \in \left(\frac{1}{\alpha} - 1, \frac{1}{\alpha} + 1 \right) \). Because \(\frac{1}{\alpha} \notin \mathbb{Q} \), the interval contains only two integers: \(\left\lceil \frac{1}{\alpha} \right\rceil \) and \(\left\lceil \frac{1}{\alpha} \right\rceil + 1 \). Therefore, \(k(x) \in \{l, l+1\} \).

With \(k(x) \) given at (1), we define the return map \(\phi : J_1 \to J_1 \),

\[
\phi(x) = R_{\alpha}^{k(x)}(x) = (x + k(x)x) \mod 1
= x + k(x)x - 1. \tag{2}
\]

(ii) We show that \(\phi(1-x) = \lim_{x \to 1^-} \phi(x) \). Put \(x' = 1-x \).

\[
\frac{2-x'}{\alpha} = \frac{1+x}{\alpha} = \frac{1}{\alpha} + 1 \notin \mathbb{Z}.
\]

Thus,

\[
k(x') = \left\lceil \frac{2-x'}{\alpha} \right\rceil = \left\lceil \frac{1}{\alpha} \right\rceil + 1 = l+1.
\]

By (2),

\[
\phi(x') = x' + k(x')x - 1 = (1-x) + (l+1)x - 1 = lx.
\]

We see that \(\frac{2-1}{\alpha} = \frac{1}{\alpha} \notin \mathbb{Z} \). Because of the discreteness of \(\mathbb{Z} \) in \(\mathbb{R} \), there exists \(\varepsilon \in (0, x) \) such that \(\frac{2-x}{\alpha} \notin \mathbb{Z} \) for all \(x \in (-\varepsilon, 1+\varepsilon) \). Thus \(\left\lceil \frac{2-x}{\alpha} \right\rceil \) is constant in the interval \(x \in (-\varepsilon, 1+\varepsilon) \). It is equal to \(\left\lceil \frac{2-1}{\alpha} \right\rceil = l \).
\[k(x) = \left\lceil \frac{2-x}{\lambda} \right\rceil = l \quad \forall x \in (1-\varepsilon, 1). \]

Then
\[\phi(x) = x + k(x)\lambda - 1 = x + \lambda x - 1 \quad \forall x \in (1-\varepsilon, 1). \]

Then \(\lim_{x \to x'} \phi(x) = 1 + \lambda x - 1 = \lambda x = \phi(x'). \)

Next, define an equivalence relation in \(\mathbb{R} : x \sim y \iff \frac{x-y}{\lambda} \in \mathbb{Z}. \)

Denote \(\bar{x} \) the equivalence class of \(x \). Put \(S = \{ \bar{x} : x \in \mathbb{R} \} \). We can identify \(S \cong \mathbb{R}/\sim \cong [1-\varepsilon, 1]/(1-\varepsilon \sim 1) \).

For this reason, \(S \) can be thought as a smaller circle (than \(S' \)). Define a map \(\tilde{\phi} : S \to S \),
\[\tilde{\phi}(\bar{x}) = \overline{\phi(x)} \quad \forall x \in I_1. \]

It is a well-defined map. We show that it is continuous.
\[\overline{\phi(x)} = \overline{x + k(x)\lambda - 1} = \overline{x - 1} \quad \forall x \in I_1. \]

Thus, \(\tilde{\phi}(\bar{x}) = \overline{x - 1} \) for all \(x \in I_1 \). We see that
\[\bar{x} = \bar{y} \iff \frac{x-y}{\lambda} \in \mathbb{Z} \iff \frac{(x-1)-(y-1)}{\lambda} \in \mathbb{Z} \iff \overline{x-1} = \overline{y-1}. \]

Hence, \(\tilde{\phi}(\bar{x}) = \overline{x - 1} \) for all \(x \in \mathbb{R} \). Put \(T : \mathbb{R} \to \mathbb{R}, \ T(x) = x - 1 \). Then
\[\tilde{\phi}(\bar{x}) = p \circ T(x) \quad \forall x \in \mathbb{R}. \]

Here \(p \) is the map \(p : \mathbb{R} \to S, \ p(x) = \bar{x}. \)

By the characteristic property of quotient topology (Theorem 3.70, John Lee
"Introduction to topological manifolds", 2011), \(\Phi : S \to S \) is continuous if and only if \(\text{Top} : \mathbb{R} \to S \) is continuous. This is the case because both \(T \) and \(p \) are continuous.

(iii) Define a map \(\Psi : S \to S' \),

\[
\Psi(x) = \left(1 - \frac{x - (1-x)}{x} \right) \mod 1 \quad \forall x \in \mathbb{R}.
\]

It is well-defined because the right-hand side does not depend on the choice of representative in \(x \). We compute the composite map \(\Psi \circ \Phi \circ \Psi^{-1} \).

For \(y \in S' \), the equation \(\Psi(x) = y \) is satisfied if

\[
1 - \frac{x - (1-x)}{x} = y,
\]

which is satisfied if \(x = 1 - xy \). Then \(\Phi(x) = \overline{x} - 1 = -xy \). By the definition of \(\Psi \),

\[
\Psi(-xy) = 1 - \frac{-xy - (1-x)}{x} = 1 + \frac{xy + (1-x)}{x} = y + \frac{1}{x}.
\]

Thus,

\[
\Psi \circ \Phi \circ \Psi^{-1}(y) = \Psi(\Phi(x)) = \Psi(-xy) = \left(y + \frac{1}{x} \right) \mod 1.
\]

Let \(\beta = \frac{1}{x} - 1 = \frac{1}{x} - \left[\frac{1}{x} \right] \in (0,1) \setminus \mathbb{Q} \). Then

\[
\Psi \circ \Phi \circ \Psi^{-1}(y) = (y + \beta) \mod 1 = R_\beta(y) \quad \forall y \in S'.
\]

Thus, \(\Psi \circ \Phi \circ \Psi^{-1} = R_\beta \).

(iv) By part (iii),

\[
\alpha = \frac{1}{\ell + \beta}.
\]

Labeling \(\alpha \) as \(\alpha_1 \), \(\ell \) as \(\ell_1 \), \(\beta \) as \(\alpha_2 \), we can write
\[\alpha_i = \frac{1}{l_i + \alpha_{i+1}}. \]

Recall that \(l_i \in \mathbb{N} \) is "almost" the returning time of \([1-\alpha_i, 1)\) under the rigid rotation \(R_{\alpha_i} \). "Almost" is understood as that the returning time of each point of \([1-\alpha_i, 1)\) is either \(l_i \) or \(l_i + 1 \).

Because \(\alpha_i \in (0,1) \setminus \mathbb{Q} \), we can view \(\alpha_2 \) as \(\alpha_1 \) and repeat the process in parts (i) and (ii) and (iii). Then

\[\alpha_2 = \frac{1}{l_2 + \alpha_3} \]

where \(l_2 \in \mathbb{N} \) is almost the returning time of \([0-\alpha_2, 1)\) under the rigid rotation \(R_{\alpha_2} \), and \(\alpha_3 \in (0,1) \setminus \mathbb{Q} \). Similarly,

\[\alpha_3 = \frac{1}{l_3 + \alpha_4}, \quad \alpha_4 = \frac{1}{l_4 + \alpha_5}, \ldots \]

Then

\[\alpha = \alpha_1 = \frac{1}{l_1 + \alpha_2} = \frac{1}{l_1 + \frac{1}{l_2 + \alpha_3}} = \frac{1}{l_1 + \frac{1}{l_2 + \frac{1}{l_3 + \alpha_4}}} = \frac{1}{l_1 + \frac{1}{l_2 + \frac{1}{l_3 + \frac{1}{l_4 + \alpha_5}}}} = \ldots \]

The returning times \(l_1, l_2, l_3, \ldots \) give us a continued fraction expression for \(\alpha \).

(v) Take any \(x \in S^1 \). Consider the orbit

\[x_j = R_{\alpha}^j(x) = (x + jx) \mod 1, \quad \forall j \in \mathbb{N}. \]

Define a coding sequence
\[a_j = \begin{cases} 0 & \text{if } x_j \in [0, 1-x), \\ 1 & \text{if } x_j \in [1-x, 1). \end{cases} \]

We show that starting from some index, \((a_j)\) has the pattern: \(l\) or \(l-1\) number 0's followed by exactly one number 1. That is to show

\[
(a_j) = \underbrace{\cdots 0 \cdots 0 1 \cdots 01 \cdots 01} \cdots 01 \cdots
\]

Because the interval \([1-x, 1)\) is of length \(x\), there exists \(j_0 \in \mathbb{N}\) such that \(x_{j_0} \in [1-x, 1)\). We can assume that the sequence \((a_j)\) starts from \(x_{j_0}\), which is equivalent to assuming \(x \in [1-x, 1)\).

In Part (i), we showed that the smallest positive number \(l\) such that \(R_x^l(1) \in [1-x, 1)\) is \(\ell(x) \in \{l, l+1\}\). Thus,

\[
\begin{cases}
a_1, a_2, \ldots, a_{\ell-1} = 0, \\
a_\ell = 1 \text{ or } (a_\ell = 0 \text{ and } a_{\ell+1} = 1).
\end{cases}
\]

If \(a_\ell = 1\), we regard \(x_\ell\) as \(x\) which starts a new sequence. Then \(a_\ell\) is followed by \(l-1\) or \(l\) number 0's and then a number 1.

If \(a_{\ell+1} = 1\), we regard \(x_{\ell+1}\) as \(x\) which starts a new sequence. Then \(a_{\ell+1}\) is followed by \((l-1)\) or \(l\) number 0's and then a number 1.

\[
\underbrace{0 \cdots 0 1 \cdots 01}_{\ell-1} \quad \text{or} \quad \ell \quad \text{or} \quad \ell-1
\]

Continue the process of translating the sequence \((a_j)\) by updating the value of \(x\) in \([1-x, 1)\). We conclude that \((a_j)\) has the pattern: \(l\) or \(l-1\) consecutive
number 0's followed by exactly one number 1.

\(l \) is about the time it takes to go (via \(\mathcal{K}_\ell \)) from a point in \([1-\alpha, 1)\) back to the same interval.

(vi) Define a sequence \((b_j)\) obtained from \((a_j)\) by replacing each block \(\overline{0 \cdots 01}\) by number 0, and each block \(\overline{1 \cdots 01}\) by number 1. We show that \((b_j)\) has the same pattern as \((a_j)\), except that the "period" may be different from \(l\).

To do so, we show that the process of substituting each block by a single number creates an orbit on the smaller circle \(S\) which is analogous to the orbit \((x_j)\) on \(S'\).

Translating \((x_j)\) by some index if necessary, we can assume \(x \in (1-\alpha, 1)\).

\[k(x) = l+1 \iff x_j \text{ has not returned to } [1-\alpha, 1) \text{ after } l \text{ times} \]

\[\iff x_n = x + l\alpha < 1 + (1-\alpha) \]
\[\iff x < 2 - (l+1)\alpha. \]

Put \(J_0' = [1-\alpha, 2-(l+1)\alpha)\) and \(J_1' = [2-(l+1)\alpha, 1)\). Then

\[k(x) = \begin{cases}
 l+1 & \text{if } x \in J_0', \\
 l & \text{if } x \in J_1'.
\end{cases} \]

The sequence \((a_j)\) starts with block \(\overline{0 \cdots 01}\) if \(x \in J_0'\), and with block \(\overline{1 \cdots 01}\) if \(x \in J_1'\). Recall from Part (vi) that \(S = \mathbb{R}/\mathbb{Z} \cong [1-\alpha, 1)/_{1-\alpha\mathbb{Z}}\).

The point \(\phi^{k(x)}(x+\ell\alpha) \) may not lie in \([1-\alpha, 1)\), but is equivalent to a
unique point in \mathcal{S} thanks to the equivalence relation \sim. Then (a) starts with block $0 \ldots 0 \ 1$ if $\phi(x) = x + k(x)x - 1$ is equivalent to a point in J_0, and with block $0 \ldots 0 \ 1$ if $\phi(x)$ is equivalent to a point in J_0'. Note that $\phi(x)$ is equivalent to $x - 1$. Put $x_0' = x \in \mathcal{S}$.

Then

$$b_1 = \begin{cases} 1 & \text{if } x_0' \in J_0' \\ 0 & \text{if } x_0' \in J_0 \\ \end{cases}$$

$$b_2 = \begin{cases} 1 & \text{if } x_0' - 1 \text{ is equivalent to some } x_0' \in J_0' \\ 0 & \text{if } x_0' - 1 \text{ is equivalent to some } x_0' \in J_0 \\ \end{cases}$$

$$b_3 = \begin{cases} 1 & \text{if } x_0' - 1 \text{ is equivalent to some } x_0' \in J_0' \\ 0 & \text{if } x_0' - 1 \text{ is equivalent to some } x_0' \in J_0 \\ \end{cases}$$

We can view (x_j') as the orbit of x on the small circle \mathcal{S} under the rigid rotation R_{-1}. The map $\#^v$ in Part (iii) transforms (x_j') into an orbit on the circle \mathcal{S}'. Let

$$x_j'' = \#(x_j') = \left(1 - \frac{x_j' - (1 - x)}{\alpha}\right) \mod 1.$$

Then

$$x_j'' - x_j' = -\frac{1}{\alpha} (x_j' - 1) \mod 1$$

$$= \frac{1}{\alpha} \mod 1$$

$$= 1.$$

Put $y = \#(x) \in \mathcal{S}'$. Then (x_j''') is the orbit of y on the circle \mathcal{S}'' under the rigid rotation R_β.

\[\Psi((1-\alpha)^+) = \left(1 - \frac{(1-\alpha)^+ - (1-\alpha)}{\alpha}\right) \mod 1 = 1^- , \]

\[\Psi(2-(\ell+1)\alpha) = \left(1 - \frac{2-(\ell+1)\alpha - (1-\alpha)}{\alpha}\right) \mod 1 = 1^- , \]

\[\Psi(1^-) = \left(1 - \frac{1^-(1-\alpha)}{\alpha}\right) \mod 1 = 0^+ . \]

Thus, \(\Psi(J_0^{'}) = [L-\beta, 1] \) and \(\Psi(J_1^{'}) = [0, 1-\beta] \). We have

\[b_1 = \begin{cases} 1 & \text{if } x'_1 = \Psi(x_1') \in \Psi(J_0^{'}) = [L-\beta, 1] \\ 0 & \text{if } x'_1 = \Psi(x_1') \in \Psi(J_1^{'}) = [0, 1-\beta] \end{cases} \]

\[b_2 = \begin{cases} 1 & \text{if } x''_2 \in [L-\beta, 1] \\ 0 & \text{if } x''_2 \in [0, 1-\beta] \end{cases} \]

We see that the sequence \((b_j) \) is formed the same way as is \((b_j) \), except that \(\alpha \) is replaced by \(\beta \). Thus, \((b_j) \) also has the pattern

\[(b_j) = \overbrace{0 \cdots 01 0 \cdots 01 0 \cdots 01 0 \cdots}^{\text{disordered sequence}} \overbrace{0 \cdots}^{\text{portion}} 01 0 \cdots 01 \cdots \]

where \(\ell' = \left[\frac{1}{\beta} \right] \).

If we continue to replace each block \(0 \cdots 01 \) with number \(0 \), each
Block 0...01 with number 1, the resulting sequence still have the same pattern. The new “period” is $l^\circ = \left[\frac{1}{5} \right]$ where $\gamma = \frac{1}{p} - \left[\frac{1}{p} \right]$.

The sequence of periods l, l', l°, \ldots is exactly the sequence l_1, l_2, l_3, \ldots in the continued fractional expression of α.

\[
\alpha = \frac{1}{l_1 + \frac{1}{l_2 + \frac{1}{l_3 + \cdots}}}
\]

2. We view the circle S^1 as a metric subspace of \mathbb{R}^2. Then \[C^0(S^1, \mathbb{R}^2) = \{ h : S^1 \rightarrow \mathbb{R}^2 \text{ continuous} \} \]

is a normed vector space with $\| h \|_{C^0} = \sup_{x \in S^1} |h(x)|$. Each homeomorphism from S^1 to S^1 is an element of $C^0(S^1, \mathbb{R}^2)$.

Let $\varphi : S^1 \rightarrow S^1$ be a homeomorphism. The topology on S^1 is the topology induced by the map $p : \mathbb{R} \rightarrow S^1$, $p(t) = \exp(2\pi i t)$. Both $\varphi \circ p : \mathbb{R} \rightarrow S^1$ and $p : \mathbb{R} \rightarrow S^1$ are covering maps of S^1. Because \mathbb{R} is simply connected, there exists a homeomorphism $F : \mathbb{R} \rightarrow \mathbb{R}$ such that the following diagram commutes (see Proposition M.41, page 287, John Lee “Introduction to Topological Manifolds”, 2011).

\[\begin{array}{ccc}
\mathbb{R} & \xrightarrow{F} & \mathbb{R} \\
p \downarrow & \searrow & \downarrow \varphi \\
S^1 & \xrightarrow{p} & S^1
\end{array} \]

F is called a lift of S^1 according to terminology in Definition 14.1, page 103, Devaney “An Introduction to Chaotic Dynamical Systems”, 1989.

Then $\exp(2\pi F(x)) = \varphi(\exp(2\pi x))$ for all $x \in \mathbb{R}$. Then
\[
\exp(i2\pi F(x+1)) = f(\exp(i2\pi (x+1))) = f(\exp(i2\pi (x+1))) = \exp(i2\pi F(x)) \quad \forall x \in \mathbb{R}.
\]
Thus, \(F(x+1) - F(x) \in \mathbb{Z}\). Because \(F(x+1) - F(x)\) is a continuous function, there exists \(l \in \mathbb{Z}\) such that
\[
F(x+1) - F(x) = l \quad \forall x \in \mathbb{R}.
\]
Once \(F(x)\) is known for all \(x \in [0,1]\), the value of \(F\) elsewhere will be known by adding suitable multiples of \(l\). Then \(F\) is uniformly continuous in \(\mathbb{R}\).

Recall that the rotation number of \(f\) is defined by \(\rho(f) = \rho_0(F) \mod 1\), where \(\rho_0(F) = \lim_{n \to \infty} \frac{F^n(0)}{n}\) and \(F^n = F \circ F \circ \ldots \circ F\). We show that \(\rho\) is continuous in \(f\).

Let \((g_r)\) be a sequence of homeomorphisms from \(S^1\) to \(S^1\) such that \(\|g_r - f\|_{C^0} \to 0\) as \(r \to \infty\). We show that \(\rho(g_r) \to \rho(f)\) in modulo 1.

Without loss of generality, we can assume \(\|g_r - f\|_{C^0} < 2\) for all \(r \in \mathbb{N}\).

Let \(G_r : \mathbb{R} \to \mathbb{R}\) be a lift of \(g_r\). Then
\[
\exp(i2\pi G_r(x)) = g_r(\exp(i2\pi x)) \quad \forall x \in \mathbb{R}.
\]

Then
\[
|\exp(i2\pi G_r(x)) - \exp(i2\pi F(x))| = |g_r(\exp(i2\pi x)) - f(\exp(i2\pi x))| < 2 \quad \forall x \in \mathbb{R}.
\]
(1)

In the definition of \(G_r\), we see that \(G_r(0)\) can be determined up to an integer. We can choose \(G(0)\) such that the length of the smaller arc on \(S^1\) which joins \(g_r(1)\) and \(f(1)\) is \(2\pi |G_r(0) - F(0)|\). Because \(G_r\) and \(F\) are continuous and injective maps from \(\mathbb{R}\) to \(\mathbb{R}\), they are monotone.
Because of (1), they must have the same monotonicity. In addition, the length of the smaller arc which joins \(g_r(\exp(i2\pi x)) \) and \(f(\exp(i2\pi x)) \) is \(2\pi |G(x) - F(x)| \). The length is not longer than \(\frac{\pi}{2} \) times the length of the chord joining these points, which is \(\frac{\pi}{2} |g_r(\exp(i2\pi x)) - f(\exp(i2\pi x))| \). Thus,

\[
|G_r(x) - F(x)| \leq \frac{1}{4} |g_r(\exp(i2\pi x)) - f(\exp(i2\pi x))| \\
\leq \frac{1}{4} \|g_r - f\|_c \quad \forall x \in \mathbb{R}.
\]

(2)

Next, we show by induction in \(n \in \mathbb{N} \) that

\[
\lim_{r \to \infty} \|G_r^n - F^n\|_c = 0. \tag{3}
\]

(3) is true for \(n = 1 \) thanks to (2). Suppose (3) is true for some \(n \in \mathbb{N} \). Then

\[
|G_r^{n+1}(x) - F^{n+1}(x)| \leq |G_r(G_r^n(x)) - F(G_r^n(x))| + |F(G_r^n(x)) - F(F^n(x))| \\
\leq \|G_r - F\|_c + \sup_{\|y\| \leq \|G_r^n - F^n\|_c} \{1 \leq \|G_r^n(x) - F^n(x)\| \}
\]

(4)

\[
\lim_{r \to \infty} E_1 = 0 \quad \text{because of (2). By the induction hypothesis}, \quad \lim_{r \to \infty} \|G_r^n - F^n\|_c = 0.
\]

Then by the uniform continuity of \(F \), \(\lim_{r \to \infty} E_2 = 0 \). Because the estimate (4) holds for every \(x \in \mathbb{R} \), \(\lim_{r \to \infty} \|G_r^{n+1} - F^{n+1}\|_c = 0 \). We have proved (3).
An earlier result is that there exists $l \in \mathbb{Z}$ such that $F(x+1) = F(l)$ for all $x \in \mathbb{R}$. Now we show that $l \in \{0, 1\}$. First, $l \neq 0$ because F is injective. Suppose by contradiction that $l > 1$. Then the function $h : \mathbb{R} \rightarrow \mathbb{R}$, $h(t) = F(t) - F(0)$ is continuous, $h(0) = 0$ and $h(t) > 1$. There exists $c \in (0, 1)$ such that $h(c) = 1$. Then

$$f(\exp(i2\pi c)) = \exp(i2\pi F(c)) = \exp(i2\pi F(0)) = f(\exp(i2\pi 0)).$$

This is a contradiction because f is injective on S^1. The case $l < -1$ is dealt similarly. Therefore,

$$F(x+1) - F(x) = \begin{cases} 1 & \text{if } F \text{ is increasing,} \\ -1 & \text{if } F \text{ is decreasing.} \end{cases}$$

We showed earlier that F and each G_r have the same monotonicity. Denote by $\phi : S^1 \rightarrow S^1$, $\phi(\exp(i2\pi x)) = \exp(-i2\pi x)$ the reflection map. $\phi \circ f$ and $\phi \circ g_r$ are homeomorphisms from S^1 to S^1 and $\|\phi \circ f - \phi \circ g_r\|_{C^0} \rightarrow 0$ as $r \rightarrow \infty$.

A lift of $\phi \circ f$ is F because

$$\exp(-i2\pi F(x)) = \phi(\exp(i2\pi F(x))) = \phi(f(\exp(i2\pi x))).$$

Therefore, replacing f by $\phi \circ f$, each g_r by $\phi \circ g_r$ if necessary, we can assume F (and thus each G_r) is increasing. Thus, $F(x+1) = F(x) + 1$ for every $x \in \mathbb{R}$. We now show that

$$|F(x) - F(y)| < 1 \quad \forall x, y \in (0, 1) \quad \forall n \in \mathbb{N}. \quad (5)$$
Take \(x, y \in \mathbb{R} \), \(x < y \). Because \(F \) is increasing, \(F^n \) is too. Since \(x < y < x + 1 \),

\[
F^n(x) < F^n(y) < F^n(x + 1) = F^n(x) + 1.
\]

Then \(0 < F^n(y) - F^n(x) < 1 \). Consequently,

\[
|F^n(x) - x| < |F^n(y) - y| < |y - x| < 1 + 1 \quad \forall x, y \in (0, 1), n \in \mathbb{N}.
\]

Therefore, for each \(n \in \mathbb{N} \) there exists \(p_n \in \mathbb{Z} \) such that

\[
p_n < F^n(x) - x < p_n + 5 \quad \forall x \in (0, 1), n \in \mathbb{N}.
\]

Because \(F^n(x + m) = F^n(x) + m \) for every \(m \in \mathbb{Z} \),

\[
p_n < F^n(x) - x < p_n + 5 \quad \forall x \in \mathbb{R}. \quad (6)
\]

Because \(\|G_r - F^n\|_{\infty} \to 0 \) as \(r \to \infty \), there exists \(N(n) \in \mathbb{N} \) such that \(\|G_r - F^n\|_{\infty} < 1 \) for all \(r > N(n) \). Then

\[
|G_r^n(x) - x| < |G_r^n(x) - F^n(x)| < 1 \quad \forall x \in \mathbb{R}, n \in \mathbb{N}, r > N(n).
\]

Thus,

\[
p_{n-1} < G_r^n(x) - x < p_n + 6 \quad \forall x \in \mathbb{R}, n \in \mathbb{N}, r > N(n). \quad (7)
\]

For each \(m \in \mathbb{N} \),

\[
F^{mn}(0) = \sum_{k=1}^{m} \left(F^n(F^{(k-1)n}(0)) - F^{(k-1)n}(0) \right).
\]

Applying (6), we get \(m p_n < F^{mn}(0) < m(p_n + 5) \). Divide both sides by \(mn \),

\[
\frac{p_n}{n} < \frac{F^{mn}(0)}{mn} < \frac{p_n + 5}{n}. \quad (8)
\]
Similarly,
\[G^m_n(0) = \sum_{t=1}^{m} \left(G^m_n(G^k_n(0)) - G^k_n(0) \right). \]

Applying (7), we get \(m(p_n - 1) < G^m_n(0) < m(p_n + 6) \). Divide both sides by \(mn \),
\[\frac{p_n - 1}{n} < \frac{G^m_n(0)}{mn} < \frac{p_n + 6}{n}. \quad (9) \]

By (8) and (9),
\[-\frac{6}{n} < \frac{F^m_n(0) - G^m_n(0)}{mn} < \frac{6}{n} \quad \forall m \in \mathbb{N}, r > N(n). \]

Let \(m \to \infty \),
\[-\frac{6}{n} \leq s_o(F) - s_o(G_r) \leq \frac{6}{n} \quad \forall n \in \mathbb{N}, r > N(n). \]

Let \(n \to \infty \), \(\lim_{r \to \infty} s_o(G_r) = s_o(F) \). Taking modulo 1 both sides, we get
\[\lim_{r \to \infty} s(G_r) = s(F) \quad (\text{mod } 1). \]

3. Let \(f : \mathbb{R} \to \mathbb{R} \) be a \(C^1 \) function satisfying \(f(x + 1) = f(x) \) for all \(x \in \mathbb{R} \).

Because \(f \) is locally Lipschitz, by Picard-Lindelöf's theorem, the problem
\[\dot{x} = f(x), \quad x(0) = x_0 \] has a unique local solution. Since \(f \) is continuous and periodic, it is bounded in \(\mathbb{R} \). Then a global solution exists and is unique.

Denote by \(x(t; x_0) \) this solution. Then \((\Phi_t)_{t \in \mathbb{R}} \), \(\Phi_t(x_0) = x(t; x_0) \) for \(t, x_0 \in \mathbb{R} \), is a flow.

Each \(\Phi_t : \mathbb{R} \to \mathbb{R} \) is a homeomorphism and \(\Phi_{t+s} = \Phi_t \circ \Phi_s \) for all \(t, s \in \mathbb{R} \).

Because \(f \) is \(1 \)-periodic,
\[\frac{d}{dt}[x(t; x_0) + 1] = \frac{d}{dt} x(t; x_0) = f(x(t; x_0)) = f(x(t; x_0) + 1). \]
Thus, $x(t;x_0)+1$ is a global solution to the problem
\[
\begin{cases}
 \dot{x} = f(x), \\
 x(0) = x_0 + 1.
\end{cases}
\]
By the uniqueness of solutions, $x(t;x_0)+1 = x(t;x_0+1)$. In other words,
\[
\phi_t(x_0+1) = \phi_t(x_0) + 1 \quad \forall x_0 \in \mathbb{R}, t \in \mathbb{R}.
\]
Define a map $p : \mathbb{R} \to S^1$, $p(x) = \exp(i2\pi x)$. This is a quotient map, i.e. the topology on S^1 is the one induced by p. We see that $p \circ \phi_t : \mathbb{R} \to S^1$ is continuous and is constant in each fiber of p. Indeed, suppose $p(x) = p(x')$. Then $x = x' + l$ for some $l \in \mathbb{Z}$. Then
\[
p(\phi_t(x)) = p(\phi_t(x' + l)) = p(\phi_t(x) + l) = p(\phi_t(x')).
\]
For this reason, there exists a continuous map $g_t : S^1 \to S^1$ such that the following diagram commutes (Theorem 3.73, page 72, John Lee "Introduction to Topological Manifolds", 2011). We have
\[
g_t(\exp(i2\pi x)) = \exp(i2\pi \phi_t(x)) \quad \forall x \in \mathbb{R}. \quad (1)
\]
Because ϕ_t is continuous and injective on \mathbb{R}, it is monotone. Since $\phi_t(x+1) = \phi_t(x) + 1$, ϕ_t is increasing. Then
\[
\phi_t([0,1]) = [\phi_t(0), \phi_t(1)] = [\phi_t(0), \phi_t(0) + 1).
\]
Then $\phi_t|_{[0,1]} : [0,1] \to [\phi_t(0), \phi_t(0) + 1)$ is bijective. This implies g_t is a
bijection. Because \(g_t : S^1 \rightarrow S^1 \) is continuous, bijective and \(S^1 \) is compact, we conclude that \(g_t \) is a homeomorphism.

Next, we compute the rotation number of \(g_t \). The identity (1) shows that \(\phi_t \) is a lift of \(g_t \).

\[
\phi_t(0) = \lim_{n \rightarrow \infty} \frac{\phi_t^n(0)}{n} = \lim_{n \rightarrow \infty} \frac{\phi_t^n(0)}{n}.
\]

The number \(\phi_t(0) \) is expressed by the same manner.

\[
\phi_t(0) = \lim_{n \rightarrow \infty} \frac{\phi_t^n(0)}{n} = \lim_{n \rightarrow \infty} \frac{\phi_t^n(0)}{n}.
\]

Let \(M = \sup_{x \in K} |f(x)| < \infty \). Then

\[
\phi_t(x_0) - \phi_t(x_0) = \int_0^t \frac{d}{ds} \phi_s(x_0) ds = \int_0^t f(\phi_s(x_0)) ds.
\]

Thus,

\[
|\phi_t(x_0) - \phi_t(x_0)| \leq \left| \int_0^t |f(\phi_s(x_0))| ds \right| \leq Mt - 1 \quad \forall x_0 \in K (4)
\]

By (4) we have

\[
|g_t(\exp(i2\pi x_0)) - g_t(\exp(i2\pi x_0))| = |\exp(i2\pi \phi_t(x_0)) - \exp(i2\pi \phi_t(x_0))|
\]

\[
\leq |\phi_t(x_0) - \phi_t(x_0)| \sup_{y \in K} \left| \frac{d}{dy} \exp(i2\pi y) \right|
\]

\[
= 2\pi |\phi_t(x_0) - \phi_t(x_0)|
\]

\[
\leq 2\pi Mt - 1 \quad \forall x_0 \in K.
\]

Thus,

\[
\|g_t - g_t\|_{C^0(S^1, K^2)} \leq 2\pi Mt - 1.
\]

This implies \(g_t \rightarrow g \) in \(C^0(S^1, K^2) \) as \(t \rightarrow 1 \). By Problem (2), we conclude that \(\phi_t(x_0) \rightarrow \phi_0(x_0) \) and \(f(g_t) \rightarrow f(g_t) \) as \(t \rightarrow 1 \). A direct proof
Can be obtained by using (2) and (3) and (4).

Assume \(f(x) \neq 0 \) for all \(x \in [0,1] \). We now compute \(\phi_n(\phi_k) \), \(t \in \mathbb{R} \), explicitly in terms of \(f \). That is to compute \(\lim_{n \to \infty} \frac{\phi_n(0)}{n} \) in terms of \(f \). Recall that \(\phi_k(0) \) is the solution to the problem
\[
\begin{cases}
 \dot{x} = f(x), \\
 x(0) = 0.
\end{cases}
\]
Because \(f \) is continuous and nonzero on \([0,1]\), it does not change its sign.

There exist \(m, M > 0 \) such that

\[
m \leq |f(x)| \leq M \quad \forall x \in [0,1].
\]

Integrating the equation \(\dot{x} = \frac{x}{f(x)} \) from 0 to \(t \), we get

\[
t = \int_0^t \frac{dx(t)}{f(x(t))} = \int_0^{x(t)} \frac{ds}{f(s)}. \quad (5)
\]

Define a function \(F: \mathbb{R} \to \mathbb{R} \),

\[
F(t) = \int_0^t \frac{ds}{f(s)}.
\]

We show that \(F \) is a bijection.

If \(f \) is positive then \(F \) is increasing. Moreover,

\[
F(t) = \int_0^t \frac{ds}{f(s)} \geq \int_0^t \frac{ds}{M} = \frac{t}{M} \quad \forall t > 0,
\]

\[
F(t) = -\int_t^0 \frac{ds}{f(s)} \leq -\int_t^0 \frac{ds}{M} = -\frac{t}{M} \quad \forall t < 0.
\]

Then \(\lim_{t \to \pm\infty} F(t) = \pm\infty \). Thus, \(F \) is a bijection.

If \(f \) is negative then \(F \) is decreasing. Moreover,

\[
F(t) = \int_0^t \frac{ds}{f(s)} \leq \int_0^t \frac{ds}{-M} = -\frac{t}{M} \quad \forall t > 0,
\]

\[
F(t) = -\int_0^{-t} \frac{ds}{f(s)} \geq -\int_0^{-t} \frac{ds}{M} = \frac{-t}{M} \quad \forall t < 0.
\]
\[F(t) = - \int_{\frac{t}{M}}^{0} \frac{ds}{f(s)} \geq - \int_{\frac{t}{M}}^{0} \frac{ds}{-M} = \frac{-t}{M} \quad \forall \ t < 0. \]

Then \(\lim_{t \to \pm \infty} F(t) = \pm \infty \). Thus, \(F \) is a bijection.

Now (5) becomes \(t = F(x(t)) \), which gives \(x(t) = F^{-1}(t) \). Then

\[
\lim_{t \to \pm \infty} \frac{x(t)}{t} = \lim_{t \to \pm \infty} \frac{F^{-1}(t)}{t} = \begin{cases}
\lim_{s \to \pm \infty} \frac{s}{F(s)} & \text{if } f \text{ is positive}, \\
\lim_{s \to \pm \infty} \frac{s}{f(s)} & \text{if } f \text{ is negative}.
\end{cases}
\]

Consider the case \(f \) is positive. For \(s \neq 0 \),

\[
F(s) = \int_{0}^{s} \frac{dt}{f(t)} = \int_{0}^{[s]} \frac{dt}{f(t)} + \int_{[s]}^{s} \frac{dt}{f(t)},
\]

where \([s]\) is the integer part of \(s \). Since \(f \) is \(1 \)-periodic,

\[
\int_{0}^{[s]} \frac{dt}{f(t)} = [s] \int_{0}^{1} \frac{dt}{f(t)},
\]

\[
\int_{[s]}^{s} \frac{dt}{f(t)} = \int_{0}^{[s]} \frac{dt}{f(t + [s])} = \int_{0}^{[s]} \frac{dt}{f(t)},
\]

where \([s]\) is the fractional part of \(s \). Then (8) becomes

\[
F(s) = [s] \int_{0}^{1} \frac{dt}{f(t)} + \int_{0}^{[s]} \frac{dt}{f(t)}.
\]

Thus,

\[
\frac{F(s)}{s} = \frac{[s]}{s} \int_{0}^{1} \frac{dt}{f(t)} + \frac{1}{s} \int_{0}^{[s]} \frac{dt}{f(t)}.
\]

\[
\lim_{s \to \pm \infty} A = \int_{0}^{1} \frac{dt}{f(t)} \quad \text{because} \quad \lim_{s \to \pm \infty} \frac{[s]}{s} = 1.
\]

\[
\lim_{s \to \pm \infty} B = 0 \quad \text{because} \quad 0 < \int_{0}^{[s]} \frac{dt}{f(t)} \leq \int_{0}^{1} \frac{dt}{f(t)} \quad \text{for all } s \neq 0.
\]
Therefore, \(\lim_{s \to \infty} \frac{F(s)}{s} = \int_0^1 \frac{dt}{f(t)} \). Then (6) gives us

\[
\lim_{t \to \pm \infty} \frac{x(t)}{t} = \left(\int_0^1 \frac{dt}{f(t)} \right)^{-1} \quad \text{(9)}
\]

Consider the case \(f \) is negative. For \(s \neq 0 \),

\[
F(s) = \int_0^s \frac{dt}{f(t)} = \frac{[s]}{s} \int_0^s \frac{dt}{f(t)} + \int_{[s]}^s \frac{dt}{f(t)} = \left[\frac{t}{s} \right] \int_0^1 \frac{dt}{f(t)} + \int_{[s]}^s \frac{dt}{f(t)}
\]

Then,

\[
\lim_{s \to \pm \infty} \frac{F(s)}{s} = \lim_{s \to \pm \infty} \frac{[s]}{s} \int_0^s \frac{dt}{f(t)} + \lim_{s \to \pm \infty} \frac{1}{s} \int_{[s]}^s \frac{dt}{f(t)} = \int_0^1 \frac{dt}{f(t)}
\]

Substituting this result into (7), we also get (9). Therefore,

\[
\lim_{t \to \pm \infty} \frac{\phi_t(0)}{t} = \left(\int_0^1 \frac{dt}{f(t)} \right)^{-1}
\]

Then,

\[
f_0(\phi_t) = \lim_{n \to \infty} \frac{\phi_t(n)}{n} = t \lim_{n \to \infty} \frac{\phi_n(0)}{n} = \begin{cases}
\lim_{s \to \infty} \frac{\phi_s(0)}{s} & \text{if } t > 0, \\
\lim_{s \to -\infty} \frac{\phi_s(0)}{s} & \text{if } t < 0,
\end{cases}
\]

\[
= t \left(\int_0^1 \frac{dt}{f(t)} \right)^{-1} \quad \forall t \neq 0.
\]

This formula is also true for \(t = 0 \) because \(\phi_0 \) is the identity map on \(\mathbb{R} \).

We conclude that

\[
f_0(\phi_t) = t \left(\int_0^1 \frac{dt}{f(t)} \right)^{-1} \quad \forall t \in \mathbb{R},
\]

\[
f_0(g_t) = f_0(\phi_t) \mod 1.
\]