Hilbert–Schmidt operators and Tensor Product of

two vector spaces

I. Hilbert–Schmidt operators

1. Definition

Let V and W be two separable Hilbert spaces, T a bounded operator from V to W, i.e. $T \in B(V,W)$. Let $(\varphi_n)_{n=1}^{\infty}$ be an orthonormal basis of V. We shall prove that the series

$$\sum_{n=1}^{\infty} |T\varphi_n|^2$$

is independent of the choice of basis (φ_n).

Indeed, let (ψ_n) be an orthonormal basis of W. Then

$$T_{\varphi_n} \psi_m = \sum_{m=1}^{\infty} \langle \varphi_n, \psi_m \rangle \psi_m = \sum_{m=1}^{\infty} \langle \psi_m, T^* \varphi_n \rangle \psi_m$$

Thus

$$|T\varphi_n|^2 = \sum_{m=1}^{\infty} |\langle \varphi_n, T\psi_m \rangle|^2$$

and

$$\sum_{n=1}^{\infty} |T\varphi_n|^2 = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} |\langle \varphi_n, T\psi_m \rangle|^2$$

Further

$$= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |\langle \varphi_n, T\psi_m \rangle|^2$$

$$= \sum_{m=1}^{\infty} \|W_m\|^2$$
Thus, the series \(\sum_{n=1}^{\infty} |T_n|^2 \) is independent of the choice of orthonormal basis \(\{w_n\} \).

Definition: \(T \in \mathcal{B}(V, W) \) is called Hilbert-Schmidt operator if the sum \(\sum_{n=1}^{\infty} |T_n|^2 \) is finite.

By this definition, and the above calculation, we easily see that \(T \) is Hilbert-Schmidt if and only if \(T^* \) is Hilbert-Schmidt.

(2) If \(T \) is Hilbert-Schmidt (HS) then \(T \) is compact.

Proof: To show that \(T \) is compact, we only need to show that \(T \) is a norm-limit of a sequence of finite rank operators. For each \(v \in V \) with unit norm,

\[
Tv = \sum_{n=1}^{\infty} \langle T v, w_n \rangle w_n = \sum_{n=1}^{\infty} \langle v, T^{*} w_n \rangle w_n
\]

For each \(n \in \mathbb{N} \), we put

\[
T_n v = \sum_{n=1}^{m} \langle v, T^{*} w_n \rangle w_n \quad \forall v \in V
\]

Then

\[
T_m v - T_n v = \sum_{n=m+1}^{\infty} \langle v, T^{*} w_n \rangle w_n
\]

and

\[
|T v - T_n v|^2 = \sum_{n=m+1}^{\infty} |\langle v, T^{*} w_n \rangle|^2 \leq \sum_{n=m+1}^{\infty} |T^{*} w_n|^2
\]

Thus,
$\|T-T_m\|^2 \leq \sum_{n=m+1}^{\infty} |T^m w_n|^2$

We know that $\sum_{n=1}^{\infty} |T^m w_n|^2 = \sum_{n=1}^{\infty} |T v_n|^2 < \infty$. Hence,

$$\lim_{m \to \infty} \|T-T_m\|^2 = 0.$$

(3) The space of HS operators contains the space of trace class operators.

Proof. Let T be a trace class operator, then

$$\sum_{n=1}^{\infty} |T v_n| < \infty$$

Thus, $\lim_{m \to \infty} |T v_n| = 0$. There exists $N \in \mathbb{N}$ such that

$$|T v_n|^2 \leq |T v_n| \quad \forall n \geq N$$

Hence, the series $\sum_{n=1}^{\infty} |T v_n|^2 < \infty$.

(4) Norm on the space of HS operators.

Hereafter, the space of HS operators from Hilbert space V to Hilbert space W is denoted $B_2(V, W)$. We will show that

$$\|T\|_{HS} = \left(\sum_{n=1}^{\infty} |T v_n|^2 \right)^{1/2}$$

is actually a norm on $B_2(V, W)$. We have to check 3 criteria:

* Positive definite: $\|T\|_{HS} > 0$.

* Homogeneity: $\alpha \|T\|_{HS} = \|\alpha T\|_{HS}$ for all α.

* Triangle inequality: $\|T_1 + T_2\|_{HS} \leq \|T_1\|_{HS} + \|T_2\|_{HS}$.

...
If \(\|T\|_{HS} = 0 \) then \(T_n = 0 \) \(\forall n \in \mathbb{N} \), then \(T = 0 \).

* Homogeneous: let \(\lambda \in \mathbb{C} \) then

\[
\|\lambda T\|_{HS} = \left(\sum_{n=1}^{\infty} |\lambda T^n|^2 \right)^{1/2} = \left(\sum_{n=1}^{\infty} |\lambda|^2 |T^n|^2 \right)^{1/2} = |\lambda| \left(\sum_{n=1}^{\infty} |T^n|^2 \right)^{1/2} = |\lambda| \|T\|_{HS}.
\]

* Triangle inequality:

Let \(S \) and \(T \) be two HS operators

\[
\|S + T\|_{HS} = \left(\sum_{n=1}^{\infty} |(S + T)(w_n)|^2 \right)^{1/2} = \left(\sum_{n=1}^{\infty} |S w_n + T w_n|^2 \right)^{1/2} \leq \left(\sum_{n=1}^{\infty} |S w_n|^2 \right)^{1/2} + \left(\sum_{n=1}^{\infty} |T w_n|^2 \right)^{1/2} = \|S\|_{HS} + \|T\|_{HS}.
\]

5. \(\|T\|_{HS} = \|T^*\|_{HS} \) and \(\|T\|_{HS} \leq \|T\|_{HS} \)

Proof. By the calculation in point 1, we have

\[
\|T\|_{HS}^2 = \sum_{n=1}^{\infty} |T^n|^2 = \sum_{n=1}^{\infty} |T^* w_n|^2 = \|T^*\|_{HS}^2.
\]

Thus, \(\|T\|_{HS} = \|T^*\|_{HS} \). For each \(v \in V \) with unit norm,

\[
Tv = \sum_{n=1}^{\infty} \langle v, T^* w_n \rangle w_n = \sum_{n=1}^{\infty} \langle v, T w_n \rangle w_n.
\]

Thus,

\[
|Tv|^2 = \sum_{n=1}^{\infty} |\langle v, T w_n \rangle|^2 \leq \sum_{n=1}^{\infty} |T^* w_n|^2 = \|T^*\|_{HS}^2 = \|T\|_{HS}^2
\]

or \(|Tv| \leq \|T\|_{HS} \). Hence

\[
\|T\|_{HS} = \sup_{\|v\|=1} |Tv| \leq \|T\|_{HS}.
\]
(6) The space of finite-rank operators is dense in $B_2(V, W)$.

Proof: Hereafter, the space of finite-rank operators is denoted $B_{fn}(V, W)$. First, we'll show that $B_{fn}(V, W) \subset B_2(V, W)$.

Let $S \in B_{fn}(V, W)$. Then $\text{Im } S$ is finite dimensional, with a finite orthonormal basis $\{w_1, w_2, \ldots, w_k\}$. Let $\{\overline{w}_1, \overline{w}_2, \ldots, \overline{w}_{k+1}\}$ be an orthonormal. Thus $\text{Im } S$ is generated by finitely many elements $S(v_1')$, \ldots, $S(v_k')$. Let $\{v_1, v_2, \ldots, v_{k+1}\}$ be an orthonormal set generating v_1', \ldots, v_k'. Let $\{v'_1, v'_2, v'_3, \ldots\}$ be an orthonormal basis of V. Then $S(v'_{j+1}) = S(v'_{j+2}) = \cdots = 0$.

Let $\{v'_1, \ldots, v'_k\}$ be an orthonormal basis of $\ker S$. Then $\{v'_1, \ldots, v'_j, v'_{j+1}, \ldots\}$ is an orthonormal basis of V. We have

$$\sum_{n=1}^{\infty} |S(v'_n)|^2 = \sum_{n=1}^{\infty} |S(v'_n)|^2 < \infty$$

thus $S \in B_2(V, W)$.

Next, we'll show that $B_{fn}(V, W)$ is dense in $B_2(V, W)$. For each $T \in B_2(V, W)$, we have

$$Tv = \sum_{n=1}^{\infty} \langle Tv, w_n \rangle w_n$$
For each $m \in \mathbb{N}$, we define the finite-rank operator
\[
T_m v = \sum_{k=1}^{m} \langle v_k, w_k \rangle w_k \quad \forall v \in V
\]
Then
\[
(1 - T_m)(v) = \sum_{k=m+1}^{\infty} \langle v_k, w_k \rangle w_k
\]
and
\[
| (1 - T_m)(v) |^2 = \sum_{k=m+1}^{\infty} | \langle v_k, w_k \rangle |^2 = \sum_{k=m+1}^{\infty} \langle v_k, T^* w_k \rangle
\]
Then
\[
| (1 - T_m) v_n |^2 = \sum_{k=m+1}^{\infty} \langle v_n, T^* w_k \rangle
\]
and
\[
\|1 - T_m\|_{HS}^2 = \sum_{n=1}^{\infty} \| (1 - T_m) v_n \|_2^2 = \sum_{n=1}^{\infty} \sum_{k=m+1}^{\infty} | \langle v_n, T^* w_k \rangle |^2
\]

\[
= \sum_{k=m+1}^{\infty} | T^* w_k |^2
\]

Since
\[
\sum_{k=1}^{\infty} | T^* w_k | = \sum_{k=1}^{\infty} | T w_k | < \infty,
\]
we have
\[
\sum_{k=m+1}^{\infty} | T^* w_k | \to 0
\]
as $m \to \infty$. Thus,
\[
\|1 - T_m\|_{HS} \to 0 \quad \text{as} \quad m \to \infty.
\]

There exists a linear isomorphic isometry between $B_2(V, W)$ and $\ell^2(W)$. Consequently, $B_2(V, W)$ is a Hilbert space isomorphic to $\ell^2(W)$.

For $\ell^2(W)$.

(3) \(\ell_2(V, W) \) is a Hilbert space with inner product
\[
\langle T, S \rangle = \sum_{i=1}^{\infty} \langle S^* T v_i, v_i \rangle = \sum_{i=1}^{\infty} \langle T v_i, S v_i \rangle
\]

Proof. First we show that the sum \(\sum_{i=1}^{\infty} \langle T v_i, S v_i \rangle \) does not depend on the choice of orthonormal basis \((v_i)\).

\[
T v_i = \sum_{n=1}^{\infty} \langle T v_i, w_n \rangle w_n
\]

\[
S v_i = \sum_{n=1}^{\infty} \langle S v_i, w_n \rangle w_n
\]

Then
\[
\langle T v_i, S v_i \rangle = \sum_{n=1}^{\infty} \langle T v_i, w_n \rangle \langle w_n, S v_i \rangle
\]

\[
= \sum_{n=1}^{\infty} \langle v_i, T^* w_n \rangle \langle S^* w_n, v_i \rangle
\]

We have
\[
|a_{in}| \leq \frac{1}{2} \left(|\langle v_i, T^* w_n \rangle|^2 + |\langle S^* w_n, v_i \rangle|^2 \right)
\]

Thus
\[
\sum_{in} |a_{in}| \leq \frac{1}{2} \left\{ \sum_{n} \sum_{i} |\langle v_i, T^* w_n \rangle|^2 + \sum_{n} \sum_{i} |\langle S^* w_n, v_i \rangle|^2 \right\}
\]

\[
= \frac{1}{2} \left(\sum_{n} |T^* w_n|^2 + \sum_{n} |S^* w_n|^2 \right) < \infty
\]

By Fubini's Theorem,
\[
\sum_{i=1}^{\infty} \langle T v_i, S v_i \rangle = \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} a_{in} = \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} a_{in}
\]
\[
= \sum_{n=1}^{N_0} \sum_{k=1}^{b_0} \left[\sum_{l=1}^{b_0} \left< \left< S_{w_n}, v_l \right> w_{n_l}, T^* w_n \right> \right]
\]
\[
= \sum_{n=1}^{N_0} \left[\sum_{l=1}^{b_0} \left< S_{w_n}, T w_{n_l} \right> \right], \text{ which is independent of } (v_l)_{l=b_0}.
\]

Next, we have to check the following 3 properties:

* Linear with respect to the first argument

* Conjugate symmetric

* Positive definite

Obviously, \(\langle \cdot, \cdot \rangle \) is linear in the first argument:

\[
\left< S, T \right> = \sum_{n=1}^{N_0} \left< S w_n, T w_n \right> = \sum_{n=1}^{N_0} \left< T w_n, S w_n \right> = \sum_{n=1}^{N_0} \left< T w_n, S w_n \right> = \left< \overline{T}, S \right>.
\]

Thus, \(\langle \cdot, \cdot \rangle \) is conjugate symmetric.

\[
\left< T, T \right> = \sum_{n=1}^{N_0} \left< T w_n, T w_n \right> = \sum_{n=1}^{N_0} | T w_n |^2 = \| T \|_{HS}^2
\]

Thus, \(\langle \cdot, \cdot \rangle \) is positively definite. Up to now, we verified that \(\langle \cdot, \cdot \rangle \) is an inner product on \(B_2(U, W) \) which generates the norm \(\| \cdot \|_{HS} \).

Next, we have to show that this norm is complete.
Let \((T_m)\) be a Cauchy sequence in \(B_2(V,W)\). Then
\[
\sum_{n=1}^{\infty} |T_m v_n|^2 < \infty
\]
Thus, \(\{T_m v_n\}_n \in c^0(W)\). Put \(u_m = \{T_m v_n\}_n\). Then
\[
\|u_m - u_k\|^2 = \sum_{n=1}^{\infty} |T_m v_n - T_k v_n|^2 = \|T_m - T_k\|_{HS}^2,
\]
or
\[
\|u_m - u_k\|^2 = \|T_m - T_k\|_{HS}^2.
\]
That means \(\{u_m\}\) is a Cauchy sequence in \(c^0(W)\). Since \(c^0(W)\) is complete, there exists \(u \in c^0(W)\) such that \(u_m \to u\). Denote \(a_n^m\). We write \(u = \{a_n^m\}_{m,n}^\infty\).

Define a mapping \(T \in B(V,W)\) such that \(T v_n = a_n^m v_m\). We have
\[
\sum_{n=1}^{\infty} |T_m v_n - T v_n|^2 = \sum_{n=1}^{\infty} |T_m v_n - a_n^m v_m|^2 = \|u_m - u\|^2_{c^0} \to 0
\]
Thus \(T_m \to T\) in \(B_2(V,W)\).

1. Tensor product of two vector spaces

1. Definition

Let \(V\) and \(W\) be two modules on ring \(K\). Their tensor product of \(V\) and \(W\) is a pair \((L, \phi)\) consisting of a vector space \(L\), a free module \(L\) and a bilinear mapping \(\phi\) from \(V \times W\) to \(L\) such that for each bilinear map \(l\) from \(V \times W\) to a vector space.
There exists uniquely a linear map \(\Phi \) from \(L \) to \(Y \) such that \(h = \Phi \circ \phi \), i.e. the following diagram is commutative:

\[
\begin{array}{ccc}
V \times W & \xrightarrow{\phi} & L \\
\downarrow \Phi & & \downarrow \Phi \\
Y & \xrightarrow{h} & Y
\end{array}
\]

(2) Suppose that \((L_1, \phi_1)\) and \((L_2, \phi_2)\) are two tensor products of vector spaces \(V \) and \(W \) if and only if there exists a linear isomorphism between \(L_1 \) and \(L_2 \).

Proof (2) Let \((L_i, \phi_i)\) be a tensor product of \(V \) and \(W \). Then a pair \((L_2, \phi_2)\) is also a tensor product of \(V \) and \(W \) if and only if there exists a linear isomorphism between \(L_1 \) and \(L_2 \).

Proof: The backward part.

Let \(\psi : L_1 \to L_2 \) be an isomorphism. For each vector space \(Y \) and bilinear map \(h : V \times W \to Y \), we'll show that there exists a unique linear map \(\tilde{h} : L_2 \to Y \) such that \(h = \tilde{h} \circ \phi \).

\[
\begin{array}{ccc}
V \times W & \xrightarrow{\phi_1} & L_1 \\
\downarrow h & & \downarrow \psi \\
Y & \xrightarrow{\tilde{h}} & L_2
\end{array}
\]
Since \((L_1, \psi_1)\) is a tensor product, there exists a linear map \(h_1 : L_1 \to \gamma\) such that \(h_1 = h_1 \psi_1\). Put \(\tilde{h}_1 = h_1 \psi_1^\dagger\). Then \(\tilde{h}_1 : L_2 \to \gamma\) and \(h_1 = \tilde{h}_1 \psi_1\). If there is another \(\tilde{h}_1 : L_2 \to \gamma\) such that \(h_1 = \tilde{h}_1 \psi_1\), then \(\tilde{h}_1 = \tilde{h}_1 \psi_1\) is a linear map from \(L_1\) to \(\gamma\) such that \(h_1 = \tilde{h}_1 \psi_1\). Since \((L_1, \psi_1)\) is a tensor product, \(\tilde{h}_1 = h_1\). Thus, \(\tilde{h}_1 = h_1 \psi_1^\dagger = h_1 \psi_1^\dagger = h_1\). Thus, \(\tilde{h}_1\) is unique. That means \((L_2, \psi_1\psi_1)\) is also a tensor product.

The forward part:

\[
\begin{array}{ccc}
V \times W & \xrightarrow{\psi_1} & L_1 \\
\downarrow \phi_2 & & \downarrow h_1 \\
L_2 & \xrightarrow{h_2} & L_1
\end{array}
\]

Since \((L_1, \psi_1)\) is a tensor product, there exists uniquely a linear map \(h_1 : L_1 \to L_2\) such that \(\psi_1 \equiv h_1 \phi_2\).

Thus, \(h_1 = h_2 \phi_2 = h_2 \psi_1 \psi_1\), i.e., \(h_2 \psi_1 \equiv \text{id} \text{ on } \text{Im} \psi_1\).

To show that \(h_2 \psi_1 \equiv \text{id} \text{ on } L_2\), we have to show that \(L_2\) can be linearly spanned from \(\text{Im} \psi_1\).
\[S = \langle \text{Im} \phi \rangle. \] Suppose that \(S \nsubseteq L_1. \) Since \(L_1 \) is a semisimple module, \(S \) is its direct summand. There exists a vector space \(T \) such that \(S \oplus T = L_1. \) Let \(\{v_3, v_2\} \) be a basis of \(T. \)

Let \(k_1 : L_1 \to S \) be such that
\[k_1(x) = x \quad \forall x \in S \]
and
\[k_1(v_i) = 0 \quad \forall i \in \{i_3, i_2\} \]

Then \(\hat{k}_1 = \chi = k_1 \).

Let \(k_2 : L_1 \to S \) be such that
\[k_2(x) = x \quad \forall x \in S \]
\[k_2(v_i) = 0 \quad \forall i \in \{i_3, i_2\} \]
\[k_2(v_0) = v_0 \neq 0 \]

Then \(\hat{k}_2 = k_2 \hat{\phi}. \) Since \((L_1, \phi)\) is a tensor product, \(\hat{k}_1 \) and \(\hat{k}_2 \) must be the same. This is a contradiction. \(\Box \)

In short, \(k_2 \hat{\phi} = \text{id}_{L_1}. \) Thus, \(k_2 = \phi_1^{-1} \) is the linear isomorphism between \(L_1 \) and \(L_2. \)

Point (2) guarantees that the property mentioned in Point (1) is a universal property, i.e., it contains all attributes of tensor product. Accordingly, tensor products are unique up to a linear isomorphism.
(3) Construction of tensor product

Let \(F = K^{V \times W} \) be a direct sum, i.e., each element of \(F \) is a map from \(V \times W \) to \(K \) that is zero for all but finitely many elements in \(V \times W \). Then \(F \) is also a module with addition

\[(f + g)(x) := f(x) + g(x) \quad \forall x \in V \times W,\]

and scalar multiplication

\[(\lambda f)(x) := \lambda f(x) \quad \forall \lambda \in K, \quad \forall x \in V \times W.\]

For each \((v, w) \in V \times W\) we denote \(I_{(v, w)} \) the mapping from \(V \times W \) to \(K \) such that

\[I_{(v, w)}(u) = \begin{cases} 1 & \text{if } u = (v, w) \\ 0 & \text{otherwise} \end{cases}\]

Then \(F \) is a free module with basis \(\{ I_{(v, w)} : v \in V, w \in W \} \).

Let \(R \) be a submodule of \(F \) spanned by the set

\[\{ I_{(v_1 + v_2, w)} - a I_{(v_1, w)} - b I_{(v_2, w)} : a, b \in K, \ v_1, v_2 \in V, \ w \in W \}\]

\[\cup \{ I_{(v, w_1 + w_2)} - a I_{(v, w_1)} - b I_{(v, w_2)} : a, b \in K, \ v \in V, \ w_1, w_2 \in W \}\]

On \(F \), we define an equivalence relation

\[x \sim y \iff x - y \in R\]

and denote \(F/R \) the set of all equivalence classes.
We define the map \(\phi : V \times W \to F/R \):
\[
(\mathbf{v}, \mathbf{w}) \mapsto \mathbf{1}(\mathbf{v}, \mathbf{w}) + R
\]
Then we claim \((F/R, \phi)\) is a tensor product between \(V\) and \(W\).

Proof. First, we show that \(\phi\) is bilinear:
\[
\phi(\mathbf{v} + \mathbf{v'}, \mathbf{w}) = \mathbf{1}(\mathbf{v} + \mathbf{v'}, \mathbf{w}) + R = \mathbf{1}(\mathbf{v}, \mathbf{w}) + \mathbf{1}(\mathbf{v'}, \mathbf{w}) + \frac{\mathbf{1}(\mathbf{v} + \mathbf{v'}, \mathbf{w}) - \mathbf{1}(\mathbf{v}, \mathbf{w}) - \mathbf{1}(\mathbf{v'}, \mathbf{w})}{R} + R
\]
\[
= \mathbf{1}(\mathbf{v}, \mathbf{w}) + \mathbf{1}(\mathbf{v'}, \mathbf{w}) + R
\]
\[
= \phi(\mathbf{v}, \mathbf{w}) + \phi(\mathbf{v'}, \mathbf{w})
\]
\[
\phi(a \mathbf{v}, \mathbf{w}) = \mathbf{1}(a \mathbf{v}, \mathbf{w}) + R = a \mathbf{1}(\mathbf{v}, \mathbf{w}) + \mathbf{1}(a \mathbf{v}, \mathbf{w}) - a \mathbf{1}(\mathbf{v}, \mathbf{w}) + R
\]
\[
= a \mathbf{1}(\mathbf{v}, \mathbf{w}) + R = a \phi(\mathbf{v}, \mathbf{w})
\]

Similarly, \(\phi\) is linear with respect to \(W\).

Let \(Y\) be a vector space. Suppose \(h : V \times W \to Y\) is a bilinear map. We'll show that there exists uniquely a linear map \(\tilde{h} : F/R \to Y\) such that \(h = \tilde{h} \phi\).
The uniqueness:

If \(\overline{h} : F/R \to \gamma \) is a linear map such that \(h = \overline{h} \phi \) then

\[
h(v, w) = \overline{h} \phi (v, w) \quad \forall (v, w) \in V \times W
\]

Then

\[
\overline{h} (\ell (v, w) + R) = h(v, w)
\]

Since the set \(\{ \ell (v, w) + R : (v, w) \in V \times W \} \) generates \(F/R \), \(\overline{h} \) is determined uniquely over \(F/R \).

The existence:

Since \(\{ \ell (v, w) : v \in V, w \in W \} \) is a basis of \(F \), there exists a linear map \(h_1 : F \to \gamma \) such that \(h_1(\ell (v, w)) = h(v, w) \forall (v, w) \in V \times W \).

Let suppose \(u_1, u_2 \in F \) such that satisfy \(u_1 - u_2 \in R \). Then

\[
u_1 - u_2 = \sum_{i=1}^{m} \alpha_i \left[\frac{1}{b_i} (a_i^1 f_i^1 + b_i^2 f_i^2, g_i) - \alpha_i \frac{1}{b_i} (a_i, g_i) - b_i \frac{1}{b_i} (a_i, g_i) \right]
\]

\[
+ \sum_{j=1}^{n} \beta_j \left[b_j \left(c_j f_j^1 + d_j f_j^2, g_j \right) - g_j \left(c_j f_j, g_j \right) - d_j \left(c_j f_j, g_j \right) \right]
\]

By definition, \(h_1 \) is linear. Thus,

\[
h_1(u_1 - u_2) = \sum_{i=1}^{m} \alpha_i \left[h_1 \left(\frac{1}{b_i} (a_i^1 f_i^1 + b_i^2 f_i^2, g_i) \right) - \alpha_i \frac{1}{b_i} h_1 (a_i, g_i) - b_i \frac{1}{b_i} h_1 (a_i, g_i) \right]
\]

\[
+ \sum_{j=1}^{n} \beta_j \left[b_j \left(c_j f_j^1 + d_j f_j^2, g_j \right) - g_j h_1 (c_j f_j, g_j) - d_j h_1 (c_j f_j, g_j) \right]
\]
\[\sum_{i=1}^{\infty} \lambda_i \left[h(a_1 f_i + b_i g_i) - a_i h(f_i, \xi_i) - b_i h(g_i, \xi_i) \right] \\
+ \sum_{j=1}^{\infty} \beta_j \left[\left(f_j | x \xi_j + g_j | x \xi_j \right) - c_j h(f_j, \xi_j) - d_j h(g_j, \xi_j) \right] \]

= 0 \quad \text{because } h \text{ is bilinear.}

Thus, \(h_i(w) = h_x(w) \). By this reason, we can define a map
\[\tilde{h}_i : F/R \to Y \]
\[\tilde{h}_i(f + R) = h_i(f) \]

For each \((v, w) \in V \times W\),
\[\tilde{h}_i(v, w) = \tilde{h}_i(i(v, w) + R) = h_i(i(v, w)) = h_i(v, w) \]

Thus, \(\tilde{h}_i = h_i \).

4. Let \(\{ v_i \}_{i \in I} \) be a basis of \(V \), \(\{ w_j \}_{j \in J} \) a basis of \(W \). Then
\[S = \{ i(v, w) + R : i \in I, j \in J \} \]

is a basis of \(F/R \).

Proof: First we show that \(S \) can linearly generate \(F/R \). We know the set \(\{ i(v, w) + R : v \in U, w \in W \} \) can generate \(F/R \). Thus, it is sufficient to show that for each \(i(v, w) + R \), \(i(v, w) + R \) is a linear combination of elements of \(S \). We can write
\[v = \sum_{i=1}^{\infty} \alpha_i v_i, \quad w = \sum_{j=1}^{\infty} \beta_j w_j \]
Then
\[I_{i,j} + R = I_{i,j} (z_{i,j}, z_{i,j}) + R = \sum_{i,j} \alpha_i \beta_j \delta_i (z_{i,j}) + R \]

Next, we'll show that \(S \) is linearly independent. Suppose that \(c_j \in K, \forall i = 1, \ldots, n; j = 1, \ldots, m \) be such that
\[\sum_{i,j} c_j \delta_i (z_{i,j}) + R = 0 \quad \text{or} \quad \sum_{i,j} c_j \delta_i (z_{i,j}) \in R. \]

For each bilinear map \(h_i : V \times W \rightarrow Y \), we define as in point 3) the map linear map \(h_i : F \rightarrow Y \) such that \(h_i (1_{i,j}) = h_i (z_{i,j}) \).

By point 3), if \(u_1 = u_2 \in R \) then \(h_i (u_1) = h_i (u_2) \). Note that
\[\sum_{i,j} c_j \delta_i (z_{i,j}) = 0 \in R. \]

Thus,
\[0 = h_i \left(\sum_{i,j} c_j \delta_i (z_{i,j}) \right) = \sum_{i,j} c_j h_i (\delta_i (z_{i,j})) = \sum_{i,j} c_j h_i (1_{i,j}). \]

Therefore,
\[\sum_{i,j} c_j h_i (1_{i,j}) = 0 \quad (\ast) \]

\(\forall \) bilinear \(h_i \) from \(V \times W \) to \(Y \).

For each pair of indices \((i, j) \), we define the bilinear map
\[h_{i,j} : V \times W \rightarrow K \]
\[(v, w) \mapsto \alpha_i \beta_j \]

where \(v = \sum v_i, w = \sum w_j \).
defines \(h_{ij} \) as \((\psi, \varphi) \) if \(i = j \) and \(0 \) otherwise.

Applying (iv) for \(h = h_{ij} \), we get \(h_{ij} \psi = 0 \). \(\square \)

Hereafter, we denote \(V \otimes W \) the space \(F/R \) together with the bilinear map \(\phi \). That means, \(V \otimes W \) is the tensor product of \(V \) and \(W \). Also, we define \(v \otimes w := \lambda \psi \varphi + R \).

II. Hilbert-space tensor product

Let \(V \) and \(W \) be two separable Hilbert spaces. Let \((v_i)_{i \in \mathbb{N}} \) and \((w_j)_{j \in \mathbb{N}} \) be respectively an orthonormal basis of \(V \) and \(W \).

\[
V_0 = \langle v_1, v_2, \ldots \rangle,
\]
\[
W_0 = \langle w_1, w_2, \ldots \rangle,
\]

i.e. each element of \(V_0 \) is a finite linear combination of \(\{v_i, v_2, \ldots \} \).

Note that \(V_0 \subset V \) and \(W_0 \subset W \) if \(V \) and \(W \) are infinite dimensional. In part II, we defined the algebraic tensor product of \(V \) and \(W \). In this case, \(V \) and \(W \) have noncountable bases. However, orthogonal bases \((v_i) \) and \((w_j) \) are very important in these spaces. We should introduce another tensor product between \(V \) and \(W \) that involves these orthogonal bases. Such a kind of tensor product...
is Hilbert-space tensor product.

1. $V_0 \otimes W_0$ is independent of the choice of orthonormal bases of V and W.

Proof: Let (v_i) and (w_j) be respectively orthonormal bases of V and W. We denote

$$V_0' = \langle \{v_1, v_2, \ldots \} \rangle$$
$$W_0' = \langle \{w_1, w_2, \ldots \} \rangle$$

By Point 4, Part II, $\{v_i \otimes w_j / i, j \in \mathbb{N}\}$ is a basis of $V_0 \otimes W_0$, and $\{v_i' \otimes w_j' / i, j \in \mathbb{N}\}$ is a basis of $V_0' \otimes W_0'$. We can introduce a linear isomorphism between $V_0 \otimes W_0$ and $V_0' \otimes W_0'$

$$\psi : V_0 \otimes W_0 \rightarrow V_0' \otimes W_0'$$

$$\sum_{ij} v_i \otimes w_j \rightarrow \sum_{ij} v_i' \otimes w_j'$$

Thus, $V_0' \otimes W_0'$ is simply a tensor product of V_0 and W_0.

2. $V_0 \otimes W_0$ can be equipped with the following inner product

$$\langle \sum_{ij} v_i \otimes w_j, \sum_{kl} v_k \otimes w_l \rangle = \sum_{ij} \langle v_i, v_k \rangle \langle w_j, w_l \rangle$$

Proof: Because (x_i) and (y_j) vanish at all but finitely many entries, the map $\langle \cdot, \cdot \rangle$ is well-defined. Moreover, by its definition,
\(\langle \cdot, \cdot \rangle \) is linear in the first argument. We have
\[
\left\langle \sum_{k} f_{k} \psi_{k}, \sum_{j} 2 \alpha_{j} \psi_{j} \right\rangle = \sum_{k} f_{k} \bar{\alpha}_{k} = \sum_{k} f_{k} \bar{f}_{k}
\]
Thus, \(\langle \cdot, \cdot \rangle \) is conjugate symmetric. We have
\[
\left\langle \psi_{j}, \sum_{k} 2 \psi_{k} \right\rangle = \sum_{k} \alpha_{k} \bar{\alpha}_{j} = \sum_{k} |\alpha_{k}|^2 ≥ 0
\]
The equality holds if and only if \(\alpha_{j} = 0 \leftrightarrow \psi_{j} \), i.e. \(\sum_{k} \alpha_{k} \psi_{k} = 0 \)
Thus, \(\langle \cdot, \cdot \rangle \) is an inner product and induces a norm of \(V \otimes W \)
\[
\| \sum_{j} \alpha_{j} \psi_{j} \| = \left(\sum_{j} |\alpha_{j}|^2 \right)^{1/2} = \| \sum_{j} |\alpha_{j}|^2 e_{j} \psi_{j} \|
\]
\(3 \) By the previous point, \(\langle V \otimes W, \cdot, \cdot \rangle \) is a norm space.
Definition: The A completion of \(\langle V \otimes W, \cdot, \cdot \rangle \) is called Hilbert-space tensor product of \(V \) and \(W \), and denoted \(V \otimes W \).
\(4 \) By this definition, Hilbert-space tensor product of \(V \) and \(W \) is unique up to a linear isometric isomorphism.
\(4 \) In this point, we'll construct a specific Hilbert-space tensor product of two separable Hilbert spaces \(V \) and \(W \).
Put $G = C^{V \times W}$ - the set all maps from $V \times W$ to C.

We define the following subsets of G:

\[R_0 = \left\{ \frac{1}{4} \left(a_1 f_1 + b_1 f_2, c_1 g_1 + d_1 g_2 \right) - \frac{1}{4} \left(a_1 f_3 + b_1 f_4, c_1 g_3 + d_1 g_4 \right) \middle| a,b,c,d \in C; f_1, f_2 \in V_0; g_1, g_2 \in W_0 \right\} \]

\[R = \left\{ \frac{1}{4} \left(2x_i v_i, 2y_i w_i \right) - \sum_{ij} \alpha_{ij} f_{(i,j)} \middle| (i,j) \in \mathbb{Z}^2 \right\} \]

Remember that an element $v \in V$ corresponds one to one to a sequence $(x_i) \in l^2(\mathbb{N})$ by the relation

\[v = \sum_{i=1}^{\infty} x_i v_i \]

There is one thing worth noticing in the definition of R. The map

\[f = \sum_{ij} \alpha_{ij} f_{(i,j)} \]

is simply a map from $V \times W$ to C such that

\[f(x) = \begin{cases} \alpha_{ij} & x = (v_i, w_j) \\ 0 & \text{otherwise} \end{cases} \]

by definition, R_0 and R are vector spaces and $R_0 \subseteq R$. Then we have two equivalence relations on G

\[u \sim u' \text{ if and only if } u - u' \in R_0. \]

\[u \sim u' \text{ if and only if } u - u' \in R. \]
As we know, a special subset of the R_0-equivalence classes is the algebraic tensor product of V_0 and W_0

$$V_0 \otimes W_0 = \tilde{F}_0 = \left\{ \sum_{ij} \gamma_{ij} A_{(i,j)} + R_0 / (\alpha_{ij}) \text{vanishes a all but finitely many entries} \right\}$$

We define a special set of the R-equivalence classes

$$\tilde{F} = \left\{ \sum_{ij} \gamma_{ij} A_{(i,j)} + R / (\alpha_{ij}) \in C(N \times W) \right\}$$

Then $\tilde{F} = V \otimes W$.

Proof: Put $\psi : \tilde{F}_0 \rightarrow \tilde{F}$

$$\sum_{ij} \gamma_{ij} A_{(i,j)} + R_0 \mapsto \sum_{ij} \gamma_{ij} A_{(i,j)} + R$$

Then ψ is well-defined and linear. To show that ψ is injective, we only need to show that $\ker \psi = 0$. Suppose that

$$\sum_{ij} \gamma_{ij} A_{(i,j)} + R = 0,$$

i.e.

$$\sum_{ij} \gamma_{ij} A_{(i,j)} \in R$$

Thus,

$$\sum_{ij} \gamma_{ij} A_{(i,j)} = \sum_{k=1}^{N} \sum_{ij} \gamma_{ij} A_{(i,j)} - \sum_{ij} \sum_{k=1}^{N} \alpha_{ij} \beta_{ij} A_{(i,j)}$$

(1)
\[\sum_{k=1}^{N} \xi_k \mathbf{1}(\sum_{l}^{k} \psi_l, \sum_{j}^{k} \eta_j) - \sum_{ij} \lambda_{ij} \mathbf{1}(\epsilon_i, \omega_j) \]

where \(\lambda_{ij} = \sum_{k=1}^{N} \xi_k \psi_i \eta_j \).

We can assume that \(\xi_k \neq 0 \) and \(\mathbf{1}(\sum_{l}^{k} \psi_l, \sum_{j}^{k} \eta_j) \)'s are distinct.

Then \((\sum_{l}^{k} \psi_l, \sum_{j}^{k} \eta_j) = (\nu_k, \omega_k) \) \(\forall k = 1, \ldots, N \) and therefore the sum with \(\epsilon_i \) over \(i \) and \(j \) on the right hand side of (***) must be finite. Thus,

\[\sum_{ij} \lambda_{ij} \mathbf{1}(\nu_i, \omega_j) \leq R_0, \]

i.e.

\[\sum_{ij} \lambda_{ij} \mathbf{1}(\nu_i, \omega_j) + R_0 = 0. \]

Hence, \(\psi \) is linear and injective. Then \(\psi(\mathbb{F}_0) \) is a linear isomorphism to \(\tilde{\mathbb{F}}_0 \) and thus a tensor product of \(\mathbb{V}_0 \) and \(\mathbb{W}_0 \).

\[\psi(\mathbb{F}_0) = \mathbb{V}_0 \otimes \mathbb{W}_0 \]

(Here the corresponding bilinear map is implicitly understood). Since \(\mathbb{F}_0 \) is endowed with the inner product mentioned in Point (2), we can define an inner product on \(\psi(\mathbb{F}_0) \) as follow

\[\langle \psi(x), \psi(y) \rangle_{\psi(\mathbb{F}_0)} := \langle x, y \rangle_{\mathbb{F}_0} \]
Then the inner product induces a norm on \(\mathcal{V}(\mathcal{F}_0) \), and
\((\mathcal{V}(\mathcal{F}_0), \| \cdot \|) \) is linearly isometrically isomorphic to \((\mathcal{F}_0, \| \cdot \|)\). Thus, the completion space of \((\mathcal{V}(\mathcal{F}_0), \| \cdot \|)\) is a Hilbert-space tensor product of \(V \) and \(W \). The problem now becomes to show that this completion is actually \(\mathcal{F} \).

We know that each element \(v \in \mathcal{F} \) has the form

\[
 f = \sum \gamma_j \delta(v, w_j) + R, \quad \text{where} \quad (\gamma_j) \in \ell^1(\mathbb{N} \times \mathbb{N})
\]

First, we'll show that this representation is unique. Suppose that

\[
 f = \sum \gamma'_j \delta(v, w_j) + R, \quad \text{where} \quad (\gamma'_j) \in \ell^1(\mathbb{N} \times \mathbb{N}).
\]

Put \(\delta_j = \gamma_j - \gamma'_j \). Then \((\delta_j) \in \ell^1(\mathbb{N} \times \mathbb{N}) \) and

\[
 \sum \delta_j \delta(v, w_j) \in \mathbb{R}
\]

Thus,

\[
 \sum \gamma_j \delta(v, w_j) = \sum_{k=1}^{N} \gamma_k \left[\sum_{j} \delta_j (2 \alpha_{k,w_j} \geq \beta_{k,w_j}) - \frac{2}{y} \sum \delta_j \delta(v, w_j) \right]
\]

\[
 = \sum_{k=1}^{N} \gamma_k \delta(2 \alpha_{k,w_j} \geq \beta_{k,w_j}) - \frac{2}{y} \sum \delta_j \delta(v, w_j)
\]

where

\[
 \delta_j = \sum_{k=1}^{N} \alpha_{k,w_j} \beta_{k,w_j}
\]

Then \((\sum \alpha_{k,v_i} \delta \beta_{k,w_j}) = (v_i, w_j) \), and the sum over \(ij \) at \(\sum \) is actually a finite sum.
Thus, \(\sum \alpha_{ij} d(w_i, w_j) \in R_0 \). Hence \(\alpha_{ij} = 0 \), \(\forall i, j \in N \). We introduce an inner product on \(\tilde{F} \):

\[
\left< \sum \alpha_{ij} d(w_i, w_j) + R, \sum \beta_{kl} d(w_k, w_l) + R \right>_\tilde{F} = \sum \alpha_{ij} \beta_{ij}
\]

\(\forall (\alpha_{ij}), (\beta_{kl}) \in \ell^2(N \times N) \)

Notice that the sum at the right hand side always converges. It is easy to see that \(\left< , \right>_\tilde{F} \) is linear in the first argument, conjugate symmetric and positively definite. Thus, \(\left< , \right>_\tilde{F} \) is indeed an inner product on \(\tilde{F} \). In fact, \(\left< , \right>_\tilde{F} \) is an extension of \(\left< , \right>_{\ell^2(F_0)} \) on \(\tilde{F} \). It induces a norm on \(\tilde{F} \). Define

\[
\gamma: \ell^2(N \times N) \rightarrow \tilde{F}
\]

\[
(\alpha_{ij}) \mapsto \sum \alpha_{ij} d(w_i, w_j) + R
\]

Then \(\gamma \) is well-defined, surjective, injective, linear and norm-preserving.

\[
|| \gamma(\alpha_{ij}) || = || \sum \alpha_{ij} d(w_i, w_j) + R || = || (\alpha_{ij})_F ||
\]

Since \(\ell^2(N \times N) \) is complete, \((\tilde{F}, ||.||) \) is also complete. The only task left is to show that \(\Phi(F_0) \) is dense in \(\tilde{F} \). Let

\[
f = \sum \delta_{ij} d(w_i, w_j) + R \in \tilde{F}
\]

For each \(\forall i \in N \), we define
\[f_m = \sum_{i,j=1}^{m} \gamma_{ij} A_{ij}(e_i, w_j) + R \in \Psi(F) \]

Then
\[f - f_m = \sum_{i,j>m} \gamma_{ij} A_{ij}(e_i, w_j) + R \]
\[\|f - f_m\|^2 = \sum_{i,j>m} |\gamma_{ij}|^2 \]

because \(\sum_{i,j=1}^{\infty} |\gamma_{ij}|^2 \) converges, \(\lim_{m \to \infty} \sum_{i,j>m} |\gamma_{ij}|^2 = 0 \). Thus

\[\|f - f_m\| \to 0 \quad \text{or} \quad f_m \to f. \]

Therefore, \(\Psi(F) \) is dense in \((F, \|\cdot\|)\).

In conclusion, \((\tilde{F}, \langle \cdot, \cdot \rangle_F)\) is the Hilbert–space tensor product of \(V \) and \(W \).

(5) With the notation \(v \otimes w := A_{ij}(e_i, w_j) + R \quad \forall v \in V, w \in W \), we have \(\langle v \otimes w, v' \otimes w' \rangle_F = \langle v, v' \rangle \langle w, w' \rangle \).

Proof. We can write

\[v = \sum_{i=1}^{\infty} \alpha_i e_i, \quad w = \sum_{j=1}^{\infty} \beta_j w_j \]

\[v' = \sum_{k=1}^{\infty} \alpha'_k e_k, \quad w' = \sum_{l=1}^{\infty} \beta'_l w_l \]

where \((\alpha_i), (\beta_j), (\alpha'_k), (\beta'_l) \in l^2(N \times N)\). Then

\[v \otimes w = \sum_{i,j=1}^{\infty} \gamma_{ij}(e_i, w_j) + R = \sum_{i,j} \gamma_{ij}(e_i, w_j) + R \]

for \(\gamma_{ij} = \alpha_i \beta_j \).
\[
\sum \lambda_{ij} f_i (v, w) + R
\]

Similarly,

\[
\langle v \hat{\otimes} w, v \hat{\otimes} w \rangle = \langle \sum \lambda_{ij} f_i (v, w) + R, \sum \lambda'_{ij} f_i (v, w) + R \rangle
\]

By definition,

\[
\frac{Z \sum \lambda_{ij} \bar{f_i} \bar{f_j}}{\sum \lambda_{ij} \bar{f_i} \bar{f_j}} = \sum \frac{(\bar{v_i}) (\bar{w_j})}{\sum \lambda_{ij} \bar{f_i} \bar{f_j}}
\]

We have

\[
\sum \lambda_{ij} \bar{v_i} \bar{w_j} = \sum \frac{(\bar{v_i}) (\bar{w_j})}{\sum \lambda_{ij} \bar{f_i} \bar{f_j}} < \infty
\]

Thus,

\[
\sum \lambda_{ij} \bar{v_i} \bar{w_j} = \left(\sum \frac{(\bar{v_i})}{\sum \lambda_{ij} \bar{f_i}} \right) \left(\sum \frac{(\bar{w_j})}{\sum \lambda_{ij} \bar{f_j}} \right)
\]

\[
= \left(\sum \bar{v_i} \right) \left(\sum \bar{w_j} \right) = \left\langle \sum \bar{v_i}, \sum \bar{w_j} \right\rangle = \left\langle \sum \beta_i \bar{v_i}, \sum \beta_j \bar{w_j} \right\rangle
\]

\[
= \left\langle v, w \right\rangle \left\langle w, w \right\rangle
\]

Therefore, \(\langle v \hat{\otimes} w, v \hat{\otimes} w \rangle = \langle v, w \rangle \langle w, w \rangle \).

\[\text{IV} \quad \text{Some examples of Hilbert space tensor product} \]

\[\text{1. } V \hat{\otimes} W = B_{2} (V, W) \]

\[\text{Proof. Let } (v_i)_{i \in V} \text{ be an orthonormal basis of } V \]

\[(w_j)_{j \in W} \text{ be an orthonormal basis of } W \]

As in previous points, we pat
\[V_0 = \langle \{v_1, v_2, \ldots \} \rangle \]
\[W_0 = \langle \{w_1, w_2, \ldots \} \rangle \]

First, we'll show that \(V_0 \otimes W_0 = \text{Bim}(V_0, W_0) \). For each \(i \in \mathbb{N} \), we denote \(v_i^* \) the linear map from \(V \) to \(\mathbb{C} \) such that
\[v_i^*(v_j) = \begin{cases} 1 & \text{if } j = i \\ 0 & \text{otherwise} \end{cases} \]

More explicitly, \[v_i^*(v) = a_i, \] where \(v = \sum_{j=1}^{\infty} a_j v_j \).

Then \(v_i^* \in V^* \). We define the map
\[\phi: V_0 \otimes W_0 \rightarrow \text{Bim}(V_0, W_0) \]
\[\phi(\sum \lambda_j v_i \otimes w_j) = \sum \lambda_j v_i^* w_j \]

Then \(\phi \) is well-defined and linear. If \(\phi(\sum \lambda_j v_i \otimes w_j) = 0 \) then
\[\sum \lambda_j v_i^* w_j = 0, \text{ i.e. } \sum \lambda_j v_i^* w_j = 0 \quad \forall v \in V_0 \]

For each \(k \in \mathbb{N} \), we substitute \(v \) by \(v_k \) and obtain
\[0 = \sum_j \lambda_j v_i^* v_k w_j = \sum_j \lambda_j v_k w_j \]

Thus \(\lambda_j = 0 \forall j \). Thus \(\lambda_j = 0 \forall v_j \). Hence, \(\phi \) is injective.

For each \(f \in \text{Bim}(V_0, W_0) \), we have
\[f(v) = \sum_j f_j(v) w_j \quad (\text{finite sum}) \]
It is easy to see that f is linear. Since $v \in V$, it can be expressed as the finite sum $v = \sum \xi_i v_i = \sum \xi_i^*(v) v_i$.

Then

$$f(v) = \sum_j f_j(v) w_j = \sum_j f_j \left(\sum_j \xi_i^*(v) v_i \right) w_j = \sum_j \xi_i^*(v) f_j(v_i) w_j$$

Put $a_j = f_j(v_i)$. Then $f(v) = \sum_j a_j \xi_i^*(v) w_j$, or

$$f = \sum_j a_j \xi_i^* w_j = \phi \left(\sum_j a_j v_j^* w_j \right)$$

Thus, ϕ is surjective. That means ϕ is a linear isomorphism. Hence, $b_{\text{lin}}(V_0, W_0)$ is a tensor product of V_0 and W_0. The inner product on $b_{\text{lin}}(V_0, W_0)$ induced by ϕ is

$$\left\langle \sum a_j \xi_i^* w_j, \sum f_k \xi_l^* w_k \right\rangle = \sum a_j f_k \xi_i^* \xi_l^*$$

Let $f = \sum a_j \xi_i^* w_j$. Then

$$\langle f, f \rangle = \sum a_j a_l = \sum |a_j|^2$$

we have

$$f(v) = \sum_j a_j \xi_i^* (v_k) w_j = \sum_j a_j \xi_i^* v_k \xi_l^* w_j = \sum_j a_j \xi_i^* w_j$$

Thus

$$|f(v)|^2 = \sum_j |a_j|^2$$

and

$$\sum_k |f(v_k)|^2 = \sum_j |a_j|^2$$

Hence

$$\langle f, f \rangle = \sum_k |f(v_k)|^2.$$
The norm on $B_{pn}(V_0, W_0)$ induced by this inner product is therefore:

$$
\|f\| = \left(\sum_{k} |f(v_k)|^2 \right)^{1/2},
$$

i.e. the Hilbert–Schmidt norm. For each $f \in B_{pn}(V_0, W_0)$ and $x \in V$, there exists a sequence (x_n) in V_0 such that $x_n \to x$. We define $f(x) = \lim_{n \to \infty} f(x_n)$. Then (x_n) is a Cauchy sequence in V.

$$
|f(x_n) - f(x_m)| = |f(x_n - x_m)| \leq \|f\| \|x_n - x_m\|
$$

Thus, $\{f(x_n)\}$ is a Cauchy sequence in W. Since W is complete, the sequence converges. Moreover, the limit is independent of the choice of sequence (x_n). Thus, we can define

$$
\tilde{f}(x) = \lim_{n \to \infty} f(x_n)
$$

Then \tilde{f} is a finite-rank operator from V to W_0. Define

$$
\Psi : B_{pn}(V_0, W_0) \to B_2(V_1, W)
$$

$$
\begin{align*}
\Psi(f) & \mapsto \tilde{f} \\
\Psi & \Psi
\end{align*}
$$

Then Ψ is well-defined and linear. If $\tilde{f} = 0$ then $\tilde{f}(v_i) = 0$ for all v_i, i.e. $f = 0$. Thus Ψ is injective. Hence,

$$
G = \Psi(B_{pn}(V_0, W_0)) = V_0 \otimes W_0.
$$

We can define an inner product on G

$$
\langle \Psi(f), \Psi(g) \rangle_G = \langle f, g \rangle_{B_{pn}(V_0, W_0)}.
$$
This product is respect the restriction of Hilbert–Schmidt inner product on G

$$<f, g>_{B_2(V,W)} = \sum_\lambda \langle f_\lambda, g_\lambda \rangle_W$$

To show that $V \otimes W = B_2(V,W)$, we have to show that $B_2(V,W)$ is the completion of $(G, \| \cdot \|_{HS})$. By Point 3, Part 4, $B_2(V,W)$ is a Banach space. The task left is to show that $(G, \| \cdot \|_{HS})$ is dense in $B_2(V,W)$. For each $T \in B_2(V,W)$,

$$T_0 = \sum_{n=1}^{\infty} \langle T_0, w_n \rangle w_n$$

For each $m \in \mathbb{N}$, we define

$$T_m v = \sum_{n=1}^{m} \langle T_0, w_n \rangle w_n$$

Then $T_m \in \mathcal{F}(\mathcal{B}(\mathcal{H}_1, \mathcal{H}_2)) = G$ and

$$\| T - T_m \|_{HS}^2 = \sum_{k=1}^{\infty} \left| T_k - T_m w_n \right|^2 = \sum_{k=1}^{\infty} \left| \sum_{n=m+1}^{\infty} \langle T_k, w_n \rangle w_n \right|^2$$

$$= \sum_{k=1}^{\infty} \sum_{n=m+1}^{\infty} \left| \langle T_k, w_n \rangle \right|^2$$

$$= \sum_{n=m+1}^{\infty} \sum_{k=1}^{\infty} \left| \langle w_k, T^* w_n \rangle \right|^2 = \sum_{n=m+1}^{\infty} \| T^* w_n \|^2$$
Since \(\sum_{n=1}^{\infty} |T_{n}w_{n}|^{2} = \sum_{n=1}^{\infty} |T_{n}v_{n}|^{2} = \|T\|_{L^{2}}^{2} < \infty \),

\[\lim_{m \to \infty} \sum_{n=m+1}^{\infty} |T_{n}w_{n}|^{2} = 0. \]

Thus, \(\|T - T_{m}\|_{L^{2}} \to 0 \), and \(T_{m} \to T \). Therefore, \((G, \|\|_{L^{2}})\) is dense in \(B_{2}(V, W) \) and

\[B_{2}(V, W) = V \hat{\otimes} W. \]

(2) \[L^{2}(X, \mu) \otimes L^{2}(Y, \nu) = L^{2}(X \times Y, \mu \times \nu) \]

Proof: Let \((f_{i})\) be an orthonormal basis of \(L^{2}(X, \mu) \),

\[(f_{i}) \quad \rightarrow \quad L^{2}(Y, \nu). \quad (i \in W, j \in W) \]

Put \(\psi : L^{2}(X, \mu) \otimes L^{2}(Y) \to L^{2}(X \times Y, \mu \times \nu) \) be a linear map such that \(\psi(f_{i} \otimes g_{j}) = \delta_{i}^{j} \) where \(\delta_{i}^{j} \) is the Kronecker delta. To make sure that \(\psi \) is well-defined, we show that \(\delta_{i}^{j} \in L^{2}(X \times Y) \). Let \(X \times Y \) be the product \(\sigma \)-algebra on \(X \times Y \). Then \(f_{i} \) and \(g_{j} \) are also \(X \times Y \)-measurable. Thus \(\delta_{i}^{j} \) is \(X \times Y \)-measurable. Moreover,

\[\int_{X \times Y} |\delta_{i}^{j}|^{2} \, d(x, y) = \int_{X} |f_{i}(x)|^{2} \, d\mu(x) \int_{Y} |g_{j}(y)|^{2} \, d\nu(y) = \|f_{i}\|_{L^{2}(X, \mu)}^{2} \|g_{j}\|_{L^{2}(Y, \nu)}^{2} = 1 < \infty \]

Thus, \(\delta_{i}^{j} \in L^{2}(X \times Y) \), and \(\psi \) is well-defined.
Next, we show that Ψ is injective. Suppose that $x_j \in \mathcal{C}$ and $\sum x_j d_{ij} = 0$.

Then

$$\sum x_j f_i(x) g_j(y) = 0 \quad \text{for a.e. } (x,y) \in X \times Y$$

Then

$$0 = \sum_{ij} x_{ij} \int f_i(x) g_j(y) \, dx \, dy = \sum_{ijk} a_{ij} \int f_i(x) \overline{f_k(x)} g_j(y) \overline{g_l(y)} \, dx \, dy$$

Then

$$0 = \int_{X \times Y} \sum_{ijk} a_{ij} \int f_i(x) \overline{f_k(x)} g_j(y) \overline{g_l(y)} \, dx \, dy$$

$$= \sum_{ijk} a_{ij} \int_{X \times Y} f_i(x) \overline{f_k(x)} g_j(y) \overline{g_l(y)} \, dx \, dy$$

$$= \sum_{ijk} a_{ij} \overline{a_{kl}} \left< f_i, f_k \right>_L^X \left< g_j, g_l \right>_L^Y$$

$$= \sum_{ij} a_{ij} \overline{a_{ij}} = \sum_{ij} |a_{ij}|^2$$

Thus, $a_{ij} = 0$ for $i \neq j$, and Ψ is injective. Thus, $\Psi(L^2(X) \otimes L^2(Y))$ is linearly isomorphic to $L^2(X) \otimes L^2(Y)$. Hence $\text{Im} \Psi = L^2(X) \otimes L^2(Y)$.

The inner product on $L^p(X) \otimes L^q(Y)$ is

$$\langle \sum \delta_y \otimes f, \sum \delta_x \otimes g \rangle = \sum \delta_y \bar{g}_y$$

The inner product on $G = \Psi(L^p(X) \otimes L^q(Y))$ induced by Ψ is

$$\langle \sum \delta_y \otimes f, \sum \delta_x \otimes g \rangle = \sum \delta_y \bar{g}_y$$

This is simply the restriction of the inner product on $L^p(X \times Y)$ onto G.

Indeed,

$$\langle \sum \delta_y \otimes f, \sum \delta_x \otimes g \rangle_{L^p(X \times Y)} = \sum \delta_y \bar{g}_y \int_{X \times Y} \langle f, g \rangle$$

$$= \sum \delta_y \bar{g}_y \int_{X \times Y} \int_X f(x) \overline{g(x)} f(x) \overline{g(x)} \, dx$$

$$= \sum \delta_y \bar{g}_y \int_X \langle f(x), \overline{g(x)} f(x) \overline{g(x)} \rangle$$

$$= \sum \delta_y \bar{g}_y$$

$$= \langle \sum \delta_y \otimes f, \sum \delta_x \otimes g \rangle_G$$

We know that $(L^p(X \times Y), \| \cdot \|_{L^p(X \times Y)})$ is a complete space. Thus, to show that $L^p(X \times Y) = L^p(X) \otimes L^p(Y)$, we only need to show that $(G, \| \cdot \|)$ is dense in $(L^p(X \times Y), \| \cdot \|)$.

Each function \(h \in L^c(X \times Y) \) can be written as

\[h = h^+ - h^- \]

where \(h^+ = \max \{0, h\} \), \(h^- = \max \{0, -h\} \) and \(h^+, h^- \in \ell^c(X \times Y) \).

There exist sequences of simple functions \((s_n), (t_n) \in \ell^c(X \times Y) \) such that \(s_n \uparrow h^+ \) and \(t_n \uparrow h^- \). Thus \(u_n = s_n - t_n \in \ell^c(X \times Y) \) is a simple function, and

\[\| h - u_n \|_{L^c} = \| (h^+ - h^-) - (s_n - t_n) \|_{L^c} \leq \| h^+ - s_n \|_{L^c} + \| h^- - t_n \|_{L^c} \to 0 \to 0 \]

Hence \(u_n \to h \) in \(\ell^c(X \times Y) \).

That means the set of simple functions in \(\ell^c(X \times Y) \) is dense in \(\ell^c(X \times Y) \); thus we only need to show that \(G \) is dense in this set. Moreover, each simple function in \(\ell^c(X \times Y) \) is a linear combination of characteristic functions in \(\ell^c(X \times Y) \). Hence we the task is left as follow.

Let \(A \) be \(\mathcal{S} \times \mathbb{T} \)-measurable and \((\mu \circ \chi_A) < \infty \). Find a sequence \((G_n) \) in \(G \) that converges to \(\chi_A \).

We have 3 following lemmas that will be proved in the end.

Lemma 1: Let \(D = A_1 \times B_1 \) be a measurable rectangle in \(X \times Y \). Then \(X_D \) is the limit of a sequence in \(G \); if \(\mu(A), \nu(B) < \infty \).
We called $A \in \mathcal{C} \times \mathcal{Y}$ an elementary set if $A = R_1 \cup \ldots \cup R_n$ where each R_i is a measurable rectangle and $R_i \cap R_j = \emptyset$ for $i \neq j$. The class of all elementary sets is denoted by E.

Lemma 2: If $P, Q \in E$ then $P \cup Q, P \cap Q, P \setminus Q \in E$.

Lemma 3: Let $Q \in E$. Then X_Q is a limit of a sequence in G.

By Lemma 3, we only have to show that the set $\{X_Q : Q \in E\}$ is dense in $\{X_A : A \in \mathcal{C} \times \mathcal{Y}\}$. We have

$$\|X_Q - X_A\|_p^p = \int_{\mathcal{Y}} |X_Q(x) - X_A(x)|^p = (\mu(\mathcal{D})) (Q \Delta A)$$

where $Q \Delta A = (Q \setminus A) \cup (A \setminus Q)$ is the symmetric difference of Q and A. For simplicity, we put $\lambda = \mu(\mathcal{D})$. Put

$$N = \{A \in \mathcal{C} \times \mathcal{Y} : \forall \varepsilon > 0, \exists Q \in E \text{ such that } \lambda(Q \Delta A) < \varepsilon\}$$

The task left is to show that $N = \mathcal{C} \times \mathcal{Y}$. Because $E \subseteq N \subseteq \mathcal{C} \times \mathcal{Y}$, and $\mathcal{C} \times \mathcal{Y}$ is the smallest σ-algebra on $\mathcal{C} \times \mathcal{Y}$ containing all elementary sets, we only need to show that N is a σ-algebra.

We have $\phi, X \times Y \in E \subseteq N$.
Let \(A \in \mathbb{N} \). We show that \(X \times Y \setminus A \in \mathbb{N} \). For each \(\varepsilon > 0 \), there exists \(Q_\varepsilon \in E \) such that \(\lambda(Q_\varepsilon \setminus A) < \varepsilon \). By Lemma 2, \(Q'_\varepsilon = (X \times Y) \setminus Q_\varepsilon \in E \). Put \(A' = X \times Y \setminus A \).

\[
Q'_\varepsilon \setminus A' = (Q'_\varepsilon \setminus A') \cup (A' \setminus Q'_\varepsilon) = (A \setminus Q_\varepsilon) \cup (Q_\varepsilon \setminus A) = Q_\varepsilon \setminus A
\]

Thus \(\lambda(Q'_\varepsilon \setminus A') = \lambda(Q_\varepsilon \setminus A) < \varepsilon \). Hence \(A' \in \mathbb{N} \).

Let \((A_n) \) be a sequence in \(\mathbb{N} \) and \(A = \bigcup_{n=1}^{\infty} A_n \). We'll show that \(A \in \mathbb{N} \). For each \(\varepsilon > 0 \) and \(n \in \mathbb{N} \), there exists \(Q_{\varepsilon,n} \in E \) such that \(\lambda(Q_{\varepsilon,n} \setminus A_n) < \frac{\varepsilon}{4} \cdot \frac{1}{2^n} \).

For each \(m \in \mathbb{N} \), we put \(p_{m}^{\varepsilon} = \bigcup_{n=1}^{m} Q_{\varepsilon,n} \). By Lemma 2, \(p_{m}^{\varepsilon} \in E \).

We have

\[
\lambda(A \setminus \bigcup_{m=1}^{\infty} p_{m}^{\varepsilon}) = \lambda\left[\bigcup_{n=1}^{\infty} (A_n \setminus p_{m}^{\varepsilon}) \right]
\leq \sum_{n=1}^{\infty} \lambda(A_n \setminus p_{m}^{\varepsilon}) \leq \sum_{n=1}^{\infty} \lambda(A_n \setminus A_{n}^{\varepsilon})
\leq \sum_{n=1}^{\infty} \lambda(Q_{\varepsilon,n} \setminus A_n) = \sum_{n=1}^{\infty} \frac{\varepsilon}{4} \cdot \frac{1}{2^n} = \frac{\varepsilon}{4}
\]

Since \(\lambda(A \setminus \bigcup_{m=1}^{\infty} p_{m}^{\varepsilon}) = \lim_{m \to \infty} \lambda(A \setminus p_{m}^{\varepsilon}) \), we get
Moreover,
\[
\lambda (B_m \setminus A) = \lambda \left(\bigcup_{n=1}^{m} B_n \setminus A \right) \leq \sum_{n=1}^{m} \lambda (B_n \setminus A) \leq \sum_{n=1}^{\infty} \lambda (B_n \setminus A_n) \\
\leq \sum_{n=1}^{\infty} \lambda (A_n \setminus A_n) \leq \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n 2^n} = \frac{\varepsilon}{4}
\]

Together with (1), we have
\[
\lim_{m \to \infty} \lambda (A \Delta B_m) = \operatorname{liminf} \left[\lambda (A \setminus B_m) + \lambda (B_m \setminus A) \right] \leq \frac{\varepsilon}{2}
\]

Thus, there exists $m_0 \in \mathbb{N}$ such that \(\lambda (A \setminus B_{m_0}) < \varepsilon \). Therefore, \(A \in \mathcal{N} \). That completes the proof.

Proof of Lemma 1

Let \(A \in \mathcal{S} \) and \(B \in \mathcal{S} \) such that \(\mu(A), \nu(B) < \infty \). Then \(X_A \in \mathcal{L}(X) \) and \(X_B \in \mathcal{L}(Y) \). For each \(\varepsilon > 0 \), there exist a finite sum \(\sum_{i} d_i f_i \in \mathcal{L}(X) \) such that
\[
\| \sum_{i} d_i f_i - X_A \|_{\mathcal{L}(X)} < \varepsilon
\]
and a finite sum \(\sum_{j} e_j g_j \in \mathcal{L}(Y) \) such that
\[
\| \sum_{j} e_j g_j - X_B \|_{\mathcal{L}(Y)} < \varepsilon
\]
Put \(h \in L^\infty(X \times Y) \) given by

\[
h(x,y) = \left(\sum_i x_i f_i(x) \right) \left(\sum_j y_j g_j(y) \right)
\]

Then \(h \in G \). We have

\[
\| h - \chi_{A \times B} \|_{L^\infty(X \times Y)} = \| \left(\sum_i x_i f_i \right) \left(\sum_j y_j g_j \right) - \chi_A \chi_B \|_{L^\infty(X \times Y)}
\]

Put \(f = \sum x_i f_i \) and \(g = \sum y_j g_j \). We have

\[
\| h - \chi_{A \times B} \|_{L^\infty(X \times Y)} = \| f(x)g(y) - \chi_A(x)\chi_B(y) \|_{L^\infty(X \times Y)}
\]

\[
= \| \left(f(x) - \chi_A(x) \right) g(y) + \chi_A(x) \left(g(y) - \chi_B(y) \right) \|_{L^\infty(X \times Y)}
\]

\[
\leq \| f(x) - \chi_A(x) \|_{L^\infty(X)} \| g(y) \|_{L^\infty(Y)} + \| \chi_A(x) \|_{L^\infty(X)} \| g(y) - \chi_B(y) \|_{L^\infty(Y)}
\]

\[
= \| f - \chi_A \|_{L^\infty(X)} \| g \|_{L^\infty(Y)} + \| \chi_A \|_{L^\infty(X)} \| g - \chi_B \|_{L^\infty(Y)}
\]

\[
\leq \varepsilon \| g \|_{L^\infty(Y)} + \mu(A)^{\frac{m^2}{2}} \varepsilon
\]

\[
\leq \varepsilon \left(\| \chi_B \|_{L^\infty(Y)} + \varepsilon \right) + \mu(A)^{\frac{m^2}{2}} \varepsilon
\]

\[
= \varepsilon \left(\| \chi_B \|_{L^\infty(Y)} + \varepsilon \right) + \mu(A)^{\frac{m^2}{2}} \varepsilon
\]

Thus \(\chi_{A \times B} \) is a limit of a sequence in \(G \).

* Proof of Lemma 2
First, we see that
\[(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D),\]
i.e. the intersection of two measurable rectangles is also a measurable rectangle. Let \(P, Q \in \mathcal{E}\)
\[P = UR_i \quad Q = UR_j\]
Then \(P \cap Q = (UR_i) \cap (UR_j) = U(R_i \cap R_j') \in \mathcal{E}\)
measurable rectangle
Consequently, every finite intersection of elements in \(\mathcal{E}\) belongs to \(\mathcal{E}\).
Let \(A \times B \in \mathcal{E}\) be a measurable rectangle. Then
\[(x, y) \setminus (A \times B) = \left[A \setminus (y \setminus B) \right] \cup \left[(x \setminus A) \times (y \setminus B) \right] \cup \left[(x \setminus A) \times B \right] \]
\[R_1' \quad R_2 \quad R_3\]
\(R_1', R_2', R_3\) are measurable rectangles and pairwise disjoint. Thus, \((x, y) \setminus (A \times B) \in \mathcal{E}\)
For each \(P = UR_i \in \mathcal{E}\), we have
\[(x, y) \setminus P = (x, y) \setminus UR_i = \bigcap_{E \in \mathcal{E}} [(x, y) \setminus R_i] \]
This is a finite intersection of elements in \(\mathcal{E}\). Thus, \((x, y) \setminus P \in \mathcal{E}\).
For each \(P, Q \in \mathcal{E}\), we have
\[P \setminus Q = P \cap \left[(x, y) \setminus Q \right] \in \mathcal{E}\]
To show that $P \cup A \in \mathcal{E}$, we only need to show that $(X \times Y) \setminus (P \cup A) \in \mathcal{E}$. We have

$$(X \times Y) \setminus (P \cup A) = \left(\frac{(X \times Y) \setminus P}{\mathcal{E}} \cap \frac{(X \times Y) \setminus A}{\mathcal{E}}\right) \in \mathcal{E}$$

\textbf{Proof of Lemma 3}

Let $Q \in \mathcal{E}$ and $\lambda(Q) < \infty$. We can write $Q = \cup R_i$ where R_i is a measurable rectangle and $R_i \cap R_j = \emptyset$ for $i \neq j$. Thus,

$$\lambda(Q) = \sum_{i=1}^{n} \lambda(R_i),$$

and hence $\lambda(R_i) < \infty \forall i$. By Lemma 1, for each $\varepsilon > 0$, there exists $f_i^{\varepsilon} \in G$ such that

$$\|f_i^{\varepsilon} - X_{R_i}\|_{L^\infty(X \times Y)} < \frac{\varepsilon}{n}.$$

Put

$$f^{\varepsilon} = \sum_{i} f_i^{\varepsilon} \in G.$$

Then

$$\|f^{\varepsilon} - X_{\lambda}\|_{L^\infty(X \times Y)} = \|\sum_{i=1}^{n} f_i^{\varepsilon} - \sum_{i=1}^{n} X_{R_i}\| \leq \sum_{i=1}^{n} \|f_i^{\varepsilon} - X_{R_i}\| \leq \frac{n}{n} \varepsilon = \varepsilon.$$

Thus

$$\|f^{\varepsilon} - X_{\lambda}\|_{L^\infty(X \times Y)} < \varepsilon$$

Therefore, X_{λ} is a limit of a sequence in $(G, \|\cdot\|_{\infty})$.