Jordan normal form

1. Review the concepts of coordinate changes for linear maps, characteristic polynomials, eigenvalues, eigenvectors, diagonalization, Jordan normal form.

Let V be a vector space over \mathbb{C} with $\dim V = n$, and $A: V \to V$ be a linear map. We start with matrix representation of A. Let $B = \{e_1, e_2, \ldots, e_n\}$ be a basis of V. Each Ae_i is a linear combination of e_1, e_2, \ldots, e_n. Write

$$Ae_i = \sum_{j=1}^{n} a_{ij} e_j.$$

The matrix $(a_{ij})_{1 \leq i, j \leq n}$ is called the matrix representation or representing matrix of A in the basis B. We denote $[A]_B = (a_{ij})_{1 \leq i, j \leq n}$. Each vector $x \in V$ is a linear combination of e_1, e_2, \ldots, e_n. Write $x = \sum_{i=1}^{n} x_i e_i$. The column vector

$$[x]_B = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

is called the coordinate representation of x in the basis B. Thus,

$$[A]_B = ([Ae_1]_B \ [Ae_2]_B \ \ldots \ \ [Ae_n]_B) \quad (1)$$

and $[Ax]_B = [A]_B \ [x]_B$.

Now we consider the coordinate changes. Let $B' = \{e'_1, \ldots, e'_n\}$ be another basis of V. The matrix representing the change of basis from B to B' is defined as

$$[P]_{B \to B'} = ([e'_1]_B \ [e'_2]_B \ \ldots \ \ [e'_n]_B). \quad (2)$$

Note that $[P]_{B \to B'}$ is an invertible matrix. We have

$$[x]_B = [P]_{B \to B'} \ [x]_{B'}. \quad (3)$$
Since \([x]_B = [P]_{B \rightarrow B'} [x]_B\), we get the identity \([P]_{B \rightarrow B'} = [P]^{-1}_{B \rightarrow B'}\).

We have
\[
[A x]_B = [P]_{B \rightarrow B'} [A x]_B' = [P]_{B \rightarrow B'} [A]_{B'} [x]_{B'} = [P]_{B \rightarrow B'} [A]_{B'} [P]_{B \rightarrow B'} [e_i]_B.
\]

Then
\[
([A e_1]_B \ldots [A e_n]_B) = [P]_{B \rightarrow B'} [A]_{B'} [P]_{B \rightarrow B'} ([e_1]_B \ldots [e_n]_B) = [I_n].
\]

Thus,
\[
[A]_B = [P]_{B \rightarrow B'} [A]_{B'} [P]_{B \rightarrow B'}^{-1}
\] \hspace{1cm} (4)

We see that the representing matrices of \(A\) in different bases are conjugate to one another. The concepts of characteristic polynomials, eigenvalues, eigenspaces, diagonalizability which will be discussed do not depend on the choice of basis for \(V\). However, choosing a basis is needed when we want to do calculations.

The **characteristic polynomial** of \(A\) is defined as \(p_A(\lambda) = \det (A - \lambda I_v)\).

Each root of this polynomial is called an eigenvalue of \(A\). If \(\lambda\) is an eigenvalue then the space
\[
E_\lambda = \{x \in V : (A - \lambda I_v)x = 0\}
\] \hspace{1cm} (5)

is nontrivial and called the eigenspace associate with \(\lambda\).

In many circumstances, we want to find a basis of \(V\) in which the representing matrix of \(A\) is simple. If there exists a basis \(B\) of \(V\) such that \([A]_B\) is diagonal then \(A\) is said to be diagonalizable, or semi-simple. Not all linear transformations are diagonalizable. However, for every linear transformation \(A\) there exists a basis \(B\) such that \([A]_B\) is of Jordan normal form, i.e.
where \(\lambda_1, \lambda_2, \ldots, \lambda_m \) are not necessarily distinct. Each block is called a Jordan block. If \(B \) diagonalizes \(A \) then \([A]_B \) is a diagonal matrix, which is also of Jordan normal form where every Jordan block is of size 1.

To examine the diagonalizability and Jordan normal form of \(A \), we view \(V \) as a module over the principal ring \(C[\tilde{z}] \) via the ring morphism \(C[\tilde{z}] \to \text{End}(V), f \mapsto f(A) \). The linear transformation \(f(A) \) is defined as

\[
f(A) = c_0 \text{Id}_V + \sum_{j=1}^{m} c_j A^j = A_0 A_0 \ldots A_{(j \text{ times})}
\]

Because \(V \) is a finitely generated module over \(C \), it is also finitely generated over \(C[\tilde{z}] \). The Cayley-Hamilton theorem says that \(p_A(A) = 0 \). Thus, \(p_A(\tilde{z}) \) is an exponent of \(C[\tilde{z}] \). Write \(p_A(\tilde{z}) = (\tilde{z} - \lambda_1)^{n_1} \cdots (\tilde{z} - \lambda_m)^{n_m} \) where \(\lambda_1, \ldots, \lambda_m \) are pairwise distinct complex numbers. Each polynomial \(\tilde{z} - \lambda_j \) is a prime in \(C[\tilde{z}] \). By the structure theorem of finitely generated modules over a principal ring (Theorem 7.5, Lang "Algebra" p. 149),

\[
V = V(\lambda_1) \oplus \cdots \oplus V(\lambda_m)
\]
as \(C[\tilde{z}] \)-modules,
where $V(\lambda_j) = \ker (A - \lambda_j I_V)^5$. This is an invariant submodule of V. The structure theorem further states that for each $i \in \{1, \ldots, r\}$,

$$V(\lambda) \cong \mathbb{C}[z]/(z - \lambda)^{\nu_1} \oplus \cdots \oplus \mathbb{C}[z]/(z - \lambda)^{\nu_s}$$

as $\mathbb{C}[z]$-modules,

where $1 \leq \nu_1 \leq \nu_2 \leq \cdots \leq \nu_s$ and the sequence ν_1, \ldots, ν_s is uniquely determined. Write $V(\lambda) = V(\lambda_1) \oplus \cdots \oplus V(\lambda_s)$ where $V(\lambda_j) \cong \mathbb{C}[z]/(z - \lambda)^{\nu_j}$. Then

$$E_{\lambda_j} = \{ v \in V : (z - \lambda) v = 0 \} = \{ v \in V(\lambda) : (z - \lambda) v = 0 \}
= \{ v = v_1 + \cdots + v_s : v_j \in V(\lambda_j) , (z - \lambda) v_j = 0 \}
= \text{linear span} \{ v_1, v_2, \ldots, v_s \},$$

where $v_j \neq 0$ is an element of $V(\lambda_j)$ such that $(z - \lambda) v_j = 0$. Thus, $\dim E_{\lambda_j} = \nu_j$ is called the geometric multiplicity of λ_j. It is a value of ν_j. In other words, the geometric multiplicity of λ_j is the dimension of the eigenspace associate with λ_j. It is also the number of cyclic modules whose exponent is a power of $(z - \lambda)$ in the decomposition of V.

Let $(z - \lambda)^{\nu_j}$ be the power of $(z - \lambda)$ in $p_A(z)$. Because each $V(\lambda_j)$ is an invariant subspace of V, there is a basis of V in which the representing matrix of A is of block form:

$$
\begin{pmatrix}
V(\lambda) \\
| & V(\lambda) & & \vdots \\
| & | & \ddots & \vdots \\
| & | & & V(\lambda) \\
0 & \cdots & 0 & V(\lambda)
\end{pmatrix}
$$

Thus, $p_A(z) = p_{A_{V(\lambda_1)}}(z) \cdots p_{A_{V(\lambda_s)}}(z)$. Because $(z - \lambda_j)^{\nu_j}$ is an exponent of $V(\lambda_j)$
\(\lambda_j \) is the only eigenvalue of \(A|_{V(\lambda_j)} \). Thus, \(p_{A|_{V(\lambda_j)}}(z) \) is a power of \((z - \lambda_j)\).

Thus, \(p_{A|_{V(\lambda_j)}}(z) = (z - \lambda_j)^s \). Then \(\dim V(\lambda_j) = \deg p_{A|_{V(\lambda_j)}} = s_j \). We have showed that \(\dim V(\lambda) = r \). Let \(p_j(z) \) be the characteristic polynomial of \(A|_{V(\lambda_j)} \).

Because each \(V(\lambda_j) \) is an invariant subspace of \(V(\lambda) \), there is a basis of \(V(\lambda) \) in which the representing matrix of \(A|_{V(\lambda)} \) is of block form.

\[
\begin{pmatrix}
V(\lambda_1) & 0 \\
0 & V(\lambda_2) \\
& & \ddots \\
0 & & & V(\lambda_r)
\end{pmatrix}
\]

Thus, \((z - \lambda)^r = p_{A|_{V(\lambda)}}(z) = p_1(z) \cdots p_s(z)\). Hence, each \(p_j(z) \) is a power of \((z - \lambda)\).

Because \(V(\lambda_j) = \mathbb{C}[z]/(z - \lambda)^{s_j} \) as \(\mathbb{C}[z] \)-modules, they are isomorphic as \(\mathbb{C} \)-modules.

Thus, \(\dim V(\lambda_j) = v_j \). Then \(\deg p_j = v_j \) and

\[
r = \deg p_{A|_{V(\lambda)}} = \deg p_1 + \cdots + \deg p_s = v_1 + \cdots + v_s.
\]

As a consequence, \(r \geq s \). The number \(r \) is called the algebraic multiplicity of \(\lambda \).

It is the exponent of \((z - \lambda)\) in the characteristic polynomial of \(A \). It is also the sum of the dimensions of cyclic modules whose exponents are powers of \((z - \lambda)\) in the decomposition of \(V \). We see that the algebraic multiplicity is always greater than or equal to the geometric multiplicity. They are equal if and only if \(v_1 = \cdots = v_s = 1 \), i.e., \(E(\lambda) = V(\lambda) \). Note that we always have \(E(\lambda) \subseteq V(\lambda) \).

The following statements are equivalent:

(i) \(A \) is diagonalizable.

(ii) The algebraic multiplicity is equal to the geometric multiplicity for every eigenvalue.
(iii) $v_1 = \ldots = v_s = 1$ for every eigenvalue.
(iv) $\dim E(\lambda_j) = r_j$ for all $1 \leq j \leq m$.
(v) $(A-\lambda I_d)^2 v = 0 \Rightarrow (A-\lambda I_d) v = 0$ for every eigenvalue λ and vector $v \in V$.
(vi) $V = E(\lambda_1) \oplus \ldots \oplus E(\lambda_m)$.

Diagonalization algorithm

Let $A : V \to V$ be a linear transformation and $[A]_{B_0}$ be its representing matrix in basis B_0. Our goal is to find a basis B such that $[A]_{B}$ is diagonal.

1) Calculate the characteristic polynomial $p_A(x) = \det(A - xI_d) = \det([A]_{B_0} - xI_n)$.
2) Write $p_A(x) = (x - \lambda_1)^{n_1} \cdots (x - \lambda_m)^{n_m}$.
3) Find a basis for $E(\lambda) = \{ v \in V : (A - \lambda I_d)v = 0 \} = \{ [v]_{B_0} : ([A]_{B_0} - \lambda I_n)[v]_{B_0} = 0 \}$ for each $\lambda = \lambda_1, \lambda_2, \ldots, \lambda_m$.
 - If $\dim E(\lambda_j) < r_j$ for some j then A is not diagonalizable. The algorithm stops.
 - If $\dim E(\lambda_j) = r_j$ for all j then A is diagonalizable.
4) Let B_j be the basis of $E(\lambda_j)$ and $B = (B_1, B_2, \ldots, B_m)$ be the basis of V obtained by concatenating B_1, B_2, \ldots, B_m in that order (the order of vectors within each B_j does not matter). Write $B = (v_1, v_2, \ldots, v_n)$. This is a basis that diagonalizes A.

$$[A]_{B} = \left(\begin{array}{cccc}
\lambda_1 & & & \\
& \ddots & & \\
& & \lambda_m & \\
& & & 0
\end{array} \right) = [P]_{B \to B_0}^{-1} [A]_{B_0} [P]_{B_0 \to B}.$$
Recall $[P]_{\gamma_0} = ([\nu_1]_{\gamma_0}, \ldots, [\nu_t]_{\gamma_0})$.

In case A is not diagonalizable, we want to find a basis of V in which the representing matrix of A is of Jordan normal form. By the analysis following the structure theorem, the algebraic multiplicity of λ_i is equal to the sum of the size of Jordan blocks whose diagonal entries are λ_i whereas the geometric multiplicity is equal to the number of Jordan blocks whose diagonal entries are λ_i.

$$V = \frac{\ker(A - \lambda_1 \text{Id}_V)}{V(\lambda_1)} \oplus \ldots \oplus \frac{\ker(A - \lambda_m \text{Id}_V)}{V(\lambda_m)}.$$

For each $\lambda = \lambda_1, \lambda_2, \ldots, \lambda_m$ we write

$$V(\lambda) = \frac{V(\lambda)}{V(\lambda_1)} \oplus \ldots \oplus \frac{V(\lambda)}{V(\lambda_m)},$$

where $1 \leq i_1 \leq i_2 \leq \ldots \leq i_k$. We will see that each $V(\lambda)_j$ corresponds to a Jordan block of A.

As a C-module, $C[\xi]/(\xi - \lambda)^{i_j}$ has a basis $1 + (\xi - \lambda)^{i_j} [\xi], (\xi - \lambda) + (\xi - \lambda)^{i_j} [\xi], \ldots, (\xi - \lambda)^{i_j-1} + (\xi - \lambda)^{i_j} [\xi]$. Because $V(\lambda)_j \cong C[\xi]/(\xi - \lambda)^{i_j}$ as C-modules, $V(\lambda)_j$ has a basis $v, (\xi - \lambda)v, \ldots, (\xi - \lambda)^{i_j-1}v$ where v corresponds to $1 + (\xi - \lambda)^{i_j} [\xi]$ in the isomorphism. We can characterize v by the fact that it is an element in V such that $(\xi - \lambda)^{i_j}v = 0$ but $(\xi - \lambda)^{i_j-1}v \neq 0$.

In order to find a basis for $V(\lambda)$, we need to find "$v" for $V(\lambda)_1, V(\lambda)_2, \ldots, V(\lambda)_t$ in that order to avoid collecting linearly dependent vectors as we move from $V(\lambda)_1$ to $V(\lambda)_t$.
First, we determine the numbers v_1, v_2, \ldots, v_5. Suppose the solution spaces of
$(A - \lambda I) v = 0, (A - \lambda I)^2 v = 0, \ldots, (A - \lambda I)^5 v = 0$ have dimensions $\chi_1 < \chi_2 < \cdots < \chi_5 = v$ respectively. Note that $N = v_5$.

The squares \square denote basis vectors for $(A - \lambda I) v = 0$. The square \square and \blacksquare denote basis vectors for $(A - \lambda I)^2 v = 0$. We have

$\# \square = \chi_1$

$\# \square + \# \blacksquare = \chi_2$

Let $\beta_1 = \chi_1$, $\beta_2 = \chi_2 - \chi_1$, \ldots, $\beta_5 = \chi_5 - \chi_{5-1}$. Then β_j is equal to the number of v_1, v_2, \ldots, v_5 that are \square_j. Let $\gamma_j = \beta_1 - \beta_2$, \ldots, $\gamma_{5-1} = \beta_{5-1} - \beta_5$, $\gamma_5 = \beta_5$. Then γ_j is the number of v_1, v_2, \ldots, v_5 that are equal to j. Once we get $\gamma_1, \ldots, \gamma_5$ we can obtain v_1, \ldots, v_5. For example, if $(\gamma_1, \ldots, \gamma_5) = (0, 1, 0, 3, 1)$ then $(v_1, \ldots, v_5) = (2, 4, 4, 4, 5)$.

Next, we find a basis of $V(\lambda)$ in which $A|_{V(\lambda)}$ is in Jordan normal form. We know that this form has 5 Jordan blocks whose sizes are v_1, \ldots, v_5. Take $v_{1,1} \in V$ such that $(A - \lambda I)^{v_1} v_{1,1} = 0$ and $(A - \lambda I)^{v_1-1} v_{1,1} \neq 0$.

Put $v_{1,2} = (A - \lambda I) v_{1,1}$, $v_{1,3} = (A - \lambda I)^2 v_{1,1}$, \ldots, $v_{1,v_5} = (A - \lambda I)^{v_5-1} v_{1,1}$. Then $v_{1,1}, v_{1,2}, \ldots, v_{1,v_5}$ form a basis for $V(\lambda)$.
\[A v_{i,k-1} = (A - \lambda I) v_{i,k-1} + \lambda v_{i,k-1} = \lambda v_{i,k-1} + v_{i,k} \quad \forall 2 \leq k \leq s - 1. \]
\[A v_{i,i} = \lambda v_{i,i}. \]

In the basis \(B_i = (v_i, v_{i-1}, \ldots, v_{i,s}) \), \(A |_{V\lambda_i} \) is represented by the matrix

\[
\begin{pmatrix}
[A_{v_i,v_s}] & \cdots & [A_{v_i,v_i}]
\end{pmatrix} =
\begin{pmatrix}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & \cdots & 0 & \lambda
\end{pmatrix}
\text{ size } v_i.
\]

We have found the first piece of the desired basis for \(V(\lambda) \). There are \(s - 1 \) other pieces to be found. Take \(v_{2,1} \in V \) such that \((A - \lambda I) v_{2,1} = 0 \), \((A - \lambda I) v_{2,1} \neq 0 \) and that \(v_{2,1} \) is linearly independent of \(B_i \). Let
\[v_{2,2} = (A - \lambda I) v_{2,1}, \ldots, v_{2,s-1} = (A - \lambda I)^{s-2} v_{2,1}. \]Then \(v_{2,1}, v_{2,2}, \ldots, v_{2,s-1} \) form a basis for \(V(\lambda)_{s-1} \). In the basis \(B_2 = (v_{2,s-1}, v_{2,s-2}, \ldots, v_{2,1}) \), \(A |_{V\lambda_{s-1}} \) is represented by the matrix

\[
\begin{pmatrix}
[A_{v_{2,s-1},v_{s-1}}] & \cdots & [A_{v_{2,1},v_{2,1}}]
\end{pmatrix} =
\begin{pmatrix}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & \cdots & 0 & \lambda
\end{pmatrix}
\text{ size } v_{s-1}.
\]

This is the second piece of our desired basis for \(V(\lambda) \). There are \(s - 2 \) other pieces to be found. Take \(v_{3,1} \in V \) such that \((A - \lambda I) v_{3,1} = 0 \), \((A - \lambda I) v_{3,1} \neq 0 \) and that \(v_{3,1} \) is linearly independent of \(B_1 \cup B_2 \). We keep doing this procedure until all \(s \) pieces of the desired basis for \(V(\lambda) \) is found. We concatenate these pieces to get \(B = (B_1, B_2, \ldots, B_s) \). In this basis, \(A |_{V\lambda} \) is represented by the matrix.
\[
[A_{V(\lambda)}]_{B} = \begin{pmatrix}
\lambda_1 & 1 \\
& \lambda_2 \\
& & \ddots \\
& & & \lambda_{p-1} \\
1 & & & & 1
\end{pmatrix}
\]

\[
= [P]^{-1}_{B \rightarrow B} [A_{V(\lambda)}]_{B_0} [P]_{B_0 \rightarrow B}
\]

Recall \([P]_{B_0 \rightarrow B} = (\begin{pmatrix} v_{11} & \cdots & v_{1n} \\ v_{21} & \cdots & v_{2n} \\ \vdots & \ddots & \vdots \\ v_{n1} & \cdots & v_{nn} \end{pmatrix})_{B_0} \)

After getting the desired basis for each \(V(\lambda_i)\), we concatenate them to get a basis for \(V\) in which \(A\) is of Jordan normal form. The matrix representing the transformation is obtained by appending the matrices \([P]_{B_0 \rightarrow B}\) together. By the above analysis, we can write an algorithm.

Jordan normal form algorithm

Let \(A : V \rightarrow V\) be a linear transformation and \([A]_{B_0}\) be its representing matrix in basis \(B_0\). Our goal is to find a basis \(B\) such that \([A]_B\) is of Jordan normal form.

1. Calculate the characteristic polynomial \(p_A(z) = \det(A - zI_n) = \det([A]_{B_0} - zI_n)\)
 Write \(p_A(z) = (-1)^n (z-\lambda_1)^{m_1} \cdots (z-\lambda_m)^{m_m} \) where \(\lambda_1, \ldots, \lambda_m\) are pairwise distinct complex numbers and \(m_1, \ldots, m_m \geq 1\).

2. For each \(\lambda_i\),
 - Calculate the spaces \(\ker(A - \lambda_i I_V)\), \(\ker(A - \lambda_i I_V)^2\), \ldots until we first reach the number \(N\) with \(\ker(A - \lambda_i I_V)^N = V\). Denote the dimensions of these spaces as \(d_1 < d_2 < \cdots < d_N = r_i\) respectively.
• Calculate $\beta_1 = \alpha_1, \beta_2 = \alpha_2 - \alpha_1, \ldots, \beta_N = \alpha_N - \alpha_{N-1}$.

• Calculate $\gamma_1 = \beta_1, \ldots, \gamma_{N-1} = \beta_{N-1} - \beta_{N-2}, \gamma_N = \beta_N$.

• Calculate $v_1 \leq v_2 \leq \ldots \leq v_k$ such that v_k is number of v_1, \ldots, v_3 that are equal to k.

• Find $v_{i_1} \in \ker (A - \lambda_i I_v)^\frac{k-1}{2} \setminus \ker (A - \lambda_i I_v)^{\frac{k-2}{2}}$. Calculate $v_{i_2} = (A - \lambda_i I_v) v_{i_1}$, $v_{i_3} = (A - \lambda_i I_v) v_{i_2}, \ldots, v_{i_{k-1}} = (A - \lambda_i I_v) v_{i_{k-2}}$.

• Find $v_{2,1} \in \ker (A - \lambda_2 I_v)^\frac{k-2}{2} \setminus \ker (A - \lambda_2 I_v)^{\frac{k-3}{2}}$ such that $v_{2,1}$ is linearly independent of $v_{i_1}, \ldots, v_{i_{k-2}}$. Calculate $v_{2,2} = (A - \lambda_2 I_v) v_{2,1}, \ldots, v_{2,k-2} = (A - \lambda_2 I_v) v_{2,k-3}$.

• Find $v_{3,1} \in \ker (A - \lambda_3 I_v)^\frac{k-3}{2} \setminus \ker (A - \lambda_3 I_v)^{\frac{k-4}{2}}$ such that $v_{3,1}$ is linearly independent of $v_{i_1}, \ldots, v_{i_{k-3}}, v_{2,1}, \ldots, v_{2,k-3}$. Calculate $v_{3,2} = (A - \lambda_3 I_v) v_{3,1}$, $\ldots, v_{3,k-2} = (A - \lambda_3 I_v) v_{3,k-3}$.

• Find $v_{4,1}$.

• Let $B_j = (v_{i_1}, \ldots, v_{i_{k-1}}, v_{2,1}, \ldots, v_{2,k-1}, \ldots, v_{3,1}, \ldots, v_{3,k-2})$.

• Let $J_j = \begin{pmatrix} \alpha_j & 1 \\ \lambda_j & 0 \end{pmatrix}$.

3) Let $B = (B_1, B_2, \ldots, B_m)$ and

$J = \begin{pmatrix} J_1 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & J_m \end{pmatrix}$.
and \[Y \rightarrow B = ([v_1], \ldots, [v_n], [v_{n+1}], \ldots, [v_{2n}], \ldots, [v_{2n+1}], \ldots, [v_{3n}], \ldots, [v_{3n+1}]). \]

Then
\[[A]_B = J = [P]^{-1}_{B \rightarrow B} [A]_B [P]_{B \rightarrow B}. \]

2. Examples of diagonalizing a matrix

Example 1: Consider matrix \[A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 2 & -4 & 2 \end{pmatrix}. \]

It can be viewed as a linear map from \(\mathbb{C}^3 \) to \(\mathbb{C}^3 \) whose representing matrix in the standard basis \(B_0 \) is the given matrix.

The characteristic polynomial of \(A \) is \(p_A(z) = \det (A-zI_3) = -(z-1)(z-2)(z-3) \).

The eigenvalues are \((\lambda_1, \lambda_2, \lambda_3) = (1,2,3) \). Now we compute the eigenspaces
\[E(\lambda_1) = \{ x \in \mathbb{C}^3 : (A-I_3)x = 0 \}. \]

\[A-I_3 = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 2 & 0 \\ 2 & -4 & 1 \end{pmatrix} \xrightarrow{\lambda_1 \rightarrow \lambda_1 - 1} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 2 & 4 & 1 \end{pmatrix} \xrightarrow{\lambda_1 \rightarrow \lambda_1 - 1} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \]

Thus, \(E(\lambda_1) = \{ (x_1, x_2, x_3) : x_1 = 0, x_2 = -x_3, \ x_3 = a \} \).

\[\dim E(\lambda_1) = 1 = \text{multiplicity of root } \lambda_1 \text{ of } p_A(z). \]

\(E(\lambda_1) \) has a basis consisting of \(\nu_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \).

\[E(\lambda_2) = \{ x \in \mathbb{C}^3 : (A-2I_3)x = 0 \}. \]

\[A-2I_3 = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 1 & 0 \\ 2 & -4 & 0 \end{pmatrix} \xrightarrow{\lambda_2 \rightarrow \lambda_2 + 2} \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \]

Thus, \(E(\lambda_2) = \{ (x_1, x_2, x_3) : x_1 = 0, x_2 = 2x_3, x_3 = a \} \).
\[\dim E(\lambda_2) = 1 = \text{multiplicity of root } \lambda_2 \text{ of } p_A(t) \]

\[E(\lambda_2) \text{ has a basis consisting of } v_2 = \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \]

\[E(\lambda_3) = \{ x \in \mathbb{C}^3 : (A - 3I_3)x = 0 \} \]

\[A - 3I_3 = \left(\begin{array}{ccc} -2 & 2 & 0 \\ 0 & 0 & 0 \\ 2 & -4 & -1 \end{array} \right) \overset{r_3 \rightarrow r_3 + r_1}{\overset{r_2 \rightarrow r_2 + r_1}{\overset{r_1 \rightarrow r_1 + r_3}{\rightarrow}}} \left(\begin{array}{ccc} 1 & -1 & 0 \\ 0 & -2 & -1 \\ 0 & 0 & 0 \end{array} \right) \]

Thus, \[E(\lambda_3) = \{ (x_1, x_2, x_3) : x_3 = -2x, x_2 = x, x_1 = x \} \]

\[\dim E(\lambda_3) = 1 = \text{multiplicity of root } \lambda_3 \text{ of } p_A(t) \]

\[E(\lambda_3) \text{ has a basis consisting of } v_3 = \left(\begin{array}{c} 1 \\ -2 \end{array} \right) \]

Therefore, \(A \) is diagonalizable. In the basis \(B = (v_1, v_2, v_3) \), \(A \) is of diagonal form. The matrix representing the change of basis is \([P]_{B_0 \rightarrow B} = (v_1, v_2, v_3) \).

\[[A]_B = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 & 6 \\ 0 & 2 & 2 \\ 0 & 0 & 4 \end{pmatrix} \]

Example 2

Consider matrix \(A = \begin{pmatrix} 2 & 4 & 6 \\ 0 & 2 & 2 \\ 0 & 0 & 4 \end{pmatrix} \)

It can be viewed as a linear map from \(\mathbb{C}^3 \) to \(\mathbb{C}^3 \) whose representing matrix in the standard basis \(B_0 \) is the given matrix.

The characteristic polynomial of \(A \) is \(p_A(t) = \det(A - tI_3) = -(t-2)^2(t-4) \).

The eigenvalues are \((\lambda_1, \lambda_2) = (2, 4) \) where \(\lambda_1 \) is of multiplicity 2. Now we
compute the eigenspaces.

\[E(\lambda_1) = \{ x \in \mathbb{C}^3 : (A-I_3)x = 0 \}. \]

\[
A-I_3 = \begin{pmatrix}
0 & 4 & 6 \\
0 & 0 & 2 \\
0 & 0 & 2
\end{pmatrix} \sim \begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

Thus, \(E(\lambda_1) = \{ (x, y, z) : x = 0, y = 0, z = 0 \} \). Because \(\dim E(\lambda_1) = 1 \) which is less than the multiplicity of \(\lambda_1 \), \(A \) is not diagonalizable.

3. Examples of making Jordan normal form

Example 1. Consider matrix

\[
A = \begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{pmatrix}
\]

It can be viewed as a linear map from \(\mathbb{C}^3 \) to \(\mathbb{C}^3 \) whose representing matrix in the standard basis \(B_3 \) is the given matrix.

The characteristic polynomial of \(A \) is \(p_A(x) = -(x-1)^2(x-2) \). The eigenvalues are \((\lambda_1, \lambda_2) = (1, 2) \) where \(\lambda_1 \) is of multiplicity 2.

We find a desired basis for \(\mathbb{C}^3(\lambda_1) \).

\[
A-I_3 = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 1
\end{pmatrix} \sim \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}
\]

\[\ker (A-I_3) = \text{linear span } \{ (1) \} \]

\[
(A-I_3)^2 = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix} \sim \begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

\[
\ker (A-I_3)^2 = \text{linear span } \{ (1), (0), (0) \} \]
We stop because \(\dim \ker((A - \lambda_2 I)^2) = 2 = \text{multiplicity of } \lambda_2 \). We get the sequence \((\alpha_1, \alpha_2) = (1, 2)\). Then \(\beta_1 = \alpha_1 = 1, \beta_2 = \alpha_2 - \alpha_1 = 1 \). Then \(\gamma_1 = \beta_1 - \beta_2 = 0, \gamma_2 = \beta_2 = 1 \). This implies \(\gamma_1 = 2 \). There is one Jordan block of size 2, which is \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \). A vector in \(\ker((A - \lambda_2 I)^2) \setminus \ker(A - \lambda_2 I) \) is \(v_{1,1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \).

\[
\begin{align*}
\mathbf{v}_{1,2} &= (A - \lambda_2 I) \mathbf{v}_{1,1} = \\
&= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \\
&= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.
\end{align*}
\]

The desired basis for \(C^3(\lambda_2) \) is thus \((\mathbf{v}_{1,2}, \mathbf{v}_{1,1}) \).

Now we find a desired basis for \(C^3(\lambda_2) \).

\[
A - 2I_3 = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix}
\begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}\]

\[
\ker(A - 2I_3) = \text{linear span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right\}
\]

We stop because \(\dim \ker((A - 2I_3)^2) = 1 = \text{multiplicity of } \lambda_2 \). The desired basis of \(C^3(\lambda_2) \) consists of \(\mathbf{v}_{2,1} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \).

Therefore, in the basis \(B = (\mathbf{v}_{1,2}, \mathbf{v}_{1,1}, \mathbf{v}'_{1,1}) \), \(A \) is of Jordan normal form.

The matrix representing the change of basis is \([P]_{B \rightarrow B} = \begin{pmatrix} \mathbf{v}_{1,2} & \mathbf{v}_{1,1} & \mathbf{v}'_{1,1} \end{pmatrix} \).

\[
\begin{align*}
\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 2 & 3 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \end{pmatrix}
&= \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}^{-1}
\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}
\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}
\end{align*}
\]
Example 2

Consider matrix \(A = \begin{pmatrix} 1 & 0 & 3 & 0 \\ 1 & 3 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 3 & 1 \end{pmatrix} \).

It can be viewed as a linear map from \(\mathbb{C}^4 \) to \(\mathbb{C}^4 \) whose representing matrix in the standard basis is the given matrix.

The characteristic polynomial of \(A \) is \(p_A(t) = (t-1)^3(t-3) \). The eigenvalues are \((\lambda_1, \lambda_2) = (1, 3) \) where \(\lambda_1 \) is of multiplicity 3.

We find a desired basis for \(\mathbb{C}^4(\lambda_1) \).

\[
A - I_q = \begin{pmatrix} 0 & 0 & 3 & 0 \\ 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 \end{pmatrix} \xrightarrow{\begin{array}{c} r_4 \rightarrow r_4 - r_1 \\ r_4 \rightarrow r_4 - 3r_3 \end{array}} \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
\]

\[
\ker(A - I_q) = \{ (r_1, r_2, r_3, r_4) \in \mathbb{C}^4 : r_2 = a, r_4 = 0, r_3 = 0, r_1 = -2a \} = \{ (-2a, a, 0, 0) : a \in \mathbb{C} \}
\]

\[
= \text{linear span} \left\{ \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}
\]

\[
(A - I_q)^2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 2 & 4 & 12 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\begin{array}{c} r_4 \rightarrow r_4/2 \\ r_4 \rightarrow r_4 \end{array}} \begin{pmatrix} 1 & 2 & 6 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
\]

\[
\ker((A - I_q)^2) = \{ (-2a-6b-3c, a, b, c) : a, b, c \in \mathbb{C} \}
\]

\[
= \text{linear span} \left\{ \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -6 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}
\]
We stop because \(\dim \ker ((A - I_4)^3) = 3 = \text{multiplicity of } \lambda_2 \). We get the sequence \((\alpha_1, \alpha_2) = (2, 3)\). Thus, \(\beta_1 = \alpha_1 = 2 \), \(\beta_2 = \alpha_2 - \alpha_1 = 1 \). Then \(\gamma_1 = \beta_1 = 2 \), \(\gamma_2 = \beta_2 = 1 \). This implies \((\nu_1, \nu_2) = (1, 2)\). There is one Jordan block of size 1 and one of size 2, which are:

\[
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
\]

A vector in \(\ker ((A - I_4)^3) \setminus \ker (A - I_4) \) is \(\nu_{1,1} = \begin{pmatrix} -6 \\ 3 \\ 0 \\ 0 \end{pmatrix} \).

\[
\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}
\]

\[
\begin{pmatrix}
0 & 0 & 3 & 0 \\
1 & 2 & 0 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 3 & 0
\end{pmatrix}
\begin{pmatrix}
-6 \\
0 \\
1 \\
0 \\
0
\end{pmatrix}
=
\begin{pmatrix}
3 \\
0 \\
0 \\
0 \\
-3
\end{pmatrix}
\]

A vector in \(\ker (A - I_4) \) that is independent of \(\nu_{1,1} \) and \(\nu_{2,1} \) is \(\nu_{2,2} = \begin{pmatrix} -3 \\ 0 \\ 0 \\ 1 \end{pmatrix} \).

The desired basis for \(C^4(\lambda_1) \) is \(B_1 = (\nu_{1,2}, \nu_{1,1}, \nu_{2,1}) \).

Now we find a desired basis for \(C^4(\lambda_2) \).

\[
A - 3I_4 = \begin{pmatrix}
-2 & 0 & 3 & 0 \\
1 & 0 & 0 & 3 \\
0 & 0 & -2 & 0 \\
0 & 0 & 3 & -2
\end{pmatrix}
\begin{pmatrix}
\begin{pmatrix}
r_1 \rightarrow 6 + 2r_2 \\
r_3 \rightarrow 6r_3 + 18 \\
r_2 \rightarrow -r_2/2 \\
r_1 \rightarrow r_1 - 3r_3 - 6r_4
\end{pmatrix} \\
\begin{pmatrix}
r_1 \rightarrow r_1 - 5r_2 - 3r_3 \\
r_2 \rightarrow r_2 \\
r_3 \rightarrow r_3 \\
r_4 \rightarrow r_4
\end{pmatrix}
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 & 0 & 3 & 6 \\
1 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
\ker (A - 3I_4) = \{ (0, a, 0, 0) : a \in C \}
= \text{linear span} \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}.
We stop because \(\dim \ker (A - 3I_n) = 1 \), multiplicity of \(\lambda \). The desired basis \(B_2 \) of \(C^r(\lambda) \) consists of \(v_{i,1} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \).

Therefore, in the basis \(B = (B_1, B_2) = (v_{i,2}, v_{i,1}, v_{i,1}, v_{i,1}) \), \(A \) is of Jordan normal form. The matrix representing the change of basis is \([P]_{B_2 \rightarrow B} = (v_{i,2} v_{i,1} v_{i,1} v_{i,1}) \).

\[
\begin{pmatrix}
1 & 1 \\
0 & 1 \\
1 & 3 \\
3 & 0 \\
\end{pmatrix}
\begin{pmatrix}
3 & -6 & -3 & 0 \\
6 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
3 & 0 & 1 & 0 \\
\end{pmatrix}^{-1}
\begin{pmatrix}
1 & 0 & 3 & 0 \\
1 & 3 & 0 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 3 & 1 \\
\end{pmatrix}
\begin{pmatrix}
3 & -6 & -3 & 0 \\
-6 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
3 & 0 & 1 & 0 \\
\end{pmatrix}.
\]