Theory of Probability and Measure Theory – Math 8652

Homework #2

1) (Problem 13.23 in the textbook) Let \(\phi \) be the moment generating function of a \([0, \infty)\]-valued random variable \(X \). Show that \(\phi \) is continuous on \((0, \infty)\) and if \(P(X < \infty) = 1 \), then on \([0, \infty)\).

2) Let \(X_1, X_2, \ldots \) be nonnegative independent random variable having the same distribution. Assume that \(P(X_1 > 0) > 0 \). Prove that

\[
\sum_{n=1}^{\infty} X_n = \infty \quad \text{a.s.}
\]

3) (Problem 13.40 in the textbook) Let \(X_n, n = 1, 2, \ldots \), be iid nonnegative random variables and let \(N \) be a \(\{\infty, 1, 2, \ldots\} \)-valued random variable independent of \((X_1, X_2, \ldots)\). Express the moment generating function of \(S = X_1 + \ldots + X_N \) through the moment generating function of \(X_1 \) and the probability generating function of \(N \). Then find \(ES \) and \(\text{Var} S \).

4) (Theorem 14.19 in the textbook) A sequence of distributions on \([0, \infty)\) converges to a distribution \(Q \) on \([0, \infty)\) if and only if the sequence of the corresponding moment generating functions converges pointwise on \([0, \infty)\) to a function \(\phi \) that is continuous at zero. Moreover, \(\phi \) is the moment generating function of \(Q \).