Introduction. This document provides the sketch of a solution to problem 53 from section 12.3 of the book *Calculus, Early Transcendentals*, 8th Edition, by James Stewart. We will go over this problem in class on Tuesday, September 13th.

12.3 53. Use a scalar projection to show that the distance from a point $P_1(x_1, y_1)$ to the line $ax + by + c = 0$ is

$$\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}.$$

Use this formula to find the distance from the point $(-2, 3)$ to the line $3x - 4y + 5 = 0$.

Solution. Let L be the line given by

$$ax + by + c = 0,$$

and let (p, q) be the coordinates of a point on the line L. Then for any point (x, y) on the line L, by subtracting the equation of the line for the points (x, y) and (p, q) we get

$$a(x - p) + b(y - q) = 0,$$

which can be written as

$$(a, b) \cdot (x - p, y - q) = 0.$$

So, any point on the line L is given by the above equation. It follows that the vector $a := (a, b)$ is orthogonal to any vector parallel to the line L. Now consider the vector

$$x := (x_1 - p, y_1 - q),$$

which can be thought of as representing the line connecting the points (x_1, y_1) and (p, q). Then the distance d from the point $P_1(x_1, y_1)$ to the line L is given by the magnitude of
the scalar projection of \(\mathbf{x} \) onto \(\mathbf{a} \), because the latter is the length of the side of a right triangle with two of the vertices being \(P_1 \) and \((p, q) \), and the other vertex lying on \(L \). In other words,

\[
d = |\text{comp}_a \mathbf{x}| = \left| \frac{x \cdot a}{|a|} \right| = \left| \frac{(x_1 - p, y_1 - q) \cdot (a, b)}{|(a, b)|} \right| = \frac{|ax_1 - ap + by_1 - bq|}{\sqrt{a^2 + b^2}},
\]

and using the fact that the point \((p, q) \) lies on \(L \), we get

\[
\implies d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}},
\]

as desired (the calculation asked at the end is really easy; you should do it as an exercise). \(\square \)