BOUNDARY VALUE PROBLEMS ON LIPSCHITZ AND CHORD-ARC DOMAINS

Let $L = \text{div} A \nabla$ be a second order elliptic divergence form operator, that is, $A = (a_{i,j})$ is a matrix whose (real) coefficients have the property that there exists a λ such that for all ζ_j with $\sum_j |\zeta_j|^2 = 1$,

$$\lambda < \sum_{i,j} a_{i,j} \zeta_i \zeta_j < (\lambda)^{-1}.$$

The Laplacian (A is the identity) is the classical example. The Dirichlet problem is the problem of finding unique solutions to $Lu = 0$ in a given domain with prescribed boundary conditions. These problems have an interpretation even when the boundary of the domain is very irregular (Lipschitz, chord-arc) and when the boundary values f belong to spaces of discontinuous functions (L^p), so that the sense in which solutions take on their boundary values is delicate.

In the 90’s, a rather complete theory of solvability of boundary value problems for operators which could be regarded as perturbations of the Laplacian was developed. A key tool is the equivalence between solvability of the Dirichlet problem with boundary data in L^p and a Muckenhoupt condition on the measure induced by the elliptic operator. In joint work with M. Dindos and C. Kenig, we proved the endpoint (or A^∞) version of this equivalence. And, recently, in joint work with A. Millakis and T. Toro, we extended the perturbation theory known for Lipschitz domains to chord-arc domains. Both of these investigations involve the function spaces BMO and the associated notions of Carleson measures. The goal of this lecture is to explain the main ideas as well as the role of the geometry of the domains.