Math 4707 Intro to combinatorics and graph theory Fall 2020, Vic Reiner Final exam - Due Wednesday December 16, at our Canvas site

Instructions: There are 4 problems, worth 25 points each, totaling 100 points. This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (25 points total) DNA strings can be thought of as ordered sequences of 4 possible nucleotides:

- A (=adenine)
- C (=cytosine)
- G (=guanine)
- T (=thymine).

For example, $C C G A T A A G G G C T C A$ is such a sequence.
(a) (5 points) How many such sequences are there of length 800 ?
(b) (5 points) How many such sequences are there of length 800 in which there are no two equal letters in adjacent positions, that is, no adjacent $A A, C C, G G$ or TT's?
(c) (5 points) How many such sequence are there of length 800 as in part (a), that have equally many A 's as C 's, and equally many G 's as T 's, but three times as many G 's as A 's.
(d) (10 points) How many such sequence are there of length 800 as in part (a), that use all four letters A, C, G, T at least once.
2. (25 points total) You are given a three dimensional polyhedron with all quadrangular (four-sided) faces and a total of e edges.
(a) (10 points) How many faces does it have, as a function of e ?
(b) (5 points) Prove that e is even.
(c) (10 points) How many vertices does it have, as a function of e ?
3. (25 points) Recall that we defined the Fibonacci numbers $F_{0}, F_{1}, F_{2}, \ldots$ by $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$ and $F_{0}=0, F_{1}=1$.

Prove that $F_{n} \bmod 4$, the remainder of F_{n} upon division by 4 , will repeat with period 6 , meaning $F_{n} \equiv F_{n+6} \bmod 4$ for all $n \geq 0$, and fill in the ?'s in this table with the correct remainders $0,1,2,3 \bmod 4$:

$n \bmod 6$	$F_{n} \bmod 4$
0	$?$
1	$?$
2	$?$
3	$?$
4	$?$
5	$?$

You must prove your answers, of course.
4. (25 points total) Consider a family of graphs $G_{2}, G_{3}, G_{4}, \ldots$, where G_{n} has vertices $V=\{1,2, \ldots, 2 n-1,2 n\}$, and edges as shown below

Compute explicitly the chromatic polynomial $\chi\left(G_{n}, k\right)$ for \ldots
(a) (5 points) \ldots the case $n=2$, that is G_{2}.
(b) (5 points) ... the case $n=3$, that is G_{3}.
(c) (10 points) \ldots the general case of G_{n} for $n \geq 2$.
(d) (5 points) How many acyclic orientations are there for G_{n} with $n \geq 2$, as a function of n ?

