Math 4707 Intro to combinatorics and graph theory Fall 2020, Vic Reiner

Midterm exam 2- Due Wednesday November 25, at our Canvas site
Instructions: There are 5 problems, worth 20 points each, totaling 100 points. This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (20 points total) Recall that a forest is a graph containing no cycles, that a tree is a connected forest, and a leaf is a vertex of degree one.
(a) (10 points) Prove that a tree with at least one degree d vertex has at least d distinct leaves.
(b) (5 points) Prove that a tree T with n vertices has

$$
\sum_{v \in V}\left(\operatorname{deg}_{T}(v)-1\right)=n-2
$$

(c) (5 points) Given a forest with n vertices and c connected components, how many edges will it contain (as a function of n and c)? Prove your answer, of course.
2. (20 points total) For each $n=2,3,4, \ldots$, define a graph $G_{n}=\left(V_{n}, E_{n}\right)$ having the following $2 n$ vertices and $2 n+1$ edges

$$
\begin{aligned}
V_{n} & :=\{1,2,3, \ldots, 2 n-1,2 n\} \\
E_{n} & :=\{\{1,2\},\{2,3\},\{3,4\}, \ldots,\{2 n-1,2 n\}\} \cup\{\{1,2 n\},\{1, n+1\}\} .
\end{aligned}
$$

For example, G_{2}, G_{3}, G_{4} are depicted here:

Calculate the number of spanning trees $\tau\left(G_{n}\right)$ for G_{n} as a function of n.
3. (20 points total; 10 points each part)

Let $G=(V, E)$ be bipartite graph, with vertex partition $V=X \sqcup Y$. Assume further that

- every x in X has the same degree $d_{X} \geq 1$, and
- every y in Y has the same degree $d_{Y} \geq 1$.
(a) Prove that $\frac{d_{X}}{d_{Y}}=\frac{|Y|}{|X|}$.
(b) Assuming without loss of generality that $d_{X} \geq d_{Y}$, show that there exists at least one matching $M \subset E$ with number of edges $|M|=|X|$.

4. (20 points) For each $n=2,3,4,5, \ldots$, define a bipartite graph B_{n} on vertex $V=X \sqcup Y$ where $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ with edge set

$$
E:=\left\{\left\{x_{i}, y_{j}\right\}: i=1,2, \ldots, n \text { and } j=1,2, \ldots, n, \text { and } i \neq j\right\}
$$

Therefore B_{n} has $2 n$ vertices, $n(n-1)$ edges. For example, here are B_{3}, B_{4} :

Explain, with proof, exactly for which values of n in $\{2,3, \ldots\}$ does the graph B_{n} contain ...
(a) ... a spanning tree?
(b) ... a closed Euler tour/circuit?
(c) ... a perfect matching?
(d) ... a closed Hamiltonian tour/circuit?
5. (20 points total) In dominoes, a standard package has $\binom{8}{2}=28$ dominoes, each with two ends labelled by numbers from $\{0,1,2,3,4,5,6\}$, with each possible unordered pair of labels occurring once, so the $i-j$ domino is the same as the $j-i$ domino:

$$
\begin{array}{cllllll}
0-0, & 0-1, & 0-2, & 0-3, & 0-4, & 0-5, & 0-6, \\
1-1, & 1-2, & 1-3, & 1-4, & 1-5, & 1-6, \\
& 2-2, & 2-3, & 2-4, & 2-5, & 2-6, \\
& & 3-3, & 3-4, & 3-5, & 3-6, \\
& & & 4-4, & 4-5, & 4-6, \\
& & & & 5-5, & 5-6, \\
& & & & & 6-6
\end{array}
$$

The goal is to lay them out touching two-at-a-time end-to-end in one long cycle, but only touching at ends with matching labels, e.g. the $2-5$ and $5-4$ dominoes can touch at their ends labelled 5.

Prove this is possible, without exhibiting such a cycle explicitly, by proving this: given a similar pack of $\binom{n+2}{2}$ dominoes having ends labelled with unordered pairs from $\{0,1,2, \ldots, n\}$ then this goal is possible if and only if n is even.
(Hint: how does this relate to Euler tours in some graph?)

