Math 5285 Honors abstract algebra
Spring 2008, Vic Reiner
Final exam - Due Friday May 9, in class

Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are not allowed to collaborate. The instructor is the only human source you are allowed to consult.

1. (30 points total; 5 points each part)

(a) (5 points) Show that in the symmetric group \(S_n \), conjugating an \(m \)-cycle gives an \(m \)-cycle, and more specifically
\[
\sigma(a_1 a_2 \cdots a_{m-1} a_m)\sigma^{-1} = (\sigma(a_1) \sigma(a_2) \cdots \sigma(a_{m-1}) \sigma(a_m)).
\]

(b) (5 points) Show that in the symmetric group \(S_5 \), the subgroup \(\langle \tau, \sigma \rangle \) generated by any 2-cycle \(\tau = (ij) \) together with any 5-cycle \((abcde) \) is the whole group \(S_5 \).

(Recall that we wanted this fact from (b) in lecture, in order to conclude that an irreducible quintic polynomial \(f(x) \in \mathbb{Q}[x] \) that had exactly 3 real roots in \(\mathbb{C} \) has Galois group \(G(\text{Split}_\mathbb{Q}(f)/\mathbb{Q}) \) isomorphic to \(S_5 \).

(c) (5 points) Which cycle types (= lists of cycle sizes) for permutations of \(S_5 \) are the ones that lie in the subgroup of alternating permutations \(A_5 \)?

(d) (5 points) Show that the two 5-cycles \((12345)\) and \((21345)\) are conjugate within \(S_5 \), but not conjugate within \(A_5 \).

(e) (5 points) Write down the class equation for \(A_5 \), that is, the list of sizes of all of the conjugacy classes, and how they add up to \(|A_5|\).

(f) (5 points) Prove that a normal subgroup \(H \) of a finite group \(G \) must have its cardinality \(|H|\) expressible as a sum of cardinalities of distinct conjugacy classes in \(G \), and one of these cardinalities must be 1, corresponding to the identity conjugacy class \(\{e\} \).

Use this to deduce that \(A_5 \) is a simple group (i.e. it has no non-identity proper normal subgroups), and hence is not a solvable group. Explain why this proves \(S_5 \) is also not a solvable group.

(Recall that we wanted this to conclude that the quintic polynomials \(f \in \mathbb{Q}[x] \) with exactly 3 real roots mentioned above are not solvable by radicals).
2. (15 points total) Let \(\mathbb{Q} \subset \mathbb{F} \subset \mathbb{K} \) be a Galois extension in characteristic zero, with Galois group \(G(\mathbb{K}/\mathbb{F}) \cong D_4 \), the dihedral group of order 8, the symmetries of a square.

(a) (10 points) How many intermediate subfields \(\mathbb{L} \) are there lying strictly between \(\mathbb{F} \) and \(\mathbb{K} \), that is, with \(\mathbb{F} \subset \mathbb{L} \subset \mathbb{K} \)?

(b) (5 points) How many of the intermediate subfields \(\mathbb{L} \) from part (a) have \(\mathbb{L}/\mathbb{F} \) Galois?

3. (20 points total) Consider the matrix \(A \in \mathbb{Z}^{4 \times 4} \) shown below

\[
A = \begin{bmatrix}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
-1 & -1 & -1 & 3 \\
\end{bmatrix}
\]

as representing a \(\mathbb{Z} \)-module homomorphism \(\mathbb{Z}^4 \rightarrow \mathbb{Z}^4 \) with respect to the standard basis for \(\mathbb{Z}^4 \) in both the domain and range.

Write the two finitely generated \(\mathbb{Z} \)-modules \(\ker A \) and \(\mathbb{Z}^4 / \text{im} A \) explicitly in the form

\[
\mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \oplus \mathbb{Z}/n_1 \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/n_r \mathbb{Z}
\]
guaranteed by the theorem on finitely generated modules over a Euclidean domain.

4. (15 points total) Artin’s Problem 12.6.4 on page 487.

5. (10 points total) Artin’s Problem 12.7.21 on page 489.

6. (10 points total) Consider the matrix \(A \in \mathbb{C}^{5 \times 5} \) shown below

\[
A = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

making \(V = \mathbb{C}^5 \) a finitely-generated \(\mathbb{C}[t] \)-module, in which \(t \) acts on an element \(v \) in \(V = \mathbb{C}^5 \) as left-multiplication by \(A \).

Write \(V \) explicitly in the form

\[
\mathbb{C}[t] \oplus \cdots \oplus \mathbb{C}[t] \oplus \mathbb{C}[t]/(f_1(t)) \oplus \cdots \oplus \mathbb{C}[t]/(f_r(t))
\]
guaranteed by the theorem on finitely generated modules over a Euclidean domain.