Math 8201 Graduate abstract algebra- Fall 2001, Vic Reiner
Linear algebra homework problems for HW 6
(mostly taken from Hoffman and Kunze’s text, Linear algebra)

1. Show that
$$\langle A, B \rangle := \text{trace}(A(B^*))$$
defines an inner product on the \mathbb{C}-vector space $V = M_{n \times n}(\mathbb{C})$.

2. Prove a fact (used in lecture) that the Vandermonde matrix $A = (a_{ij})_{i,j=1,\ldots,n}$ defined by $a_{ij} = \lambda_j^{i-1}$ has determinant
$$\prod_{1 \leq i < j \leq n} (\lambda_j - \lambda_i).$$
(Hint: There are several proofs, e.g. by induction on n using row operations, or by using the fact that the determinant vanishes when $\lambda_i = \lambda_j$).

3. Show that the product of two self-adjoint operators is self-adjoint if and only if the two operators commute.

4. Let V be the vector space of polynomials of degree at most 3 with \mathbb{C} coefficients, and the inner product
$$\langle f, g \rangle := \int_0^1 f(t)\overline{g(t)}dt.$$ Let D be the differentiation operator. Find D^*.

5. Let V be a finite-dimensional inner product space, and $E : V \to V$ and idempotent operator, i.e. $E^2 = E$. Prove that E is self-adjoint ($E^* = E$) if and only if E is normal ($E^* E = E E^*$).

6. Working in $M_{2 \times 2}(\mathbb{C})$, find an explicit unitary matrix U and diagonal matrix D such that the rotation matrix
$$A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$
has $U^*AU = D$.

7. Prove that an operator $\phi : V \to V$ on an inner product space V is normal if and only if $\phi = \phi_1 + i\phi_2$ where ϕ_1, ϕ_2 are self-adjoint operators that commute.