1. Recall from lecture that a (combinatorial) projective geometry (P, L) was defined by 4 axioms PG1, PG2, PG3, PG4, and that its dimension was defined to be 1 less than the rank of its lattice of flats.

(a) Show that a projective plane, that is a projective geometry of dimension 2, has the following equivalent axiomatization:

PP1. Every two distinct points lie on a unique line.
PP2. Every two distinct lines have a unique point in common.
PP3. Every line contains at least 3 points.
PP4. There exist 3 non-collinear points.

(b) Show that in a finite projective plane, all lines have the same number of points, and call this number $q + 1$.

(c) Show that each point lies on $q + 1$ lines, and $|P| = |L| = q^2 + q + 1$.

2. Given $G = (V, E)$ be a bipartite graph with bipartition $V = A \sqcup B$, let $\mathbb{F} \subseteq \mathbb{K}$ be a field extension in which there exist elements $\{c_{a,b} : \{a,b\} \in E\}$ of \mathbb{K} which are algebraically independent over \mathbb{F}, i.e. there are no polynomials in variables $x_{a,b}$ with coefficients in \mathbb{F} which vanish when one plugs in $x_{a,b} = c_{a,b}$. Define vectors $\{v_a : a \in A\}$ in \mathbb{K}^B by

$$v_a := \sum_{b \in B : \{a,b\} \in E} c_{a,b} \epsilon_b$$

where ϵ_b is a standard basis vector in \mathbb{K}^B.

Show that a subset $A' \subset A$ can be matched along edges in E to distinct elements of B if and only if the subset $\{v_a : a \in A'\}$ is \mathbb{K}-linearly independent. In other words, partial matchings of A into B form the independent sets of a matroid that is representable over \mathbb{K}. Such matroids are called transversal matroids.

(Hint: Consider the $|A'| \times |B|$ matrix having $\{v_a : a \in A'\}$ as its columns. Under what circumstances does the square submatrix with rows indexed by some subset $B' \subseteq B$ with $|B'| = |A'|$ have non-zero determinant? What does it mean for there to exist such a B'?)
3. Show that the following axiom systems are equivalent to the axiomizations of finite matroids given in lecture (by an exchange closure and/or independent sets):

(a) (Basis axioms) A family $B \subseteq 2^E$ forms the set of bases of a matroid M on the finite set E if

B1. All sets B in B have the same cardinality (called the rank of M).

B2. Given $B, B' \in B$, and $e \in B$, there exists some $e' \in B'$ with $B - \{e\} \cup \{e'\} \in B$.

(Hint: The bases are supposed to model the maximal independent sets.)

(b) (Circuit axioms) A family $C \subseteq 2^E$ forms the set of circuits of a matroid M on the finite set E if

C1. The sets in C form an antichain under inclusion.

C2. Given $C, C' \in C$, with $C \neq C'$ and $e \in C \cap C'$, there exists some $C'' \in C$ with $C'' \subseteq C \cup C' - \{e\}$.

(Hint: The circuits are supposed to model the minimal dependent sets.)

4. Given a graph $G = (V, E)$ with loops and multiple edges allowed, show that for any field \mathbb{F}, the matroid associated with the vector configuration in \mathbb{F}^V defined by

$$\{v_e = \epsilon_i - \epsilon_j : e = \{i, j\} \in E(G)\}$$

satisfies the following.

(a) the closure \bar{A} of a subset $A \subset E$ consists of all edges $e \in E$ for which there exists a path from the endpoints of e in G using only edges from A.

(b) its independent sets are the subforests of G, that is, the subsets of edges containing no cycles.

(c) its bases are the spanning subforests of G, that is, the subforests which consist of one spanning tree in each connected component of G (here spanning means connecting all vertices).

(d) its circuits are the simple cycles of G, that is, sequences of edges e_1, \ldots, e_k in E with the property that there are k distinct vertices v_1, \ldots, v_k for which $e_i = \{v_i, v_{i+1}\}$ (and the subscripts on v_j’s are taken modulo k).
5. Let M be a matroid on E, and choose a linear order e_1, e_2, \ldots, e_n for the elements of E. Given a circuit C of M, with minimum element c in this order, call $C - \{c\}$ a broken circuit. Say that a subset $A \subseteq E$ is NBC if it contains no broken circuits $C - \{c\}$.

(a) Show that for any flat F in the geometric lattice of flats $L(M)$, one has
$$\mu_{L(M)}(\emptyset, F) = (-1)^{r(F)}|\{ \text{NBC sets } A \subseteq E : \bar{A} = F \}|.$$

(Hint: Show the right-hand side satisfies the proper identity that defines $\mu_{L(M)}(\emptyset, F)$, via a sign-reversing involution).

(b) The linear ordering on E gives an ordering on the join-irreducibles (atoms) of the upper-semimodular lattice $L(M)$, and hence induces an R-labelling of $L(M)$ as explained in lecture. Show why the Möbius function calculation this R-labelling provides agrees with part (a), by exhibiting a bijection between NBC bases for M and maximal chains in $L(M)$ whose label set is decreasing.

6. (a) Explain why the partition lattice Π_n is the lattice of flats for the matroid associated with the complete graph K_n on n vertices.

(b) Indexing the atoms E of Π_n by pairs $\{i, j\}$ (i.e. edges of K_n), pick any linear ordering of E in which $\min \{i, j\} > \min \{i', j'\}$ implies that $\{i, j\}$ comes before $\{i', j'\}$. Show that for every triple $i < j < k$, the pair of edges $\{i, j\}, \{i, k\}$ forms a broken circuit. Show furthermore that every broken circuit contains at least one such pair.

(c) Use part (b) and Problem 8(a) to prove that
$$\mu_{\Pi_n}(\hat{0}, \hat{1}) = (-1)^{n-1}(n-1)!.$$

7. Let M be a matroid on ground set E, and $c : E \to \mathbb{R}$ any assignment of costs $c(e) \in \mathbb{R}$ to each e in E. Show that the following “greedy” algorithm for finding a basis B of M with minimum total cost $\sum_{e \in B} c(e)$ always works, that is, it will always terminate with a basis B for M, and B achieves the minimum:

Start at stage 0 with $I_0 = \emptyset$, an independent set. At stage j, given the independent set I_{j-1}, choose an edge $e_j \in E$ with lowest cost among those such that $I_j := I_{j-1} \cup \{e_j\}$ remains independent. Repeat.

When $M = M(G)$ is a graphic matroid, this is called Kruskal’s algorithm for finding a minimum cost spanning tree.
8. (a) Let \(G \) be a planar graph with a chosen planar embedding, and \(G^\perp \) its planar dual with respect to this embedding. Show that \(M(G)^\perp = M(G^\perp) \).

(b) For any orientation \(\omega \) of the edges \(E(G) \), let \(\omega^\perp \) be the induced orientation of the dual edges \(E(G^\perp) \) defined by the right-hand rule: if you place the origin at the crossing of some pair of dual edges \(e, e^\perp \) in \(E(G), E(G^\perp) \) respectively, then the pair of tangent vectors to those edges pointing in the directions of the edges should form a right-handed coordinate system in the plane (like the usual positive \(x \)-axis, positive \(y \)-axis). Show that \(\omega \) is acyclic if and only if \(\omega^\perp \) is totally cyclic.

9. Prove the following Tutte polynomial evaluation for graphic matroids: if \(G \) is a graph with \(c(G) \) connected components, and \(p, q \) are positive integers, then
\[
T_{M(G)}(1-p, 1-q) = (-p)^{-c(G)}(-1)^{|V(G)|} \sum_{(x,y)} (-1)^{|\text{supp}(y)|}
\]
where \((x,y)\) runs over all pairs in which
- \(x \) is a vertex \(p \)-coloring,
- \(y \) is a \(\mathbb{Z}/q\mathbb{Z} \)-valued flow, and
- for every edge \(e \in E(G) \), one has \(y_e \neq 0 \) if and only if \(x \) colors \(e \) improperly, i.e. \(x_v = x_{v'} \) where \(e = \{v, v'\} \).
Here \(|\text{supp}(y)|\) is the number of edges \(e \) with \(y_e \neq 0 \) or equivalently, the number of edges that are improperly colored by \(x \).

10. (Character theory warm-up) Given two finite groups \(G, G' \) and complex representations
\[
\rho : G \to GL(V) \\
\rho' : G' \to GL(V')
\]
define a new representation
\[
\rho \otimes \rho' : G \times G' \to GL(V \otimes V')
\]
by
\[
(\rho \otimes \rho')(g, g')(v \otimes v') = \rho(g)v \otimes \rho'(g')v'.
\]
(a) Show \(\chi_{\rho \otimes \rho'}(g, g') = \chi_{\rho}(g) \cdot \chi_{\rho'}(g') \).
(b) Show that \(\rho \otimes \rho' \) is irreducible for \(G \times G' \) if and only if both \(\rho, \rho' \) are irreducibles for \(G, G' \).
(c) If \(\{\rho_i\}_{i \in I}, \{\rho'_i\}_{i' \in I'} \) are complete sets of representatives of the (equivalence classes of) irreducible representations of \(G, G' \), respectively,
show that \(\{\rho_i \otimes \rho_{i'}\}_{(i,i') \in I \times I'} \) gives a complete set of representatives for the irreducibles of \(G \times G' \).

11. If \(G \) is a finite group acting on \([n]\), say that the action is

- **transitive** if there is only one \(G \)-orbit on \([n]\),
- **doubly transitive** if it is transitive on ordered pairs, that is, for every pair \(i \neq j \) and \(i' \neq j' \) in \([n]\) there exists \(g \in G \) with \(g(i) = i' \), \(g(j) = j' \).

Let \(\chi \) be the permutation representation/character associated with the \(G \)-action.

(a) Show that the action is transitive if and only if \(\langle \chi, \chi_{\text{trivial}} \rangle = 1 \).

(b) Show that the action is doubly transitive if and only if \(\chi - \chi_{\text{trivial}} \) is irreducible.