Consider the graphs of $y = f(x)$ shown in Figure 1 for the functions

$$f(x) = 2x - x^3, \quad \frac{1}{x}, \quad \frac{2x^2 - 5x + 8}{x^2 + x + 1}, \quad e^x, \quad \ln(x), \quad \tan^{-1}(x).$$

How would you describe what happens to these functions $f(x)$ when x gets large and positive, that is, as x approaches $+\infty$? What about when x gets large and negative, that is, as x approaches $-\infty$?

Figure 1. Various graphs of $y = f(x)$.

Behavior of functions at infinity: infinite limits and horizontal asymptotes

Vic Reiner, Fall 2009

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this license, go to

http://creativecommons.org/licenses/by-nc-sa/3.0/

or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, CA 94105, USA. If you distribute this work or a derivative, include the history of the document.
We seek some language involving limits to describe this. Informally, one might say \(\lim_{x \to +\infty} f(x) = +\infty \) to mean that we can ensure that the values of \(f(x) \) are arbitrarily large and positive by choosing \(x \) sufficiently large and positive. Similarly, one might say informally \(\lim_{x \to -\infty} f(x) = L \) for some real number \(L \) to mean that we can ensure that the values of \(f(x) \) are arbitrarily close to \(L \) by choosing \(x \) sufficiently large and positive. One could suitably modify these descriptions to define informally when

\[
\lim_{x \to +\infty} f(x) = \begin{cases}
+\infty & \text{as with } f(x) = e^x \text{ or } \ln(x) \\
-\infty & \text{as with } f(x) = 2x - x^3 \\
L & \text{as with } f(x) = \frac{1}{x} \text{ for } L = 0, \\
or f(x) = \frac{2x^2 - 5x + 8}{2x^2 + x + 1} \text{ for } L = 2, \\
or f(x) = \tan^{-1}(x) \text{ for } L = \frac{\pi}{2},
\end{cases}
\]

and

\[
\lim_{x \to -\infty} f(x) = \begin{cases}
+\infty & \text{as with } f(x) = 2x - x^3 \\
-\infty & \text{as with } f(x) = \frac{1}{x} \text{ or } e^x \text{ for } L = 0, \\
or f(x) = \frac{2x^2 - 5x + 8}{2x^2 + x + 1} \text{ for } L = 2, \\
or f(x) = \tan^{-1}(x) \text{ for } L = -\frac{\pi}{2}.
\end{cases}
\]

Note that for some functions one might have no limit at all for \(f(x) \) as \(x \) approaches \(\pm\infty \), that is, there is no real number \(L \) for which \(\lim_{x \to \pm\infty} f(x) = L \), nor does \(\lim_{x \to \pm\infty} f(x) = +\infty \), nor does \(\lim_{x \to \pm\infty} f(x) = -\infty \). In this case, say that \(\lim_{x \to \pm\infty} \sin(x) \) does not exist.

Example. \(\lim_{x \to +\infty} \sin(x) \) does not exist. As \(x \) gets arbitrarily large and positive, the values of \(f(x) = \sin(x) \) do not get arbitrarily large and positive, nor arbitrarily large and negative, nor do they approach closer and closer to any real number \(L \). Rather the values of \(f(x) \) forever oscillate, staying bounded between \(-1\) and \(+1\).

As with definitions of the usual kinds of limits \(\lim_{x \to a} f(x) = L \), one can capture the intuition behind these informal definitions \(\lim_{x \to \pm\infty} f(x) \) with something formal.

Definition. Formally, define \(\lim_{x \to +\infty} f(x) = +\infty \) to mean that for every \(M > 0 \), there exists an \(N > 0 \) such that the inequality \(f(x) > M \) holds for all \(x > N \).

Definition. Similarly, define formally \(\lim_{x \to +\infty} f(x) = L \) for a real number \(L \) to mean that for every \(\epsilon > 0 \), there exists an \(N > 0 \) such that the inequality \(|f(x) - L| < \epsilon \) holds for all \(x > N \).

Similar modifications exist to define formally what is meant by the other variations \(\lim_{x \to \pm\infty} f(x) = \pm\infty \) or \(\lim_{x \to \pm\infty} f(x) = L \).

Definition. When either \(\lim_{x \to +\infty} f(x) = L \) or \(\lim_{x \to -\infty} f(x) = L \), one says that the horizontal line \(y = L \) is a horizontal asymptote for the graph \(y = f(x) \). One can also say that the curve \(y = f(x) \) approaches the line \(y = L \) asymptotically.

Example. Let’s check formally that \(\lim_{x \to +\infty} e^x = +\infty \). To do this, if our adversary names for us some \(M > 0 \), we must find an \(N \) such that \(e^x > M \) for all \(x > N \).
A little thought, foresight, or experience with such arguments2 might suggest trying $N = \ln(M)$. And indeed one can check that for $x > N = \ln(M)$ one has
\[f(x) = e^x > e^N = e^{\ln(M)} = M \]
where that inequality in the middle is due to the fact that $f(x) = e^x$ is a monotonically increasing function of x.

The formal definitions can be used to prove limit laws similar to the ones we have seen for other limits: in situations where the limits of $f(x), g(x)$ which appear on the right side of these laws are real numbers (not $\pm \infty$), one has
\[
\lim_{x \to \pm \infty} (f(x) \pm g(x)) = \lim_{x \to \pm \infty} f(x) \pm \lim_{x \to \pm \infty} g(x)
\]
\[
\lim_{x \to \pm \infty} f(x)g(x) = \left(\lim_{x \to \pm \infty} f(x) \right) \cdot \left(\lim_{x \to \pm \infty} g(x) \right)
\]
\[
\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \left(\lim_{x \to \pm \infty} f(x) \right) \div \left(\lim_{x \to \pm \infty} g(x) \right)
\]
assuming $\lim_{x \to \pm \infty} g(x) \neq 0$ in this last law.

Another such law says that when $f(x)$ is a continuous function for all values x in the range of $g(x)$, and $\lim_{x \to \pm \infty} g(x) = L$ for some real number L, then $\lim_{x \to \pm \infty} f(g(x)) = f(L)$.

This does not exhaust all the possible such limit laws. Also, some of these limit laws still apply even when $f(x), g(x)$ do not have finite limits.

Example. If $\lim_{x \to +\infty} f(x) = L$ and $\lim_{x \to +\infty} g(x) = +\infty$, then
\[
\lim_{x \to +\infty} (f(x) + g(x)) = +\infty.
\]

We sometimes abbreviate this law informally by saying “$L + \infty = +\infty$”. Similarly, one has $\frac{0}{\infty} = 0$.

However, one has to be careful, as some cases where one would like to apply a limit law are indeterminate forms, like
\[
\frac{\pm \infty}{\pm \infty}, \quad \frac{0}{\infty}, \quad 0 \cdot (\pm \infty), \quad \infty \pm \infty.
\]

Sometimes in these cases, algebraic manipulation and/or L’Hôpital’s rule (a later calculus topic) comes to our aid.

Example. Starting from the fact (which one can justify from the formal definition) that integer powers x^n of x have
\[
\lim_{x \to \pm \infty} x^n = \begin{cases}
\pm \infty & \text{if } n = 1, 2, 3, \ldots \\
1 & \text{if } n = 0 \\
0 & \text{if } n = -1, -2, -3, \ldots
\end{cases}
\]
it’s not hard to analyze the behavior at infinity for any rational function. Recall that a rational function is $h(x) = \frac{f(x)}{g(x)}$ where
\[
f(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_r x^r
\]
\[
g(x) = b_0 + b_1 x + b_2 x^2 + \cdots + b_s x^s
\]
2The sometimes subtle art of how to pick the N correctly is not something we will emphasize in our version of Math 1271, as we won’t often ask students to prove a limit is correct via the formal definition!
are polynomials, say of degrees \(r \) and \(s \), so that \(a_r, b_s \neq 0 \).

If one tries to analyze \(\lim_{x \to \pm \infty} h(x) \) by immediately using the quotient rule for limits it often leads to the indeterminate form \(\infty/\infty \). However, a useful algebraic trick comes from realizing that if \(x^N \) is the highest power of \(x \) appearing anywhere in either \(f(x) \) or \(g(x) \) (so \(N \) is just maximum of the two degrees \(r \) and \(s \)), then these terms \(x^N \) wherever they occur will dominate the behavior of \(f(x) \) when \(x \to \pm \infty \).

And we can “scale them away” by multiplying by \(1/x^N \), leaving an equivalent limit, for which the quotient limit law will now work.

For example,

\[
\lim_{x \to \pm \infty} \frac{2x^2 - 1}{x^2 + 1} = \lim_{x \to \pm \infty} \frac{2x^2 - 1}{x^2 + 1} \cdot \frac{1/x^2}{1/x^2} = \lim_{x \to \pm \infty} \frac{2 - 1/x^2}{1 + 1/x^2} = \frac{2}{\pm \infty} = \pm \infty
\]

\[
\lim_{x \to \pm \infty} \frac{2x^2 - 1}{x^3 + 1} = \lim_{x \to \pm \infty} \frac{2x^2 - 1}{x^3 + 1} \cdot \frac{1/x^3}{1/x^3} = \lim_{x \to \pm \infty} \frac{2 - 1/x^3}{1 + 1/x^3} = \frac{0}{1} = 0
\]

The graphs of these three rational functions are shown in Figure 2.

Doing this analysis in general for the rational function \(\frac{f}{g} \) where \(f, g \) have degrees \(r, s \) and leading coefficients \(f_r, g_s \) shows the following:

\[
\lim_{x \to \pm \infty} f(x) = \begin{cases}
0 & \text{if } r < s, \\
\frac{f_r}{g_s} & \text{if } r = s, \\
(-1)^{r-s} \text{sign}(g_s) \cdot (\pm \infty) & \text{if } r > s
\end{cases}
\]

where \(\text{sign}(x) = \frac{|x|}{x} \) give the sign \(\pm 1 \) of a nonzero number \(x \).

3Alternatively, one can do this same trick but multiply by \(1/x^N \), which will also provide an illuminating scaling, and still work with the limit laws.

4... which is not really worth memorizing; the trick of multiplying \(1/x^N \) is more important.
Exercises.

(a) Say whether \(\lim_{x \to +\infty} f(x) \) is some real number \(L \), or \(+\infty \) or \(-\infty \) or nonexistent for each of the following functions \(f(x) \). Remember to give some justification for your answer.

(b) Do the same for \(\lim_{x \to -\infty} f(x) \).

(c) Then list any horizontal asymptotes for the graph \(y = f(x) \).

1. \(f(x) = \cos(x) \)
2. \(f(x) = x \cos(x) \)
3. \(f(x) = \frac{1}{x(2+\cos(x))} \)
4. \(f(x) = x^2 \sin(x) \)
5. \(f(x) = \frac{\sin(x)}{x} \)
6. \(f(x) = e^{-2x} \sin(x) \)
7. \(f(x) = e^{2x} \sin(x) \)
8. \(f(x) = \frac{x^{100}+x^3+x}{3x^{100}+x^3+x} \)
9. \(f(x) = \frac{x^{100}+x^3+x}{3x^{100}+x^3+x} \)
10. \(f(x) = \frac{x^{100}+x^3+x}{3x^{100}+x^3+x} \)
11. \(f(x) = \tan^{-1}(3x^3 + 4x - 100) \)
12. \(f(x) = \tan^{-1}(-3x^3 + 4x - 100) \)