Math 4707 Fall 2020 (online!)
Remember to record!!
Gather. town meeting room has password "Math 4707"
Proposed office hour slots Tues - Thur 9:05-9:55am

CONTENT

$$
\begin{aligned}
& \text { NEENT } \\
& <\frac{1}{2} \text { enumeration }=\text { counting } \\
& \text { (ea. computing prob. }
\end{aligned}
$$

(e.g. computing probabilities, analyzing runtime of algorithms)
$>\frac{1}{2}$ graph theory
(= network)

Overlap classes:
5705 Enumeration
5707 Graph theory
5711 Combinatorial optimization
$\left.\begin{array}{l}5248 \\ 5251\end{array}\right\}$ weill skip this stuff on cryptology \& Coding Theory in Chap. 6815

Chapter 1 Let's Count! [Emmeration]
Some basic counting principles
Product principle - if one can choose an element of a set A by making r sequential choices, with d_{1} choices for 1 st step d_{2}^{1} choices for $2^{n d}$
then $|A|=\# A=d_{1} d_{2} \ldots d_{r} d_{r}$ traces for r

Examples
(1) How many subsets of an n element set are there?
$\left.\begin{array}{c|c|r}n & \text { subsets of }\{1,2, \ldots, n\} & \text { \#of subsets } \\ \hline 0 & \varnothing & 1=2^{\circ} \\ \hline 1 & \varnothing,\{1\} & 2=2^{1} \\ \hline 2 & p,\{1\},\{2\},\{1,2\} & 4=2^{2} \\ \hline 3 & \phi,\{1\},\{2\},\{3\}, \\ \{1,21,\{1,3\},\{2,3\} \\ \{1,2,3\}\end{array}\right)$

Guess: 2^{n}
Pick the subset $S \subseteq\{1,2, \ldots, n\}$
in n stages : at 1 st stage, ask is 1 inS , yes $/ n 0$?

$$
\begin{aligned}
& \text { (} d_{2}=2 \text { posibiliteref } \\
& \text { at } n^{\text {th }} \text { stage, ark is } n M S \text { ? } \\
& \text { (} \mathrm{C}_{n}=2 \text {) } \\
& \text { so }|A|=\# A=d_{1} \cdot d_{2} \cdots d_{n}=2 \cdot 2 \cdots-2=2^{n}
\end{aligned}
$$

(2) How many ways to paint n ports labeled 1,2,., 4 with k choices of colors?

$$
\begin{aligned}
& 1 \begin{array}{llll}
n & \mid 3 & \cdots & n \\
\hline
\end{array} \\
& \left.\begin{array}{l|c}
\begin{array}{l}
d_{1}=k \\
\text { choices } \\
\text { forest post }
\end{array} & \begin{array}{c}
d_{2}=k \\
\text { choices } \\
\text { for } 2^{n d}
\end{array}
\end{array} \quad \ldots \quad \right\rvert\, \begin{array}{c}
d_{n}=k \\
\text { forth }
\end{array} \\
& A=\{k \text {-colorings of } n \text { posts } \underset{[, 2, n\}}{ }\} \\
& |A|=\# A=d_{1} d_{2} \cdots d_{n} \\
& =k \cdot k \ldots-k=k^{n}
\end{aligned}
$$

(3) How many ways to pick your 1 st $2^{\text {nd }}, 3^{\text {rd }}$
favorite ice cream flavors from the 3) flavors offered by Brstin-Robbins?
(3) How many ways to pick your $1^{5 t}, 2^{n a}, 3^{n}$ favorite ice cream flavors from the
3) flavors offered by Baskin-Robbins?

More generally, how many ways to choose an ordered list of k distinct elements from n choices? ($k=3, n=3$) above).

$$
\begin{array}{lll}
d_{1} \cdot d_{2} \cdot d_{3} \cdots d_{k} \\
11 & 11 & \quad 11 \\
n & \cdot(n-1) \cdot(n-2) \cdots & (n-(k-1)) \\
=\frac{n!}{1} & \quad \begin{array}{ll}
\operatorname{Recall} n!:= \\
n(n-1)(n-2)-3 \cdot 21
\end{array}
\end{array}
$$

(4) How many rearrangements are there of the letters in SNAKE?

$$
\begin{array}{ccccc}
5 & 4 \cdot 3 & 2 & 1 & (=: 5!) \\
d_{1}^{\prime \prime} & { }^{1} & d_{2} & d_{3} & d_{4} \\
d_{5}
\end{array}
$$

KAENS
$\{S, N, A, K, E\}$

$$
n=5
$$

How many permutations of n objects?

$$
k=5
$$

$$
n!=\begin{array}{cccccc}
n & (n-1) & (n-2) & \cdots & 3 \cdot 2 \cdot 1 \\
& \prime \prime & 1 \prime & 11 & n & n^{\prime \prime} \\
d_{1} & d_{2} & d_{3} & d_{n-1} & d_{n}
\end{array}
$$

(5) How many ways to pair off $2 n$ campers $\{1,2, \ldots, 2 n-1,2 n\}$ as buddy pairs for swimming?
(5) How many ways to pair off $2 n$ campers $\{1,2, \ldots, 2 n-1,2 n\}$ as buddy pairs for swimming?

(5) How many ways to pair off $2 n$ campers $\{1,2, \ldots, 2 n-1,2 n\}$ as buddy pairs for swimming?

$$
A=\{\text { all pairings of }\{1,2, \longrightarrow 2 n\}\} \frac{2 n!}{n!\cdot 2^{n}}
$$

$$
\nexists A=\underbrace{(2 n-1)}_{11 .} \underbrace{(2 n-3)}_{11} \cdots \quad 7 \cdot 5 \cdot 3 \cdot 1
$$

$=2 n-1$
$d_{1}=11$ choices $d_{2}=9$ choices

$$
\int_{\substack{d_{3} \\ 3 \\=7 \\ 11 \\ 2 n-5}}^{2670 i c e s} 101112
$$

disjoint union

$$
A=A_{1} \cup A_{2}
$$

and $A_{1} \cap A_{2}=\phi$
then $|A|=\left|A_{1}\right|+\left|A_{2}\right|$
More generally, if

$$
A=A_{1} \dot{\cup} A_{2} \dot{(} A_{3} \dot{\cup} \ldots \dot{\cup}
$$

then $|A|=\left|A_{1}\right|+\left|A_{2}\right|+\ldots+\left|A_{r}\right|$

$$
=\sum_{i=1}^{r}\left|A_{i}\right|
$$

EXAMPLE: How many rearrangements of SNAKE have S, N adjacent?
egg. AKSNE \bumpeq there are 4 ! of these, rearainging $A, K, S N, E$
AKNSE ~ 2 there are 4 ! of these, reanainging $A, K, N S, E$

EXAMPLE: How many rearrangements of SNAKE have S, N adjacent?
es. AKSNE There are 4! of these,
rearranging $A, K, \leqslant N, E$
AKNSE ~ 2 there are 4 ! of these, reamainging $A, K, N S, E$

$$
\begin{aligned}
\Rightarrow|A| & =\left|A_{1}\right|+\left|A_{2}\right| \\
& =4!+4! \\
& =24+24=48
\end{aligned}
$$

Somenotation review
"For all" \forall
"There exists" 7

$$
B^{c}=S-B=\begin{gathered}
\text { complement of } B \\
\text { within the universe }
\end{gathered}
$$

within the universe S

Math 4707 Sept. 14,2020
Wait until questions in lecture are mitten down before writing answers in the chat!

Wed Sept 23 lecture will be pre-re corded and posted, not synchronous. Thur Sept. 24 may also be canceled!

Were been counting $|A|=\# A$ for various sets A...

2 principles:
PRODUCT PRINCIPLE

$$
|A|=d_{1} d_{2} \ldots d_{r}
$$

SUM PRINCIPLE:

$$
\begin{aligned}
& A=A_{1} \dot{\cup} A_{2} \omega \ldots \cdot A_{r} \\
& \underset{\text { implies }}{\Rightarrow}|A|=\sum_{i=1}^{r}\left|A_{i}\right|
\end{aligned}
$$

DHFERENCEPRINCIPLE:
Sometimes

$$
\begin{aligned}
A & =B \backslash C \\
& =B-C \\
& =\{b \in B: b \notin C\}
\end{aligned}
$$

for some $C \subseteq B$, so $|A|=|B|-|C|$ and sometimes its easier to compute (B) and $|C|$ and subtract!

EXAMPLES:
(1) How many ways to paint n different posts $\{1,2,0 n\}$ with k colors so that at least 2 colors are wed?

$$
\begin{aligned}
& k^{n-k} \overbrace{\substack{\text { wlovings } \\
\text { with only } \\
1 \text { colors } \\
\text { used }}}^{C} \mid \\
& =\mid\{\text { all colorings }\} \mid \\
& =|B|-|C|
\end{aligned}
$$

(2) How many subsets of $\{1,2, \ldots, 100\}$ contain at least one odd number?

$$
\begin{aligned}
& 2^{100}-2^{50} \\
= & \{\text { all subsets }\}|-|-\left(\begin{array}{l}
\left\{\begin{array}{l}
\text { hose with } \\
\text { no odd } \\
\text { numbers ithonly } \\
\text { even numbers } \\
2,4, \ldots, 98,100
\end{array}\right\}
\end{array}\right\}
\end{aligned}
$$

GHEPHERD'S PRINCIPLE (OVERCOUNTING)
(COUNTING IN TWO WAYS)

- sometimes itu easier to count a different set B than A, but you know every element of A corresponds to m different elements of B.
Then $|A|=\frac{|B|}{m}$
(COUNTING IN TWO WAYS)
- sometimes itu easi er to count a different set B than A, but you know every element of A corresponds to m different elements of B.

EXAMPLES:
(2) How many handshakes occur when n prop le meet each other?

(2) How many handshakes occur when n people meet each other?

(3) Let's generalize obit to graphs and vertex degrees ($\$ 7.1$)
DEFINITION: A (simple) graph
$G=\left(\underset{I \prime}{V}, E_{11}\right)$ is a set of vertices V vertices edges

$$
\begin{aligned}
& \text { (pairs } \\
& \text { of vertices) }
\end{aligned}
$$

and a set of pairs E of vertices

(valence)

$$
\begin{aligned}
\text { total of vertex degrees } & =1+1+2+2+3+3+3+3 \\
& =18=2 \cdot 9,9=18 \mid
\end{aligned}
$$

($7+M 7.1 .2$ on p^{130})
PROPOSTITION: In any graph $G=(V, E)$

$$
\sum_{v \in V} \operatorname{deg}_{G}(v)=2 \cdot|E|
$$

prof: Count " $\underbrace{7 B}_{7 \text { alf-edges" }}$ in ways:

Every edge $e=\{i, j\}$ in E contributes to two harf-edges
$\begin{aligned} & \text { so }|B|=2|E| \\ & \mid \text { "fledges\} ~ }\end{aligned}$
Also every vertex vel contributes $\operatorname{deg}_{G}(v)$ element e to B
Hence $|B|=\sum_{v \in V} \operatorname{leg}_{G}(v)$. So $\sum_{v \in V} \operatorname{deg}_{E}(v)=2|\epsilon|$

COROLCARY: At a party with an odd number of guests, some guest will know an even number of other guests!
(i.e. if $G=\left(V, E_{11}\right)$ has $|V|$ being odd, people edgeresen
then some vel has dego(v)even.)
proof: $\sum_{v \in V} \operatorname{deg}_{G}(v)=2|E|$ is even.
If all $\operatorname{deg}_{3}(v)$ are odd, then
$\sum_{V \in V} \operatorname{deg}_{G}(v)$ is a some of odd-ly
many odd numbers, which is always odd (e.9. $1+7+5+5+7+7+7$

$$
\left.\begin{array}{r}
39 \\
=\text { odd! }
\end{array}\right)
$$

That would be a contradiction

In fact, this shows more strongly that...
(THM 7.1.1)
COROLCARY: In every graph, the number of old degree vertices must be even.
(Thu about it!)
(4) More modeling with graphs and degrees and counting in 2 ways... A bipartite graph $G=(V, E)$
has every edge $\left\{i_{1}, i_{2}\right\} \quad V_{1} \cdot \sqcup V_{2}$
going between V_{1} and V_{2}, meaning $i_{1} \in V_{1}$ and $i_{2} \in V_{2}$

Let's spare the sum of vertex degrees once two sides V_{1}, V_{2}
V_{1} :G V_{2} PROPOSTITI: M Many bipartite graph

20:8
$\frac{5^{2}}{1+2+1+3+2} \cdot \frac{9}{5+1+2+2}$ TOTAL
TOTAL $\frac{1+2+1+a^{3+2}}{5+0+2+2 \text { TOTAL }}=9$

$$
\begin{aligned}
& G=\left(V_{11}, E\right) \\
& V_{1} \mapsto V_{2}
\end{aligned}
$$

$$
\text { one has } \sum_{v \in V_{1}} \operatorname{deg}_{G}\left(v_{v}\right)=\sum_{v \in V_{2}}^{\operatorname{deg}_{G}}\left(v_{2}\right)
$$

COROLLARY:
In particular, their average degrees have this rato:
proof: $\sum_{v \in V_{1}} \operatorname{deg}_{G}\left(v_{1}\right)=|E|=\sum_{v \in V_{2}} \operatorname{deg}_{c_{G}}\left(v_{2}\right)$
AssignMent: Read The Moth, the Math, the sex" inked on yllabis. Ria de to cordial?

MORE EXAMPLES OF SHEPHERDS PRINCIPLE
(1) How many ways to pick 3 flavors of the 3) ice cream flavors to bring home (but don't care which is $1^{\text {st }}$ or $2^{\text {nd }}$ or $3^{\text {rd }}$)?

$$
\begin{aligned}
& \frac{31 \cdot 30 \cdot 29}{3!}=\frac{|B|}{m} \\
& A=\left\{\begin{array}{l}
\text { choices } \\
\text { ardesined }
\end{array}\right\} \quad B=\left\{\begin{array}{c}
\text { choices with } \\
\text { sot } \\
\text { stitch } \\
\text { pecifited }
\end{array}\right\} \\
& m=3 \text { ! }
\end{aligned}
$$

$\binom{31}{3}=$ binomial coefficient
$\binom{n}{k}:=\#$ of ways to pick a k -element subset of an n-element set

$$
\begin{aligned}
& =\frac{n(n-1)(n-2) \cdots(n k+1)}{k!} \\
& \underset{\substack{n=31 \\
k=3 \text { flares bright } \\
\text { home }}}{=\frac{n!}{k!(n-k)!}}
\end{aligned}
$$

(2) How many reawongements are there of the letters in $\mathrm{BA}_{1} \mathrm{~N}_{2} A_{2} N_{2} A_{3}$?
egg. $\tilde{A}^{3} \tilde{A A N A N}^{2} \tilde{N}^{\frac{1}{3}}$
AAANBN

$$
\frac{6!}{3!2!1!}=\frac{|B|}{m}
$$

$B=\underset{\text { of }}{\text { rearrangements }}$

$$
\begin{aligned}
& \left\{A_{1}, A_{2}, A_{3}, N_{1}, N_{2}, B_{1}\right\} \quad\left(\begin{array}{cc}
6 & \\
3 & 2
\end{array} 1\right) \\
& |B|=6! \\
& \text { muttinomial } \\
& \text { coefficient }
\end{aligned}
$$

More generally,
$\binom{n}{k_{1} k_{2} \ldots k_{l}}=\begin{aligned} & \text { \# ways to arranges } \\ & n \text { letters that have }\end{aligned}$
$k_{1}+k_{2}+\ldots+k_{2}=n \quad k_{1}$ copies of 11 st letter $k_{2} \cdot \frac{11}{k^{n d}}$ k_{l} copies of the $l^{\text {th }}$ lefter

$$
=\frac{n!}{k_{1}!k_{2}!\cdots k_{l}!}
$$

$$
\begin{aligned}
& \binom{n}{k_{1}, k_{2} \ldots k_{l}}=\begin{array}{l}
\text { \# ways to arranges } \\
n \text { lifers that have }
\end{array} \\
& k_{1}+k_{2}+\ldots+k_{2}=n \quad k_{1} \text { copies of 1"st letter } \\
& k_{2} \frac{\text { copies }}{11}-2^{n d} \\
& k_{l} \text { copies of the } l^{\text {th }} \text { lefter } \\
& =\frac{n!k^{2}}{k_{1}!k_{2}!\cdots k_{l}!}
\end{aligned}
$$

Binomial coefficient
$\binom{n}{k}=\# k-e l e m e n t$ subsets of n-element set

$$
=\left(k^{n} n-k\right)=\frac{n!}{k!(n-k)!}
$$

$=\#$ words with $k A C s$ $n-k$ B's
egg.

$$
\begin{array}{ll}
k=3 & 1234567 \\
n=7 & B A B A B B A \\
n-k=4 &
\end{array}
$$

GROUP WORK on poker hand probabilities
A standard deck has 52 cards
A 2345678910 JQK of $8 \Delta \triangleq ゆ \Phi$ A poker hand is a choice of 5 of the cards, as an unordered set, e.g.

$$
\left.\left\{4 \infty, J \varphi, 6 \frac{5}{5}, 10\right\rangle, 28\right\}
$$

(1) How many poker hands are there?
(2) What is the probability that it is a...

ROYAL FLUSH e.g. $\{\log , J \nabla, Q \square, K \square, A P\}$
STRAGHT FLUSH e.g $\{7 \Delta, 8\rangle, 9\rangle, 10 \diamond, J\rangle\}$ (not PDYAC) (aces low or high)

Flush Coot artraightflush) eg. $\{5 \Delta, 6 \Delta, 9 \Delta, Q \Delta, k \diamond\}$

