The chomaticpolynomial (not mbook)
(Birkhoffe Cenis 1946)
In an attempt to prove the 4-color theorem, they defined...
DEFIN: $X(G, k)=\#$ of proper the chromatic $\frac{\text { polynomial of } G \text { vertex } k \text {-colorings }}{\text { of }}$ $($ so $X(G, k) \neq 0 \Leftrightarrow X(G) \leq k)$ In particular, if
ExAMPLES: one wild show
(1) Complete graphs Kn

$$
\begin{aligned}
& x\left(K_{n}, k\right)=k \\
& x\left(K_{2}, k\right)=k(k-1)
\end{aligned}
$$

$$
X(G, 4) \notin 0
$$

for planar G
this would prove the 4-color theorem.
(35) $\left.k=0{ }^{(20)}\right)_{k-1}$
chores $v_{1} v_{2}$ dhoices

Examples:

$$
\begin{aligned}
& \text { (1) Complete graphs } K_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lll}
\\
\text { chose } & v_{1} & v_{2} \text { doles }
\end{array}
\end{aligned}
$$

$$
X\left(K_{n}, k\right)=k(k-1)(k-2) \cdots(k-(n-1))
$$

e.g. $X\left(K_{5}, k\right)=k(k-1)(k-2)(k-3)(k-4)$
$\left\{\begin{array}{l}\{\text { evaluate at } k=1,2,3,4 \\ 0 \\ \text { evaluate it at } k \geq n\end{array}\right.$

$$
n!\binom{k}{n}=\frac{k!}{(k-k)!}
$$

(2) G has no edges, has $\chi(G, k)=k_{k}^{n}$ ${ }^{6} n$ vertices
k_{0} ok

$$
0 \circ \circ \cdot k
$$

(3)

$$
=\underbrace{(k-1)}_{\text {Hot choices }} \cdot X(\underset{G-\{1]}{2} \overbrace{0_{5}^{3}}^{3}, \rho^{4}, k)
$$

\#of choices
for colowing
vertex 1,
paper k a colon of $G-[1]$

$$
\begin{aligned}
& =(k-1) \underbrace{(k-2)}_{\text {\#ot }} X\left({ }_{5}^{9} 0_{5}^{3}, k\right) \\
& \text { \#ot } \\
& \text { tor alforing } \\
& \text { green any } \\
& \text { colors } \\
& \text { of } G-\left[4^{2}\right] \\
& =(k-1)(k-2)(k-2) X\left(\begin{array}{ll}
0 & 0 \\
0 & 4
\end{array}\right) \\
& =(k-1)(k-2)(k-2)(k-1) \cdot k \\
& =k(k-1)^{2}(k-2)^{2}
\end{aligned}
$$

(4)

$$
\begin{aligned}
& \text { (4) } k-2 \\
& \text { (3) } \\
& \underbrace{k_{m}^{k-1}}_{3} \\
& =k(k-1)(k-2)^{2}+k(k-1)(k-1) \\
& =k^{4}-4 k^{3}+6 k^{2}-3 k
\end{aligned}
$$

a polynomial in k.

Math 4707 Dec 9, 2020
Proposition (Birchoff s levis 1946)
Let $G=(V, E), n=\# V$
Ansi! (9) $X(G, k)=0$ if G has any loops
(2) If e is a non-loop edge in G, then

$$
\begin{aligned}
& \text { (2) It } e \text { is a novicious } \\
& X(G, k)=\chi(G-e, k)-\chi(G / e, k) \\
& \text { debtors }
\end{aligned}
$$

If G has no loops,
(3) $\chi(G, k)$ is a polynomial in k, thought of as a variable, of the following form:

$$
\begin{aligned}
& \text { of the following tom: } \\
& X(G, k)=k^{n}-(\# E) k^{n-1}+a_{n-2} k^{n-2}-a_{n-3} k^{n-3}+\ldots \\
& \ldots \pm a_{c} k^{c}
\end{aligned}
$$

where $c:=\#$ of connected components and $a_{i}>0$ for $i=c, c+1, \ldots, a_{n-2}$
example

$$
\begin{aligned}
& \mathrm{c}=1 \text { compered } \\
& \text { comperant }
\end{aligned}
$$

Example

$$
\begin{aligned}
X\left({ }_{3}^{\prime} Q_{G}^{e}{ }^{2}, k\right) & =X\left({ }_{k-1}^{k}{ }_{k}^{k}, k\right)-X\left({ }_{3}^{k-1}, k\right) \\
& G=12 \\
& =k(k-1)(k-1)(k-1)-k(k-1)(k-2) \\
& =k(k-1)^{3}-k(k-1)(k-2) \\
& =k(k-1)\left[(k-1)^{2}-(k-2)\right] \\
& =k(k-1)\left[k^{2}-3 k+3\right] \\
& =k^{4}-4 k^{3}+6 k^{2}-3 k
\end{aligned}
$$

phot of: ${ }^{\left\{v, v^{\prime}\right\}}$
(2) If $e^{\prime \prime}$ is a non-loop edge in G, then

$$
X(G, k)=X(G-e, k)-X(G / e, k)
$$

H's equivalent to show:

$$
X(G, k)=X(G-e, k)-X(G / e, k)
$$

if Ghat roloups,
(3) $X(G, k)$ is a polynomial in k, thought of as a variable, of the following form:

$$
\begin{array}{r}
\text { of the following corm. } \\
X(G, k)=k^{n}-(\# E) k^{n-1}+a_{n-2} k^{n-2}-a_{n-3} k^{n-3}+\ldots \\
\ldots \pm a_{c} k^{c} \\
\ldots
\end{array}
$$

where $c:=\#$ ot connected comp ${ }^{\text {in }} G$ and $a_{i}>0$ for $i=c, c+t, \ldots, a_{n-2}$
proof of (3): Induction on \#E.

$$
\begin{aligned}
& \text { BASE CASE: } \# E=0 \\
& X(G, k)=k^{n} \\
&=k^{n}-0 \cdot k^{n-1}+0 \cdot k^{n-2} \\
& 0.0 . \pm
\end{aligned}
$$

n vertices

$$
c=n
$$

$$
\# E=0
$$

INDUCTINE STEP: Assume G has sum e nonloop edge

$$
\begin{aligned}
& X(G, k)=X(G \backslash e, k)-X(G(e, k) \\
& \text { use } \\
& \text { ondrosenon\#E } \because k^{n}=(\# E-1) k^{n-1}+a_{n-2}^{\prime} k^{n-2} \ldots \pm a_{c^{\prime}} k^{c^{\prime}} \\
& -\left(k^{n-1}-a_{n-2}^{n-2} k^{n-2}+\ldots \pm a_{c}^{\prime \prime \prime} k^{\prime \prime}\right) \\
& \text { where } a_{i}^{\prime}, a_{j}^{\prime \prime}>0 \\
& \text { where } c^{\prime \prime}=c \leq c^{\prime}=k^{n}-(\# E) \cdot k^{n-1}+a_{n-2} k^{n-2}-a_{n-3} k^{n-3}+ \\
& c(G / e) \quad c(G) \quad c(G-e) \\
& \cdots \pm a_{c} k^{c}
\end{aligned}
$$

Acyclic orientations and the (- 1)-color theorem
(not in book)
DEFIN: If $G=(V, E)$ is undirected, then an orientation ω of G is a choice of orientation for cads edge $e=\left\{v_{1}, 1\right\}$
 to make a directed graph D from G. H's an acyclic orientation if it has no directed cycles.
egg.

Let $\Omega(G)=\left\{\begin{array}{l}\text { all acyclic orientations } w\} \\ \text { of } G\end{array}\right.$
Q: What $\# \Omega(G) P_{0}$

EXAMPLES:
(1) $S(G)=0 \Longleftrightarrow G$ has a loop.

To see why a couplers G has some orientation, number the vertices $1,2, \ldots, n$ and orient edges $i \underset{i}{\longrightarrow}$ with $i<\mathbb{Z} j$ as $\quad \begin{aligned} & 0>0 \\ & i\end{aligned}$
 since $i_{1}<i_{2}<\ldots<i_{k}$ so $i_{k} \not f_{z} i_{1}$
(2) Complete graphs K_{n}

$$
\begin{aligned}
& \# \Omega\left(K_{1}\right)=1=1!\quad \Omega\left(K_{2}\right)= \\
& \# \Omega\left(\underset{0}{0} K_{2}\right)=2=2!\left\{\begin{array}{lll}
0 \rightarrow 0 & 0<0 \\
1 & 2 & 1
\end{array}\right\} \\
& \# \Omega\left(K_{3}^{\prime}\right)^{2}=2^{3}-2=6=3!
\end{aligned}
$$

$$
\begin{aligned}
& \# \Omega\left(K_{w}\right) \overline{\overline{1}} \text { \#orderings of } V=\left\{1,2,3, \ldots n^{n}\right\} \\
& =n!\quad \text { transitive: } \\
& \text { not dovions! } \\
& \text { EXERCISE: }
\end{aligned}
$$

Show \exists some i with $i \rightarrow j$ for all j, and induct to get a linear ordering on $\left\{_{\{ }, 2, \ldots, n\right\}$

$$
\begin{aligned}
& \text { (3) } \\
& \Omega(\sqrt{0} 0)=\{\sqrt[3]{3}+0,0<0 \\
& \text { \{ } \\
& \# \Omega(0-0)=4
\end{aligned}
$$

PROPOSITION: Assume e is a non-loop of G.
Then $\# \Omega(G)=\# \Omega(G \backslash e)+\# \Omega(G / e)$
proof; Consider any acyclic orientation w of G Ne. How many ways can I extend w by choosing a direction on e to get an asdic orientation of G.

Gee

$$
\begin{aligned}
& \text { possible e has no } \\
& \text { when w has } \\
& v^{\prime} \rightarrow \ldots \rightarrow v \text { pith }
\end{aligned}
$$

Sometimes, w can only be directed one way, either $V \rightarrow V^{\prime}$ or $V^{\prime} \rightarrow v$
Can one ever have 0 ways?
No, because one would need both obstructions present in w on $G>e$

Now, calculate with:
$\alpha_{1}=\#$ acyl
$\alpha_{2}=$ Facyc. orientations of $C=$ that extend both ways.
THink $\bar{\pi}$ \#acyc. orientations of Ge

Now, calculate with:
$\alpha_{1}=\#$ acye. orientations of G eve that extend 1 way only
$\alpha_{2}=$ Facyc. orientation of Gee that extend both ways.
 Ge け!

$$
\# \Omega(G) \stackrel{\alpha_{1}}{ }+2 \alpha_{2}
$$

$$
\# \Omega(G \backslash e)=\alpha_{1}+\alpha_{2}
$$

$\# \Omega(G / e) \oplus \quad \alpha_{2}$

$$
\Rightarrow \# \Omega(G)=\# \Omega(G \backslash e)+\# \Omega(G / e)
$$

COROLLARY (Stanley's " (-1)-color throorevi")

$$
\begin{aligned}
& \text { corollary (Stanley's } \\
& \# \Omega(G)=(-1)^{\text {\#V }} X(G,-1) \\
& \text { proof: Induct on } \# E . \quad \text { BASE CASE \# } \#=000 \\
& \# \Omega(G)=1
\end{aligned}
$$

proof: Induct on \#E. BANCASE

$$
\begin{aligned}
& \# \Omega(G)=1 \\
& X(\sigma, k)=k^{n}
\end{aligned}
$$

$\left.(-1)^{*} x(\sigma, k)=k,-1\right)=(-1)^{n} \cdot(-1)^{n}=1$

COROLLARY (Stamley's (-1)-color theoravi")

$$
\# \Omega(G)=(-1)^{\# V} X(G,-1)
$$

proof: Induct on \#E. $\frac{B A S E(A S E}{\# \Omega(G)=1} \# E=0$

$$
\begin{aligned}
& x\left((\sigma, k)=k^{n}\right. \\
& x(r)=(-1)=1
\end{aligned}
$$

$(-1)^{*} \quad x(G,-1)=(-1)^{n} \cdot(-1)^{n}=1$
(NDUCTIVE STEP: Pick a nonloup edge e,

$$
\begin{aligned}
\# \Omega(G)= & \# \Omega(G \backslash e)+\# \Omega(G / e) \\
& =(-1)^{\# V} X(G-e,-1)+(-1) X(G / e,-1) \\
\text { by induction } & \# V[(a,-1)-X(G / e,-1)]
\end{aligned}
$$

$$
=(-1)^{\# V}[\chi(G) e,-1)-\chi(G(e,-1)]
$$

$$
=(-1)^{\not V^{L}} \times(6,-1)
$$

ExAPRPGE:
(2)

$$
\begin{aligned}
& X\left(K_{n}, k\right)=k_{n}(k-1)(k-2) \cdot \cdots(k-(n-1)) \\
& (-1)^{\# V} X\left(K_{n},-1\right)=(-1)^{n}(-1)(-2)(-3) \cdots(-n)=n!
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{3}(-1)(-2)^{2}=4
\end{aligned}
$$

Stable matchings
Example: The National Residency Matching Program (NRMP) matches graduating medical students to residency program slots, each with lists of preferences for each other, so that things are stable in the sense that one avoids a matched pair (S, r)
students an residencies

but S prefers r to r^{\prime} and r prefers S to S^{\prime}
How do they
do this?
They wed
Gale-
shaley
agon (rama)
since
(952! do this? They wed Galeshapley (900 (1962) sine 1952 !

REMARK: Also used in NYC school system for $8^{\text {th }}$ graders and high school slots. In 2012, Alvin Roth $\&$ Lloyd Shapley got Econ Nobel Prize for their wort on stable matching.

Lefts make some assumptions, then fix them later.
fix them later.
Assume n students and n residency
slots.
Assume each linearly orders all not the offerside.
ExAMPLE: Cosmeticpulmovology has only 4 slots, 4 students

$$
\begin{aligned}
& \text { students } \\
& (A, B, C, D)
\end{aligned}
$$

U. Minn. has two slots m_{1}, m_{2} Rochester-Mayo has 1 slot r 1 Harvard has 1 slot h with these preferences...

ExAMPLE: Cosmeticpulmonology has

$$
\text { only } 4 \text { slots, } 4 \text { students }(A, B, C, D)
$$

U. Minn. has two slots m_{1}, m_{2}

Rochester-Mayo has 1 slot r
Harvard has n slot h

$$
A=m_{1}, m_{2}, r, h
$$

with these preferences...

preferences

fake
howinde
student
indent Jr. Jekyll
The algorithm starts with "conditional matchings"

$$
\Omega=\text { Dr. }
$$

$$
\Omega-m_{n}
$$

$$
\begin{aligned}
& \Omega-m_{n} \\
& \Omega-m_{2}
\end{aligned} \quad[\text { all matched to } \Omega]
$$

$$
2-h
$$

In a cycle of the algorithm, a proposer S
starts out being unmatched and proposes to the highest residency r left on their list.

If r was matched to S^{\prime} that they prefer $60 S$ then they reject S, who cross r off their list, and continvesos proposer.
If r was matched bo S^{\prime} that they like worse than S, then they reject S^{\prime}, who crosses r off of the list, r conditionally matclowith S, and S^{\prime} becomes the new proposer.
The cycle ends when Ω is rejected (and doesnct cross off anyone,) doesn't became proposer.
The number k of non-Jekyll-matched slots increases by 1.
Algorithm stops in n cycles, when $k=n$.

$$
\begin{array}{l|l}
A: m_{1}, m_{2}, r, h & m_{1}: A, B, C, D, \Omega \\
B: m_{1}, m_{2}, h, r & m_{2}: A, B, C, D, \Omega \\
C: m_{1}, m_{2}, r, h & r: B, A, D, C, \Omega \\
D: r, m_{1}, m_{2}, h & h: B, C, A, D, \Omega
\end{array}
$$

Cycle 1:
$S=A$ proposes to m_{1}, rejecting Ω proposer cycleover, with

$$
\begin{aligned}
& A-m_{1} \\
& \Omega-m_{2} \\
& \Omega-r \\
& \Omega-h
\end{aligned}
$$

Cycle 2: $S=B$ proposes to m_{1}, who rejects B, as m, prefers A. B crosses m_{1} off their list $S=B$ proposes to m_{2}, who says conditional yes, rejecting Ω. Cycle over, with

$$
\begin{aligned}
& A-m_{1} \\
& B-m_{2} \\
& \Omega-r \\
& \Omega-h
\end{aligned}
$$

$$
\begin{aligned}
& A: m_{1}, m_{2}, r, h \\
& B: m_{1}, m_{2}, h, r \\
& C: m_{1}, h_{1}, r_{1}, h \\
& D: m_{1}: m_{1}, B_{1}, C_{1}, m_{1}, m_{1}, w_{2}, h, B_{1}, D_{1}, \Omega \\
& r: B, A, D, C, \Omega \\
& h: B, C, A, D, \Omega
\end{aligned}
$$

Cycle 3: $\delta=C$ proposes to m_{1}, rejected
$\delta=C$ proposes to m_{2}, rejected
$\delta=C$ proposes to r, conditionally accepter
Cycle over, with rejecting Ω

$$
\begin{aligned}
& A-m_{1} \\
& B=m_{2} \\
& C=-h \\
& \Omega-h
\end{aligned}
$$

Cycle 4: $S=D$ proposes bo r, who conditionally accepts them, rejecting C. $S=C$ proposes to h, who accepts, th rejecting Ω.
Cycle over with

$$
\begin{aligned}
& A=m_{1} \\
& B=m_{2} \\
& D=r \\
& C-h
\end{aligned}
$$

Does it work?
PROP: The a lgonithm never gets stuck, no student mus out of their list, and it finishes in $n^{2}+n$ steps (proposals).
proof: Notice that only Ω can be matched to multiple slots. So if a student S has crossed every slot offetheir list, then each of those slots rejected S and is matched to some real student and there are only $n-1$ other real students.

There are at most $n^{2}+n$ proposals since n of them end up with Ω being rejected, and all of the other proposals cause a slot to be crossed off someone's list. There are $\leq n \cdot n$ positions to cross off.

PROP: The matching produced is stable.
proof: KEY OBSERVATION:

- A residency slot's match only improves over twi.
- A student's match only gets worse over tome.
Now suppose we ended up with an unstable pair: (S, r)

$$
r \text { prefers } S \text { to } S^{\prime}
$$

S must never have proposed to r during the algorithm since the KEI OBSERVATION says r only saw proposals from students it liked less than S^{\prime}.
Since S matched with r^{\prime}, it must have crossed r off its list at some point. So S did propose to r. contradiction

REMARK: Gales shapley pointed (1962)
out that nonbpartite graphs \& preferences ('She roommate problem") can have no stable matehings

Example:
1,2,3,4 people
1 likes 2 best
2 likes 3 best
3 likes 1 best
and everybody hates 4, likes them worst.
No matching is stable:

mustable
pair

The Gqle-Shapley matching result has an interesting characterization:
Theorem:
Let S, r be matched in Gale -Shapley proposers
Then in any other stable matching M,
(i) if S is matched to some r^{\prime} in M, then S prefers r to r^{\prime}
(or r is at least as good as r^{\prime})
(ii) if r is matched to S^{\prime} in M, then r prefers δ^{\prime} to S Cor δ^{\prime} is at least as good as S)
In other words, Gale-Shapley gives, among all stable matching,

- the worst outcome for all residencies r
- the best outwore for all students S.

