Math 4707 Dec. 16, 2020 (Last day!!)

. (**)		•	
Ramsey nu	mbers	(see Wik	"Ramsey's Theorem")
Q: How woon woon that there 3 u or 3	n betore	ople need we can!	d to walk be sure
≤5 will	the ton I	fice:	
		5	2
quaintances itemgers	no monor	chromatic red or all blue)	triangles! K3

CLAIM: 6 is big enough, that is, if we wlor all the edges of K6 eitherred or blue, then there will always be a monochromatic triange K3

proof of CLAIM:

Look at person #1, and either they know 23 others or they don't know ≥3 others, since otherwise $\leq 2+2$ others

CASE 1: Person #1 knows 23 others.

CCAIM: 6 is big enough, that is, if we color all the edges of K6 eitherred or blue, then there will always be a monochromatic triangle K3 Look at person #1, and either

Look at person #1, and either
they know ≥3 others
or they don't know ≥3 others,
since otherwise ≤2+2 others
y < 5

CASE 1: Person #1 knows 23 others.

1 13

Subcase 1a: Some pair
among [2,3,43 knows
each other
This pair with 1 makes
a rea K3

Subcase 16: No pair ownong 123,43 knows each other.

CASE 2: Person #1 does not Then they make know > 3 others.

Same argument, supposing red Same argument, supposing red Same argument, supposing red Same argument, supposing red Same argument.

DET'N: The (2-color) Ramsey number R(k, l) for k, L = 2 is the smallest number in such that every red-blue 2-coloring of the edges of Kn leads to either a red Kk or ablue Ke inside it. We just showed R(3,3) = 6 complete or bueks
red k3 THEOREM (Ramsey 1930) Erdös-Szekeres [960) R(k,l) exists 4 k, 122, and satisfies R(k,2)=kR(2,l)=lR(k,l)= R(l,k) and $R(k,l) \leq \binom{k+l-2}{k-1} = \binom{k+l-2}{l-1}$

THEOREM (Rangy 1930)

Endos- Sections (1960)

$$R(k,l)$$
 exists $\forall k,l\geq 2$, and satisfies

 $R(k,2)=k=(k+2-2)=(k-1)$
 $R(2,l)=l=(2+l-2)=(k-1)$

and $R(k,l)=R(l,k)$

and $R(k,l)=(k+l-2)=(k+l-2)$

EXMAPLE We showed $R(3,3)=6$
 $=(3+3-2)=(4)$
 $=6$

proof of THM: $R(k,l)=R(l,k)$

comes from swapping the roles of red, blue.

 $R(k,2)=k$ says in a red-blue coloring of edges of K_k , either there is a blue edge (=blue K_2) or the whole thing is a red K_k .

By symmetry, $R(2,l)=l$.

To show
$$R(k,l) \stackrel{>}{\succeq} (k+l-2)$$

we'll actually show $R(k,l) \stackrel{>}{\succeq} R(k-1,l) + R(k,l-1)$

To see this implies the above bound, use induction on $k+l$

BAST CAST $k=l-2$ we checked $\stackrel{(*)}{\rightleftharpoons}$
 $R(k,l) \stackrel{\subseteq}{\sqsubseteq} R(k-1,l) + R(k,l-1)$

Replace $\stackrel{(k-1+l-1)}{\trianglerighteq} + \stackrel{(k+l-1-1)}{\thickspace} + \stackrel{(k+l-1-1)}{\thickspace} + \stackrel{(k+l-1-1)}{\thickspace} + \stackrel{(k+l-2)}{\thickspace} + \stackrel{($

Why does $R(k,l) \leq R(k-1,l) + R(k,l-1)$ Assume N = R(k-1, l) + R(k, l-1), and look in our red-blue asloving of edges of Kn at the numbers n'= # red edges emanating from n" = # blue edges emanating from Since n'+n"=n-1 2R(ku, l) + R(k, l-1)-1, n'=R(k-1,2) CASE) $n'' \geq R(k, k-i)$ CASE 2 is symmetric in red & blue 3

Accompanying the asymptotic for upper bound R(k,k) < 4, one can show THM (P. Frdös) R(k,k) = (J2)

Remotet Casymptotically in k so $(\sqrt{2})^k \in R(k,k) \leq 4^k$ but these bounds have not been (significantly) tightened since 1947! Enlös's proof was the first example of what is called the "Probabilistic method" the should that if $n < (J_2)^k$ (or some function like the should that if $n < (J_2)^k$ (or some function like roughly like that)

then a vandomly chosen red-blue along of edges of Kn has expected number of monochrometre K_k 's of Kn has expected number of monochrometre K_k 's lying between 0 = 1, but < 1. So some along her 0. in combinatorics.