$$
\text { Math } 4707 \text { Dec. } 16,2020 \text { (Last day!!) }
$$

Ramsey numbers (see Wikipedia entry on "Ramsey's Theorem")
Q: How many people need to walk into a coom before wecan be sure that there will ether be 3 mutual a cquaintances or 3 mutual strangers?
≤ 5 will not suffice:
egg.

acquaintances
strangers

CLAM: 6 is big enough, that is, if we cor all the edges of K_{6} either red or blue, then there will always be a monochromatic triande k_{3}

proof of CLAIM:
Look at person \#1, and either they know $\geqslant 3$ others or they donit know $\geqslant 3$ others, since ofhenvise $\frac{2+2}{4}<5$ others $4<5$
CASE 1: Person \#1 knows $\geqslant 3$ others.

CLAIM: 6 is big enough, that is, if we color all the edges of K_{6} eitherred or blue, then there will always be a monochromatic triande
proof of CLA,M:
Look at person \#1, and either they know $\geqslant 3$ others
or they don't know $\geqslant 3$ others,
since othemise $\frac{2+2}{4}<5$ others

$$
4<5
$$

CASE 1: Person \#1 knows $\geqslant 3$ others.

65

Subcase Aa: Some pair among $(2,3,4\}$ knows each other
This pair with 1 makes $a \operatorname{rek} K_{3}$
Subbase 26: No pair among $\{23,4\}$ knows each other.
CASE 2: Person \#1 dree r not
know ≥ 3 others.
Same argument, swapping red
$\&$ blue.
Then they make a blue K_{3}

DEF'N: The (2-color) Ramsey number $R(k, l)$ for $k, l \geq 2$ is the smallest number n such that every red-blue 2-coloning of the edges of K_{n} leads to either a red K_{k} or a blue K_{l} inside it.
We just showed $R(3,3)=6$

THEOREM (Ramsey 1930,
Erdös- Secerns
(960)
$R(k, l)$ exist $\forall k, l \geq 2$, and satisfies

$$
\begin{aligned}
& R(k, 2)=k \\
& R(2, l)=l \\
& R(k, l)=R(l, k)
\end{aligned}
$$

and $R(k, l) \leq\binom{ k+l-2}{k-1}=\binom{k+l-2}{l-1}$

THEOREM (Ramsey 1930)
$R(k, l)$ exist $\forall k_{1} l \geq 2$, and satisfies

$$
\begin{aligned}
& R(k, 2)=k=\binom{k+2-2}{k-1}=\binom{k}{k-1} \\
& \begin{array}{l}
R(k, l)=l=\left(2 f_{l-1}\right)=(l-1) \\
R(k, l)=R(l, k)
\end{array}
\end{aligned}
$$

and $R(k, l) \leq\binom{ k+l-2}{k-1}=\binom{k+l-2}{l-1}$
EXAMPLE We showed $R(3,3)=6$

$$
\begin{array}{r}
3,3)=6 \\
\leqslant\binom{ 3+3-2}{3-1}=\binom{4}{2} \\
=6
\end{array}
$$

proof of $T H M: \quad R(k, l)=R(l, k)$
comes from swapping the voles of red, blue.
$R(k, 2)=k$ says in a red-blue coloring of edges of K_{k}, ether there is a blue edge $\left(=b\right.$ blue K_{2}) or the whole thing is a red K_{k}.
By symmetry, $R(2, l)=l$.

To show $R(k, l) \stackrel{1}{\leq}(k+l-2)$
weill actually show \uparrow

$$
R(k, l) \leq R((k-1, l)+R(k,-1)
$$

To see chis implies the above bound, use induction on $k+l$
BASE CASE $k=l=2$ we checked holds.

INDUCTIVE STEP
by ${ }_{\text {manction }}\binom{k-1+l-1}{k-2}+\binom{k+l-1-1}{k-1}$
$\begin{aligned} & =\binom{k+l-2}{k-2}+ \\ \begin{array}{l}\text { Pascals } \\ \text { recurrence }\end{array} & =\binom{k+l-1}{k-1}\end{aligned}$
why does

$$
\begin{aligned}
& 1 \text { does } \\
& R(k, l) \leq R((k-1, l)+R(k, l-1) \text { hold? }
\end{aligned}
$$

Why does

$$
R(k, l) \leq R(k-1, l)+R(k, l-1)
$$

Assume $n \geqslant R(k-1, l)+R(k, l-1)$, and look in our red-blue coloring of edges of K_{n} at the numbers
$n^{\prime}=$ \# red edges emanating from vertex 1
$n^{\prime \prime}=$ \# blue edges emanating from vertex 1

Since $n^{\prime}+n^{\prime \prime}=n-1$

$$
\begin{aligned}
& =n-1 \\
& R(k-1, l)+R(k, l-1)-1
\end{aligned}
$$

either

$$
\begin{aligned}
& \text { either } \\
& n^{\prime} \geqslant R(k-1, l) \quad \text { CASE } 1 \\
& \text { or } \quad \text { or } \\
& n^{\prime \prime} \geqslant R(k, l-1) \quad \text { CASE } 2
\end{aligned}
$$

Assuming CASE 1, 1 has red edges to at least $R(k-1, l)$ verifies $\left\{v_{2}, v_{3}, \rightarrow, V_{R}(k-1, q)\right]$.
Ether N contains a red K_{k-1} which combines with to give a red K_{k}, or N contains a blue K_{l}.
CASE 2 is symmetric in red \&blue

EXERCISE: $R(3,4) \leq\binom{ 3+4-2}{3-1}=\binom{5}{2}$

$$
\begin{array}{r}
11 \\
9
\end{array}
$$

$$
=10
$$

What are the actual values of $R(k, l)$?
Vent few are known -
see the table on Wikipedia page on Ramsey's Theorem.
We don't know a formula for $R(3, l)$!
nor a formula for $R(k, k)$!
We donit even know their asymptotics!
For $R(k, k)$ we get an upper bound

$$
\begin{aligned}
& p(k, k) \leq\binom{ k+k-2}{k-1}=\binom{2(k-1)}{k-1}_{2 k-2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq 4^{k}
\end{aligned}
$$

Accompanying the asymptote F^{k} upper bound $R(k, k) \leqslant 4^{k}$, one can show
THC $\left(\begin{array}{l}\text { P. Erdös }) \\ 1947\end{array} \quad R(k, k) \geqslant(\sqrt{2})^{k}\right.$ Casymplotically
so $(\sqrt{2})^{k} \leq R(k, k) \leq 4^{k}$
but these bounds have not been (significantly) tightened since 1947!
Eris's proof was the first example of what is called the "Probabilistic method" in combinatorics.
He shoved that if $n<(\sqrt{2})^{k}$ cor some function lightly like this)
then a randomly chosen red-blue coloring of edges of K_{n} has expected number of monochromatic K_{k} 's lying bevieen 021 , but <1. So sow coloring has 0 .

