Math 4707 Sept. 28,2020
Some asymptotics/size estimation (book Sl.4, 2.2)

Digits
EXAMPLE: How many digits will

$$
\left[\left.\left\{\begin{array}{l}
\text { subsets of } \\
\left\{1,2, \rightarrow,^{n}\right\}
\end{array}\right] \right\rvert\,=2^{n}\right.
$$ have for large n ?

How many digits base ten does some positive integer x have?

$$
x \text { has } 3 \text { digits } \underset{\text { fend only if }}{\Longleftrightarrow} 10^{10} 0 \leq x<10^{1000}
$$ if and only if

$$
x \text { has } k \text { digits } \Longleftrightarrow 10^{k-1} \leq x<10^{k}
$$

How many digits base ten does some positive integer x have?
x has 3 digits $\Longleftrightarrow 10^{10^{2}} \Longleftrightarrow 10^{10^{3}}$
fond only if
x has kdigits $\Longleftrightarrow 10^{k-1} \leq x<10^{k}$

$$
\stackrel{\log _{10}\left(10^{k-1}\right)}{(11}\left(\log _{k-1}(x)<\log _{10_{11}}\left(10^{k}\right)\right.
$$

is strictly
mereaing

$$
\Leftrightarrow \quad k-1 \leq \log _{1}(x)<k
$$

$$
\Leftrightarrow k \leq 1+\log _{10}(x)<k+1
$$

$$
\Longleftrightarrow k=\left\{1+\log _{10}(x)\right\rfloor
$$

$$
\Leftrightarrow k=1+\left[\log _{10}(x)\right]
$$

$$
\begin{aligned}
{[x] } & =\text { floor of } x^{"} \\
& =\text { greatest integer } \leq x \\
& =\text { "x rounded down" }
\end{aligned}
$$

$T x T=$ "ceilngot x "
$=$ "x rounded $u p$ "

$$
x \text { has } k \text { digits } \Longleftrightarrow k=1+\left[\log _{10}(x)\right]
$$

so 2^{n} has $1+\left[\log _{1}\left(2^{n}\right)\right]$ digits base ten

$$
=1+\left\lfloor n \log _{10}(2)\right\rfloor
$$

Some comparisons
Let $[n]:=\{1,2, \ldots, n\}$, and lets compare as n gets large the size of...

$$
\begin{aligned}
& \text { \{subsets of }[n]\} \quad 2^{n} \\
& {\left[\begin{array}{c}
\text { s-element subsets } \\
\text { of }[n]
\end{array} \quad\binom{n}{5}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (why?) } \quad \text { permutations of }[n]\} \quad n!
\end{aligned}
$$

PROPOSITIION: For n large,

$$
\binom{n}{5} \stackrel{(1)}{\leq}\binom{n}{n / 2} \stackrel{(21)}{\leq} 2^{n} \stackrel{(3)}{\leq} n!
$$

$\left.\begin{array}{c}\delta \text {-element } \\ \text { subsets } \\ n / 2 \\ \text { subjects }\end{array}\right\}$ permutation
proof: This should be dear enough.
To prove (1), look at binomial coefficients ($\left.\begin{array}{l}n \\ k\end{array}\right)$ with n fixed
e.g.
$n=6$$\quad\binom{6}{0} \quad\binom{6}{1}\binom{6}{2}\left(\begin{array}{l}6 \\ 6 \\ 3\end{array}\right)\binom{6}{4}\binom{6}{5}\binom{6}{6}$

$$
1 \leq 6 \leq 15 \leq 20 \geq 15 \geq 6 \geq 1
$$

round guess $\binom{n}{k} \leq\binom{ n}{k+1}$ if $k \leq \frac{n-1}{2}$
so lefts check this:

To prove: $\binom{n}{k} \leq\binom{ n}{k+1}$ if $k \leq \frac{n-1}{2}$

$$
\begin{aligned}
& \begin{array}{c}
\text { daride } \\
n!
\end{array} \Longleftrightarrow \frac{n!}{k!(n-k)!} \leq \frac{n!}{(k+1)!(n-k-1)!} \\
& \frac{n!}{k!(n-k)!} \Leftrightarrow \frac{1}{n-k} \leq \frac{1}{k+1} \\
& \left.\begin{array}{c}
\text { muth } b y) \\
(b-k)(x)
\end{array}\right) \\
& \Longleftrightarrow \quad k+1 \leq n-k \\
& \Longleftrightarrow \quad 2 k \leq n-1 \\
& \Leftrightarrow \quad k \leq \frac{n-1}{2}<
\end{aligned}
$$

To prove $2^{n} \leq n$!, it's false for $n \leq 3$

INDUCTIVE SEEP: Given $2^{n} \leq n$!

$$
\left(2^{n}<n!\right)
$$

then $2^{n+1}=2-2^{n} \leq 2 \cdot n!\leq(n+1) \cdot n!=(n+1)!$
by inductive hypothesis

$$
\text { since } 2 \leq n+1 \quad \text { (as } n \geq 4 \text {) }
$$

Werve shown for nlaurge

$$
\binom{n}{5} \leq\binom{ n}{n / 2} \leq 2^{n} \leq n!
$$

but really how quickly do they grow as a function $\frac{\text { of } n \text { ? }}{\text { ? }}$

$$
\binom{n}{5}<\binom{n}{n / 2}=\frac{n!}{\left(\frac{n}{2}!\right)^{2}} \underset{\text { sin }}{\approx} \frac{\text { below }}{\sqrt{2 / \pi}} \sqrt{\sqrt{n}} 2^{n}
$$

Hus problem:
$\frac{n^{5}}{5^{5}} \leq\binom{\frac{n}{5}}{5} \leq \frac{n^{5}}{5!}$, so $\binom{n}{5}$ grows like $C \cdot n^{5}$

$$
\begin{aligned}
& \text { In fact, it grows more like } \\
& \frac{n 5}{120} \text { since it's } \frac{n(n-1)(n-2)(n-3)(n-1)}{120}
\end{aligned}
$$

We need the approximation for n !
$\frac{\text { THEOREM }}{(2.2 .1)}$ (Stirling's formula)
Fornlarge, $n!\approx\left(\frac{n}{e}\right)^{n} \cdot \sqrt{2 \pi n}$

$$
\lim _{n \rightarrow \infty} \frac{n!}{\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}}=1
$$

COROLARY:

$$
\binom{n}{n / 2}_{\text {Sorring }} \stackrel{\sqrt{2}}{\frac{2}{\pi}} \frac{2^{n}}{\sqrt{n^{2}}}
$$

$$
\begin{aligned}
& \begin{aligned}
&\binom{\text { proof: }}{n / 2}= \frac{n!}{\left(\frac{n}{2}!\right)^{2}} \approx \frac{\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}}{\left[\left(\frac{n / 2}{e}\right)^{n / 2} \sqrt{2 \pi \cdot \frac{n}{2}}\right]^{2}} \\
&= \frac{n^{n}}{e^{n}} \sqrt{2 \pi n} \\
&\left(\frac{n}{2 e}\right)^{n} \pi n
\end{aligned} \\
& = \\
& =\frac{2^{n} \cdot \frac{\sqrt{2 \pi n}}{\pi n}}{\sqrt{n}} \sqrt{\frac{2}{\pi}} \quad \text { 而 }
\end{aligned}
$$

Chap 3 Binomial, multinomial osefficients \&identities

PROPORTION:

$$
\underbrace{(x+y)^{n}}_{\text {isabmomial }}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

and more generally
proof: Why is $(x+y)^{5}=\ldots+\binom{5}{2} x^{2} y^{3}+\ldots$?

$$
(x+y)(x+y)(x+y)(x+y)(x+y)
$$

$$
\begin{aligned}
& \text { prot } 2 \text { parentheses } \\
& \text { to take } \times \text { not, }
\end{aligned}
$$

to take x not y; pict y in the rest

$$
\begin{aligned}
& (\underbrace{x_{1}+x_{2}+\ldots+x_{l}}_{\text {amnitinomial }})^{n}=\sum_{\left(k_{1}, k_{2}, \ldots, k_{l}\right) \in \mathbb{l}}\left(k_{1} k_{2}^{n} \cdots k_{l}\right) x_{1}^{k_{1}} x_{2}^{k_{2}} \ldots x_{l}^{k_{l}} \\
& \left(k_{1}, k_{2},-k_{e}\right) \in \mathbb{Z}_{\geq 0} \\
& k_{1}+k_{2}+\ldots+k_{l}=n \underbrace{}_{\begin{array}{c}
\text { the nonnegative } \\
\text { integers }
\end{array}} \\
& n=5
\end{aligned}
$$

To prove

$$
\begin{aligned}
& (\underbrace{x_{1}+x_{2}+\ldots+x_{l}}_{\text {amultiomial }})^{n}=\sum_{\left(k_{1}, k_{2},-, k_{l}\right) \in \mathbb{Z} \geq 0}\left(k_{1} k_{2}^{n} \cdots k_{l}\right) x_{1}^{k_{1} x_{2}^{k_{2}} \ldots x_{l}^{k_{l}},} \\
& k_{1}+k_{2}+\ldots+k_{2}=n \underbrace{}_{\begin{array}{c}
\text { the nonnegative } \\
\text { integers }
\end{array}}
\end{aligned}
$$

why is

$$
\begin{aligned}
& \text { why is } \\
& \left(x_{1}+x_{2}+x_{3}\right)^{n}=\sum_{\left(k_{1}, k_{2}, k_{3}\right) \in \mathbb{2}}\left(k_{20} \hat{k}_{2} k_{3}\right) x_{1}^{k_{1}} x_{2}^{k_{2} x_{3}^{k_{3}} ?} \\
& k_{1}+k_{2}+k_{3}=n
\end{aligned}
$$

choose
k_{3} parentheses to pict x_{3}
Same as picking a word of length n with $\left.b_{k}, x_{1}^{\prime}, s, i(k, y) b s\right)$

Math 4707 Sept. 30,2020

PROPOSITION:

$$
(x+y)^{n}=\sum_{k=0}^{n} \underbrace{\binom{n}{k}}_{\substack{\text { binomial } \\ \text { coefficient }}} x^{k} y^{n-k}
$$

Moregenerally,

$$
\begin{gathered}
\text { More generally) } \\
\begin{array}{c}
\left(x_{1}+x_{2}+\ldots+x_{l}\right)^{n}=\sum_{\left(k_{1}, k_{2},->k_{l} l \in \mathbb{Z}\right.}\left(\begin{array}{c}
n \\
\left.k_{1} k_{2}-\cdots k_{l}\right)
\end{array} x_{1}^{k_{1}} x_{2}^{k_{2}} \ldots x_{l}^{k_{l}}\right. \\
k_{1}+k_{2}+\ldots+k_{l}=n
\end{array}
\end{gathered}
$$

Some consequences...
Set $y=1$ to get $_{n}$

Set $y=1$ to get

Let's take $d / d x$ to get

$$
n(x+1)^{n-1}=\sum_{k=1}^{n}\binom{n}{k} k x^{k-1}
$$

and then set $x=1$, to get a new identity:

$$
n 2^{n-1}=\sum_{k=0}^{n}\binom{n}{k} k
$$

Pascal's recurrence er triangle
PROPORTION:

$$
\left\{\begin{array}{l}
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} \text { for } 1 \leq k \leq n \\
\binom{n}{0}=1 \\
\binom{n}{n}=1
\end{array}\right.
$$

proof: Why is $\binom{n}{k}=\underbrace{\binom{n-1}{k}}+\underbrace{\binom{n-1}{k-1}}$ follows from SUM PRINCE

More identities with combinatorial proofs

(1)

$$
\sum_{k=0}^{n} \underbrace{n}_{\substack{n \\ k \\ k \\ k}} \cdot\binom{n}{k}^{2}=\binom{2 n}{n}
$$

$$
\begin{aligned}
& n=3 \\
& \binom{3}{0}^{2}+\binom{1}{1}^{2}+\binom{3}{2}^{2}+\binom{3}{3}^{2}=
\end{aligned}
$$

\# \# wales $(0,0) 6(k, n+k)$ from $(0,0)$ to (n, n)

$$
1^{2}+3^{2}+3^{2}+1^{2}=
$$ taking N, E steps

$$
20=\binom{\varphi}{3}
$$

(2) $p_{k}\binom{n}{k}=n \underbrace{\binom{n-1}{k-1}}_{1}$
can be proven by counting in 2 ways the number of choices of a k-person committee the 1 pick chair k-person chair pick other committee fair other committee from n people.

The birthday paradox
Whatis the chance that in a com of $40=n$ people there are at least two people with the same birthday out of 365 days? How large does n need to be in order to make the chance $\geq 50 \%$?

Easiest to calculate

$$
\begin{aligned}
& \text { PROB (} \left.\begin{array}{c}
\text { no two same } \\
\text { birtindays } \\
\text { annong the to people }
\end{array}\right)=\frac{\begin{array}{c}
\text { chines of distinct } \\
\text { birendoys tor woople }
\end{array}}{\text { \#choices of birthdays }} \\
& \text { for } 40 \text { people } \\
& =\underbrace{\frac{365 \cdot 364 \cdot 363 \cdots(365-39)}{865 \cdot 365 \cdot 865 \cdots 365}}_{40 \text { sem }} \\
& =\frac{365}{365} \cdot \frac{364}{365} \cdot \frac{363}{365} \cdots \cdot \frac{365-39}{365} \\
& =\left(1-\frac{0}{365}\right)\left(1-\frac{1}{365}\right)\left(1-\frac{2}{365}\right) \cdots\left(1-\frac{39}{365}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { PROB }\left(\begin{array}{c}
\text { no two same } \\
\text { bivendayss } \\
\text { annong the nco people }
\end{array}\right) \\
& =\left(1-\frac{0}{365}\right)\left(1-\frac{1}{365}\right)\left(1-\frac{2}{365}\right) \cdots\left(1-\frac{39}{365}\right) \\
& \underbrace{\substack{39 \\
\text { number }}}_{\text {a small positive }} x=\frac{39}{365}
\end{aligned}
$$

Q: How to approximate $9-x$ for x small positive?
CLAIM: $1-x \approx e^{-x}$ for x small positive $1-x \leq e^{-x}$ for x small positive

$$
\begin{aligned}
& l(x)=1-x \\
& \text { CLAM } \\
& \Rightarrow \operatorname{PROB}\binom{\text { all didunt }}{\text { bithdays }}=\left(1-\frac{0}{365}\right)\left(1-\frac{1}{365}\right) \cdots\left(1-\frac{39}{365}\right) \\
& \leq e^{-\frac{0}{365} \cdot e^{-\frac{1}{365}} \cdots e^{-\frac{39}{365}}} \\
&=e^{\frac{-(0+1+2+\ldots+39)}{365}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{PROB}\binom{\text { all didinct }}{\text { bibddass }}=\left(1-\frac{0}{365}\right)\left(1-\frac{1}{365}\right) \cdots\left(1-\frac{39}{365}\right) \\
& \leq e^{-\frac{0}{365} \cdot e^{-\frac{1}{365}} \cdots \cdot e^{-\frac{39}{365}}} \\
& =e^{\frac{-(0+1+2+\ldots+39)}{365}} \\
& \begin{array}{l}
\text { Exercise. } \\
\text { of } 1+2+\ldots+(n-1)
\end{array} \\
& =\frac{n(n-1)}{2} \\
& =\binom{n}{2} \\
& =\frac{n^{2}-n}{2} \\
& \text { So ProB of } \\
& \begin{array}{c}
\text { a bitinday } \\
\text { concricthre }
\end{array} \geqslant 1-0.12 \\
& \text { for to } \\
& =0.88
\end{aligned}
$$

In general, givess n people $-\frac{\binom{n}{2}}{215}$ $\operatorname{PROB}\binom{$ notro binthdayss }{ same }$\leq e^{\frac{(2)}{365}}$
To get $\geqslant 50 \%$ of birtenday wincidence,
need $e^{-\binom{n}{2} / 365} \leq \frac{1}{2}$ ake $\log _{e}(-)$

$$
\begin{aligned}
& -\binom{n}{2} / 365 \leq \ln \left(\frac{1}{2}\right) \\
& -\binom{9}{2} \leq 365 \ln \left(\frac{1}{2}\right)=-365 \ln (2)
\end{aligned}
$$

$$
\begin{gathered}
-\binom{n}{2} \leq 365 \ln \left(\frac{1}{2}\right)=-365 \ln (2) \\
\binom{n}{2} \geq 365 \ln (2) \\
\frac{n^{2}-n}{2} \geq 365 \ln (2)
\end{gathered}
$$

\iint approximately

$$
\begin{aligned}
\frac{n^{2}}{2} & \geqslant 365 \ln (2) \\
\sqrt{\cdot}\left\{\begin{array}{l}
n^{2}
\end{array} \begin{array}{l}
2.365 \ln (2) \\
n
\end{array}\right. & \geqslant \sqrt{2 \cdot \ln (2) \cdot 365} \approx 22.5
\end{aligned}
$$

In general, replacing 365 by N, one needs $n=\#$ trials of samplingfiom N possibilities to have $n \geqslant \sqrt{2 \ln (2) \cdot N} \approx \sqrt{N}$ before expecting a repent among the samples.

Math 4707 Oct 5,2020
Catalan numbers - not in the book, but see handout by D. White on syllabus.
How many block walks from $(0,0)$ to (n, n) taking units steps N or f stay weakly above the line $y=x ?$

THEOREM
The numberotblock walks from $(0,0)$ to (n, n) taking units steps N or f stay weakly above the fine
called the $n^{\text {th }}$ Catalan number
is $C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\frac{1}{2 n+1}\binom{2 n+1}{n}$

$$
\begin{aligned}
& =\frac{1}{n}\binom{2 n}{n-1}=\frac{(2 n)!}{n!(n+1)!} \\
& =\binom{2 n}{n}-\binom{2 n}{n-1}
\end{aligned}
$$

WROLLARY
What's the probability that a cualk firm $(0,0)$ to (n, n) taking N, \in steps stays weakly above $y=x$?

$$
\frac{C_{n}}{\text { \# of wallestotal }}=\frac{\frac{1}{n+1}\binom{2 n}{n}}{\binom{2 n}{n}}=\frac{1}{n+1}
$$

proof: Let's prove the formula $C_{n}=\binom{2 n}{n}-\binom{2 n}{n-c}$ using a combination of difference t bijection principle:

Picture:

reflect the initial part of the rete path Cupto the lot contact with $y=x-1$) across $y=x-1$

$$
\begin{aligned}
& =\binom{2 n}{n}-\binom{n-1+n+1}{n-1} \\
& (t,-1) \text { to }(n, n) \\
& n-1 \text { houizuntal } \\
& n+1 \text { vertical } \\
& \text { steps } \\
& =\frac{(2 n)!}{n!n!}-\frac{(2 n)!}{(n-1)!(n+1)!} \\
& =\frac{(2 n)!}{(n-1)!n!}\left[\frac{1}{n}-\frac{1}{n+1}\right]=\frac{(2 n)!}{(n-1)!n!}\left[\frac{n}{n(n+1)}\right]=\frac{(2 n)!}{n!(n+1)!}
\end{aligned}
$$

Chapter 4 Fibonacci numbers
Sometimes a sequence of numbers comes to you by a recurrence and mitial conditions, as M...
Fibonacci's recurrence

$$
F_{n+1}=F_{n}+F_{n-1} \quad \text { for } n \geqslant 1
$$

with initial condition $F_{0}=0$

$$
F_{2}=1
$$

$$
F_{2}=F_{1}+F_{0}=1+0=1
$$

leading to a tabulation

Guess.
PROPOSITION: $F_{3 m}$ is even $F_{3 m+1}, F_{3 m+2}$ are odd
proof: Induct on m.
BASE CASE: $m=0$

$$
\begin{aligned}
& F_{3 \cdot 0}=F_{0}=0 \text { even } \\
& F_{30+1}=F_{1}=1 \text { odd } \\
& F_{3 \cdot 0+2}=F_{2}=1 \text { odd }
\end{aligned}
$$

INDUCTIVE STEP: Assume it for $m-1, m-2,-$ and prove it for m :

$$
\begin{aligned}
F_{3 m} & =F_{3 m-1}+F_{3 m-2} \\
& =\underbrace{F_{3(m-1)+2}}_{\begin{array}{c}
\text { odd by } \\
\text { induction }
\end{array}}+\underbrace{F_{3(m-1)+1}}_{\begin{array}{c}
\text { odd by } \\
\text { induction }
\end{array}} \\
& =\text { even }
\end{aligned}
$$

$$
\text { Check } \begin{aligned}
F_{3 m+1} & =\underbrace{F_{\begin{array}{c}
\text { odd } \\
\text { byinduction }
\end{array}}^{F_{3(m-1)+2}}}_{\begin{array}{c}
\text { even } \\
\text { by the } \\
\text { case } \\
\text { just } \\
\text { done! }
\end{array}}+\underbrace{F_{3 m}}_{3 m-1} \\
& =\text { odd } \checkmark
\end{aligned}
$$

$F_{3 m+2}$ case is similar
We also guessed...
PROPOSITION: $F_{\text {sm }}$ is divisible by 5 .
proof: Induct on m. BASE CASE $m=0$

$$
F_{5.0}=F_{0}=0
$$

INDUCTIVE STEP: Assume it for smaller m

$$
\begin{aligned}
F_{5 m} & =F_{s m-1}+F_{5 m-2} \\
& =F_{s m-2}+F_{5 m-3}+F_{s m-3}+F_{5 m-4} \\
& =F_{5 m-2}+2 F_{s m-3}+F_{s m-4} \\
& =3 F_{5 m-3}+2 F_{5 m-4}
\end{aligned}
$$

PROPOSITION: $F_{5 m}$ is divisible by 5 .
proof: Induct on m. BASE CASE $m=0$

$$
F_{5.0}=F_{0}=0
$$

INDUGINE STEP: Assume it for smaller m

$$
\begin{aligned}
F_{5 m} & =F_{5 m-1}+F_{5 m-2} \\
& =F_{5 m-2}+F_{5 m-3}+F_{5 m-3}+F_{5 m-4} \\
& =F_{5 m-2}+2 F_{5 m-3}+F_{5 m-4} \\
& =3 F_{5 m-3}+2 F_{5 m-4} \\
& =3\left(F_{5 m-4}+F_{5 m-5}\right)+2 F_{5 m-4} \\
& =\underbrace{5 F_{5 m-4}}_{\text {divisible }}+3 \underbrace{\underbrace{5(m-1)}_{5 m-5}}_{\text {by } 5} \underbrace{}_{\text {by induction }} \\
& =\text { divisible by s mys }
\end{aligned}
$$

${ }_{11}$ divides $F_{\text {sm }}$
F_{5}
2 divides $F_{3 m}$
F_{3}
13 divides $F_{2.7}=F_{14}=377=13.29$
$F_{7}^{\prime \prime}$
GUESS: F_{k} drides $F_{k m}$ for $k, m \geq 0$.

THEOREM: More generally $F_{k} \mid F_{k m}$.
proof: LEMMA: $\forall a, b \geqslant 0$

$$
F_{a+b+1}=F_{a+1} F_{b+1}+F_{a} F_{b}
$$

How would LEMMA prove the THEOREM?
By induction on m,
with BASE CASE $m=1$: $F_{k} \mid F_{k}{ }^{\prime}$ and INDUCTIVE STEP:

$$
\begin{aligned}
& \text { Write } n=k m=a+b+1 \\
& =k(m-1)+(k-1)+1 \\
& F_{n}=F_{k m}=F_{a+b+1}=F_{a+1} F_{b+1}+F_{a} F_{b}
\end{aligned}
$$

$$
\begin{aligned}
& =\text { risible by } F_{k}
\end{aligned}
$$

