Note: There are two resources in PDF on generating functions on the syllabus: one by G. Musiker (miro)
s. Hopkins (exercises)

Fibonacci numbers
recurrence $F_{n+1}=F_{n}+F_{n-1}$ for $n \geq 1$

$$
\begin{aligned}
& \text { initial } \\
& \text { conditions }
\end{aligned}\left\{\begin{array}{l}
F_{0}=0 \\
F_{1}=1
\end{array}\right.
$$

Noted that

$$
\begin{aligned}
& \text { Nodded } \\
& 2 \mid F_{3 m} \text { is even } \\
& F_{3} \\
& I
\end{aligned}
$$

${ }_{71}{ }^{\prime \prime} F_{5 m}$ is drisible by 5

m	$F n$
0	0
1	1
2	1
3	2
4	3
5	5
6	8
7	13
8	21
9	34
10	55

$F_{5}^{\prime \prime} \quad$ Guessed: $F_{k} \mid F_{k m} \forall m \geq 1$

THEOREM: $F_{k} / F_{k m}$ for $k, m \geqslant 1$ proof: We deduce it from
LEMMA: $F_{a+b+1}=F_{a+1} F_{b+1}+F_{a} F_{b}$ for $a, b \geqslant 0$
via choosing

$$
\begin{aligned}
& a:=k(m-1) \\
& b:=k-1
\end{aligned}
$$

then lemmasays

$$
\begin{aligned}
& \text { Lemma says } \\
& F_{a+b+1}=F_{a+1} F_{b+1}+F_{a} F_{b} \\
& =F_{11}
\end{aligned}
$$

If remains to prove the LEMMA,

LEMMA: $F_{a+b+1}=F_{a+1} F_{b+1}+F_{a} F_{b}$ for $a, b \geqslant 0$
Lett check the mstances

$$
a=0 \text { : }
$$

$$
F_{b t 1}=F_{i} \cdot F_{b+1}+F_{0} F_{b}
$$

$$
\begin{aligned}
& =T_{1} \cdot T_{b+1}++_{0} \cdot b \\
& =F_{b+1} \text { says usthing! }
\end{aligned}
$$

$$
\begin{aligned}
& a=1: \quad F_{b+2}=F_{2} F_{b+1}+F_{1} F_{b} \\
& F_{b+1}+F_{b} \text { is }
\end{aligned}
$$

$$
\begin{aligned}
& b+2=F_{2} F_{b+1}+F_{1} b \\
& F_{b+2}=F_{b+1}+F_{b} \text { is the original } \\
& \text { veurence }
\end{aligned}
$$ veurence

$a=2:$

$$
\begin{aligned}
& F_{b+3}=F_{3} F_{b+1}+F_{2} F_{b} \\
& F_{b+3}=2 F_{b+1}+F_{b} \text { seems new } \\
& F_{b+2}^{\prime \prime}+F_{b+1} \\
& F_{b+1}^{\prime \prime}+F_{b}+F_{b+1}
\end{aligned}
$$

proof of LEMMA: Let's use induction on a, so fix a and prove the assertion $\forall b \geqslant 0$ BASE CASE: $a=0$ We checked $\forall b$ it says $F_{b+1}=F_{b+1}$

INDUGIVE STEP: Assuming waive proven $F_{a+b+1}=F_{a+1} F_{b+1}+F_{a} F_{b}$
\& smaller values of a, and all b.
and now prove it:

$$
F_{a+b+1}=\underbrace{F_{\text {Vale }}^{(a-1)}}_{\text {Smaller }}+(\underbrace{(b+1)}+1
$$

$$
\underbrace{(a-1)+}_{\substack{\text { Smaller } \\ \text { of a } \\ \text { on f }}}
$$

$$
\begin{aligned}
& \text { inductive } \\
& \text { hypothesIS } \\
& =F_{a} F_{b+2}+F_{a-1} F_{b+1}
\end{aligned}
$$

$$
\stackrel{\downarrow}{=} F_{a} F_{b+2}+F_{a-1} F_{b+1}
$$

$$
=F_{a}\left(F_{b+1}+F_{b}\right)+F_{a-1} F_{b+1}
$$

$$
=\left(F_{a}+F_{a-1}\right) F_{b+1}+F_{a} F_{b}
$$

$$
=F_{a+1} F_{b+1}+F_{a} F_{b}
$$

Q: How quickly do F_{n} grow as $n \rightarrow \infty$? linear? quadratic??
geomefuc? $a, a_{1}, a r^{2}, a r^{3}, \ldots$? $\frac{F n+1}{F} \frac{2}{1}, \frac{3}{2}, \frac{5}{3} \frac{8}{5}$, $\frac{n_{5}^{2}}{51} \frac{1}{13},-$
$\binom{$ P }{0} formula for F_{n}
Well get this formula by considering
a

$$
\begin{aligned}
& \text { powersenies } \\
& \begin{aligned}
& f(x)=F_{0} \cdot x^{0}+F_{1} \cdot x^{n}+F_{2} \cdot x^{2}+F_{3} \cdot x^{3}+\ldots \\
&=\sum_{n=0}^{\infty} F_{n} x^{n} \\
&=0 \cdot x^{0}+1 \cdot x^{1}+1 \cdot x^{2}+2 \cdot x^{3}+3 \cdot x^{4}+5 x^{5}+8 x^{6}+\cdots
\end{aligned}
\end{aligned}
$$

called the generating function for
the sequence $\left\{F_{n}\right\}_{n=0,1,2,}$.
e.g. $a_{n}=2^{n}=\#$ subsets of $\left\{1,2, m^{n}\right\}$
has generating function

$$
\begin{aligned}
& \text { has generating function } \\
& \begin{aligned}
& a(x)=2^{0} \cdot x^{0}+2^{1} \cdot x^{1}+2^{2} \cdot x^{2}+2^{3} \cdot x^{3}+\cdots \\
&=1+2 x+4 x^{2}+8 x^{3}+\cdots \\
&=\frac{1}{1-2 x} \\
& \begin{array}{l}
\text { a+artar } a^{2}+a^{3}+\ldots \\
=\frac{a}{1-r}
\end{array}
\end{aligned} .
\end{aligned}
$$

e.g. Fix n, and consider

$$
\begin{array}{ll}
1 & b_{k}=\binom{n}{k} \\
11 & \binom{n}{0}\binom{n}{121},\binom{n}{2}, \ldots,\binom{n}{n}
\end{array}
$$

14641 Then
15101051

$$
\begin{aligned}
& b(x)=\binom{n}{0} x^{0}+\binom{n}{1} x^{1}+\binom{n}{2} x^{2}+\ldots+\binom{n}{n} x^{n} \\
& d / d x \text {, then } x=1 \\
& =(x+1)^{n} \\
& \left\{x=1 \quad Z_{1} x=-1 \quad n 2^{n-1} \sum k_{k}^{n}\right. \\
& 2^{n}=\sum\binom{n}{k} \quad 0=\sum(-1)^{k}\binom{n}{k}
\end{aligned}
$$

THEOREM: Fibonacci \#'s \{Fn\} have
(a)

$$
\begin{aligned}
& \text { HEOREM: Fibonacci } \begin{aligned}
& f(x)=\sum_{n=0}^{\infty} F_{n} x^{n}=0 \cdot x^{0}+1 \cdot x^{1}+1 \cdot x^{2}+2 x^{3} \\
&+5 x^{4}+\cdots \\
&= \frac{x}{1-x-x^{2}}
\end{aligned}
\end{aligned}
$$

(b) ... and from the se we will deduce

$$
\begin{aligned}
& F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\beta^{n}\right) \text { where } \\
& \phi=\frac{1+\sqrt{5}}{2} \approx 1.618 \ldots=\text { golden }>1 \\
& \beta=\frac{1-\sqrt{5}}{2} \approx-0.618 \ldots,(\beta)<1
\end{aligned}
$$

THEOREM: Fibonacci\#'s $\left\{F_{n}\right\}$ have
(a)

$$
\begin{aligned}
& \text { HEOREM: Fibonacci an } \begin{array}{l}
f(x)=\sum_{n=0}^{\infty} F_{n} x^{n}=0 \cdot x^{3}+1 \cdot x^{1}+1 \cdot x^{2}+2 x^{3} \\
+5 x^{4}+\cdots \\
=\frac{x}{1-x-x^{2}}
\end{array}
\end{aligned}
$$

(b) ... and from the se we will deduce

$$
\begin{aligned}
& \text { ad from the se we whee } \\
& \begin{array}{l}
F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\beta^{n}\right) \text { where } \\
\quad \phi=\frac{1+\sqrt{5}}{2} \approx 1.618 . .=\text { golden }>1 \\
\beta=\frac{1-\sqrt{5}}{2} \approx-0.618 . ., \quad|\beta|<1
\end{array}
\end{aligned}
$$

(c) ... and hence $\quad F_{n} \approx \frac{1}{\sqrt{5}} \phi^{n}$ as $n \rightarrow \infty$
and $\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\varnothing=$ golden ratio.
In fact, $F_{n}=\left[\frac{1}{\sqrt{5}} \phi^{n}\right] \quad \forall n \geqslant 0$
C rounding
or nomest-nteger function

$$
=\left\lfloor\frac{1}{\sqrt{5}} \phi^{n}+\frac{1}{2}\right\rfloor
$$

ASIDE

$$
\begin{aligned}
& \frac{D E}{\phi}=\frac{1+\sqrt{5}}{2}=\frac{\text { golden ratio }}{7} \\
& B=\frac{1-\sqrt{5}}{7}
\end{aligned}
$$

$$
\begin{aligned}
& \Phi=\frac{1+\sqrt{5}}{2}=\frac{\text { golden ratio }}{7} \\
& \beta=\frac{1-\sqrt{5}}{2} \quad \text { supposedly most pleasing }
\end{aligned}
$$

$$
\frac{x}{1}=\frac{1}{x-1}
$$

$$
x(x-1)=1
$$

$$
x^{2}-x=1
$$

$$
x^{2}-x-1=0
$$

$$
x=\frac{+1 \pm \sqrt{(-1)^{2}-4 \cdot 1(-1)}}{2}
$$

$$
=\frac{1 \pm \sqrt{5}}{2}=\{\phi, \beta\}
$$

THEOREM: Fibonacci \#'s \{Fn\} have
(a)

$$
\begin{aligned}
& \text { HEOREM: Fibonacci } \begin{array}{l}
f(x)=\sum_{n=0}^{\infty} F_{n} x^{n}=0 \cdot x^{2}+1 \cdot x^{1}+1 \cdot x^{2}+2 x^{3} \\
+5 x^{4}+\cdots \\
=
\end{array} \\
& \begin{array}{l}
1-x-x^{2}
\end{array}
\end{aligned}
$$

proof:

(b) $f(x)=\frac{x}{1-x-x^{2}}$
from these ce will deduce
$F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\beta^{n}\right)$ where

$$
\begin{aligned}
& \phi=\frac{1+\sqrt{5}}{2} \approx 1.618 \ldots=\underset{\text { radio }}{\text { golden }}>1 \\
& \beta=\frac{1-\sqrt{5}}{2} \approx-0.618 . .,(\beta)<1
\end{aligned}
$$

proof: Let's rewrite $f(x)$ using

$$
\left.\begin{array}{rl}
1-x-x^{2} & =\frac{(1-\phi x)(1-\beta x)}{([\text { check: }} \\
=1-(\phi+\beta) x+\phi \beta x^{2} \\
& =1-\left(\frac{1+\sqrt{5}}{2}+\frac{1-\sqrt{5}}{2}\right) x+\frac{1+\sqrt{5}}{2} \cdot \frac{1 \sqrt{5}}{2} x^{2} \\
& =1-x-x^{2} J
\end{array}\right]
$$

One can do the partial fraction algorithm to write

$$
\left.f(x)=\frac{x}{1-x-x^{2}}=\frac{x}{(1-\phi x)(1-\beta x}\right)=\frac{\frac{1}{\sqrt{5}}}{1-\phi x}+\frac{\frac{-1}{\sqrt{5}}}{1-\beta x}
$$

(c)

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\beta^{n}\right)
$$

$$
\phi=\frac{1+\sqrt{5}}{2} \approx 1.618
$$

$$
\beta=\frac{1-\sqrt{5}}{2} \approx-0.68
$$

\ldots and hence $F_{n} \approx \frac{1}{\sqrt{5}} \phi^{n}$ as $n \rightarrow \infty$
and $\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\varnothing=$ golden ratio.
In fact, $F_{n}=\left[\frac{1}{\sqrt{5}} \phi^{n}\right] \quad \forall n \geqslant 0$
roundingstrateger function
or newest

$$
=\left\lfloor\frac{1}{\sqrt{5}} \phi^{n}+\frac{1}{2}\right\rfloor
$$

Not much to say in proving this, except

$$
F_{n}=\frac{1}{\sqrt{5}} \phi^{n}+\left(\operatorname{error}_{=-\frac{1}{\sqrt{5}}}^{\operatorname{tem}} \beta_{n \rightarrow \infty} 0\right)
$$

Math 4707 Oct. 12,2020
Sterling numbers of the second kind $S(n, k):=\#$ ways to partition $\{1,2, \ldots, n\}$ $n \geqslant k \geqslant 1 \quad$ in to k unlabelled nonempty blocks

$$
\begin{aligned}
& \text { e.g. n=4, } \quad k=2 \\
& S(4,2)=7=\#\{123-4,124-3,134-2,234-1, \\
& 12-34,13-24,14-23
\end{aligned}
$$

$$
\begin{aligned}
& s(3,1)=1=\#\{123\} \\
& s(3,2)=3=\#\{12-3,13-2,23-1\} \\
& s(3,3)=1=\#\{1-2-3\}
\end{aligned}
$$

\sum^{k}	1	2	3	4	5	
1	1					
2	1	1				
3	1	3	1			
4	1	7	6	1		
5	1	15	25	10	1	

$\# 2(a) S_{Y}(n, 1)=1=S(n, n)$
only all of

$$
\{1,2, \supset n\}
$$

in a single block
(b) $s(n, n-1)=\binom{n}{2}$

Crick the unique pair $\{i, j\}$ that forms the only non-singleton block
es. $n=9$

$$
1-2-58-3-4-6-7-9
$$

(c) $S(n, 2)=\frac{2^{n}-2<}{2}$ correct for by

$$
\left(=2^{n-1}-1\right)
$$

overcouriong by 2
since

$$
S-S^{c}
$$

is same portion as $S^{c}-S$
 subset $S \neq \phi,\left\{1,2,-,-n^{n}\right\}$ to be the $1^{\text {st }}$ block, and its complement is the $2^{\text {nt }}$ block S^{c}
\#3.

$$
\begin{aligned}
& S(n, k)=\underbrace{S(n-1, k-1)}+k S(n-1, k) \\
& \begin{array}{l}
\text { n goes into a } \\
\text { singleton block, }
\end{array} \\
& \{1,3 \text {-つn-1 }\} \text { go into }
\end{aligned}
$$

\#4.(a)

$$
\begin{aligned}
f_{1}(x) & =S(1,1) x^{1}+S(2,1) x^{2}+S(3,1) x^{3}+\ldots \\
& =x^{1}+x^{2}+x^{3}+\ldots \\
& =\frac{x}{1-x}
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
& f_{2}(x)= S(2,2) x^{2}+S(3,2) x^{3}+S(4,2) x^{4}+\ldots \\
&=\left(2^{2-1}-1\right) x^{2}+\left(2^{3-1}-1\right) x^{3}+\left(2^{4-1}-1\right) x^{4}+\cdots \\
&=\left(2 x^{2}+4 x^{3}+8 x^{4}+\ldots\right)=\frac{2 x^{2}}{1-2 x}-\frac{x^{2}}{1-x} \\
& \quad-\left(x^{2}+x^{3}+x^{4}+\ldots\right) \\
&= \frac{1}{(1-x)(1-2 x)}\left[(1-x) 2 x^{2}-x^{2}(1-2 x)\right] \\
&= \frac{x^{2}}{(1-x)(1-2 x)}[(1-x)-(1-2 x)]=\frac{x^{2}}{(1-x)(1-2 x)}=\frac{x}{1-x} \cdot \frac{x}{1-2 x}
\end{aligned}
$$

\#5. $S(n, k)=S(n-1, k-1)+k S(n-1, k)$ for $n \geq k \geq 1$

$$
\sum_{n \geq k} S(n, k) x^{n}=\sum_{n \geq k} S(n-1, k-1) x^{n}+\sum_{n \geq k} k S(n-1, k) x^{n}
$$

$$
f_{k}(x)=x f_{k-1}(x)+x \sum_{n \geq k} k S(n-1, k) x^{n-1}
$$

$$
f_{k}(x)=x f_{k-1}(x)+k x f_{k-1}(x)
$$

$$
(1-k x) f_{k}(x)=x f_{k-1}(x)
$$

$$
f_{k}(x)=\frac{x}{1-k x}
$$

$$
=\frac{x}{1-k x} \cdot \frac{x}{(-k-1) x} f_{k-2}(x)
$$

$$
=\frac{x}{1-k x} \cdot \frac{x}{1-(k-1) x} \cdots \frac{x}{1-2 x} \frac{x}{1-x}
$$

$$
=\frac{1-k x)(1-(k-1) x)-(1-2 x)(1-x)}{(1-k x)}
$$

$$
\begin{aligned}
\text { e.g. } \\
\begin{aligned}
f_{y}(x) & =\delta(4,4) x^{4}+S(5,4) x^{5}+S(6,4) x^{6}+\ldots \\
& =\sum_{n \geq 4} S(n, 4) x^{n} \\
& =\frac{x^{4}}{(1-x)(1-2 x)(1-3 x)(1-4 x)}
\end{aligned} .
\end{aligned}
$$

partial fractions

$$
\begin{aligned}
& =\frac{A}{1-x}+\frac{B}{1-2 x}+\frac{C}{1-3 x}+\frac{D}{1-4 x} \\
& =A \sum_{n \geq 0} x^{n}+B \sum_{n \geq 0} 2^{n} x^{n}+C \sum_{n \geq 0} 3^{n} x^{n}+D \sum_{n \geq 0}^{4} x^{n} \\
& =\sum_{n \geq 0}\left(A+2^{n} B+3^{n} C+4^{n} D\right) x^{n} \\
& =S(n, 4)
\end{aligned}
$$

has a formula wiverns (See Wikipedia page)

MATH 4707 Oct. 14,20
GRAPH THEORY
Euler walks and Euler tours ($\delta 7.3$)
EXAMPLE: The 7 bridges of Königsberg

Q: Can one find a tour (= a closed walk)
that goes over each bridge same starting and exactly once? Can one find a walk (possibly different start/end masses using arch bridge exactly once?

L. Euler proved both are impossible in 1736, and came up with a graph theory abstraction that solved all such problems!
Abstraction: A graph $G=(\begin{array}{l}\text { venter edges } \\ V\end{array} \underbrace{}_{11}$

PEFANITION: An Enter tour in G is a coed wat k from vertex-tovertex (not simple graphs)
aug edges, using each el edge exactly abying edges, arsing each edge exadly
once. An Euler walk/ path is same bat not necessarily closed.

Q: Which graphs hare Euler tours, fuller walk?
Are they unique in any sense?
 no tuner bus Euler walks.

THEOREO (Euler 1736) $G=(V, \theta)$ a graph with no isolated vertices has an Euler tour $\Leftrightarrow(a) G$ is connected ice. every pair $v, v^{\prime} \in V$ AND has some path v befweenthem (b) even vertex $v \in V$ has deg $_{G}(v)$ even valence or degree of iv

THEOREM. (Enter 1736) $G=(V, G)$ a graph with no isolated vertices has an Ruler tour
$\Leftrightarrow(a) G$ is connected ice. every pair $v, v^{\prime} \in V$
AND has some path v between them v
(b) even vertex $v \in V$ has $\operatorname{deg}_{G}(v)$ even
valence or degree of v
proof: (\Rightarrow) : Close off the Enter tour, and direct it with crows:

Given any $v_{1} v^{\prime} E V$, pict edges incident to them e, e^{\prime}, and following the infinite tour from et to e' gives apathy from v to v^{\prime}. So G is connected.
 Arvo, fixing vel V, the tour parrs off edges incident r on w it enters v and exits v along those edges.

THEOREM. (Euler (736) $G=(V, \theta)$ a graph with no isolated vertices has an Ruler tour
$\Leftrightarrow(a) G$ is connected ice. every pair $v, v^{\prime} \in V$
AND has some path $v \rightarrow$ between them
(b) even vertex $v \in U$ has $\operatorname{deg}_{G}(v)$ even
proof: (\Leftarrow) : Gwen a graph \Leftarrow that is convected and has all deg Gu) oven, let's give an algorithm to find an Enter tour.
Start at some vertex $v_{0} \in V_{\text {, }}$
move abying an edge to some v, and erase the edge you used. Then go from v_{1} to some v_{2} along an unused edge. Repeat until you get stuck at some vertex V_{k} where all its incident edges were erased.

CLAM: $v_{k}=v_{0}$

Only vo has odd degree in the erased edge graph, as all others maintain even degree as you enter und leave.

Now remove the tour just created, and repeat with the rest of the graph:
 and repeat until all edges the graph are used.

Now suture them together into one big tour

