Math 4 tot GROUP wORK on Euler paths/walks

Recall that

while
has (many) fuller egg.

has no Euler tour, but does have an Euler path:

Questions
(1) Try to come up with a conjecture that characterizes graphs $G=(V, E)$ having an Euler path, but no Euler tour, similar in spirit to the one we proved for graphs having an Euler Tour. Can you prove it?

THEOREM: G a graph with no isolated vertices has an filer path but no Enlertour \Longleftrightarrow
(a) G is connected

AND
(b) exactly of its vertices v_{0}, v_{1} have odd degree, all others even degree.
Furthermore, every Euler path in G will start \& end at the two odd-degree vertices.
proof:
(1) Similar to Euler tour proof.
(2) Ta

and create the Euler bour, and the extra edge to get on Euler path.
(2) Consider a directed graph $D=(V, A)$
(digraph) vertices directed
and directed Euler tours

$$
\underset{0}{v_{1} \rightarrow 0^{2}}
$$

$:=$ sequences of ares that start at and end at vertex v_{0}, follow the arrows along arcs and traverse each arc in A exactly once
e.g. inner $s=$ outdegs

has directed Euler tour

| iv | |
| :--- | :--- | :--- |
| (i) | |
| has none | At
 it
 has some |

Can you wite down a characterization of which digraphs $D=(V, A)$ have directed Euler tours, similar to the undirected case?

THEOREM: A digraph $D=(U, A)$ with no isolated vertices has a directed Entertour \Longleftrightarrow
(a) D is connected in the undirected or directed sense AND
(b) every semtex $v \in V$ has

$$
\begin{aligned}
& \underbrace{\operatorname{outdeg}_{D}(v)}=\underbrace{i n \operatorname{deg}_{D}(v)} \\
& =\#\left\{\begin{array}{l}
\text { arcs a } \in A \\
\text { emanating }
\end{array}\right. \\
& \text { from } \underset{v a}{ } \rightarrow \\
& =\#\{\operatorname{arcsacA} \\
& \text { entering }{ }^{2} \\
& \underset{\sim}{o} \rightarrow 0,0\}
\end{aligned}
$$

proof: All the same proof as in the undirected faller tour proof!

Math 4707 Oct. 19, 2020
Eulerian digraphs \& DeBruijn sequences

FIRST: A card trick due to Parsi Mia conis ... He thews a (prepared) deck of cards in a mbber band into the audience, asks several people to do usual cuts of the deck, then pass it to next 5 people, who draw the top 5 cards. Asks them to think about their cards, with those holding red cards to standup. Then he guesses all 5 cards.
How does he do it? The deck starts out like this..

This is a DeBmijn sequence on $k=2$ letters

DEFINITION:
A DeBmijn sequence on k letters $\frac{\{0,1,2, \ldots, k-1\}}{}$ of order n is a (circular) sequence of k^{n} letters having each possible word of length n appearing exactly once as a consecutive subword

Q: Do Deßmijn sequences exist for every k and n ? (f so, how do we find them?
YES, and it's related to fulerian digraphs.'

Niceidea: Fixing k, n, make

$$
\begin{aligned}
& \text { digraph } \\
& D_{k_{i n}}=(V, A) \quad\left(a_{1}, a_{2,}, a_{n-1}, a_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { sequences of } \\
\text { letters }\{a, 1,-k-1\}] \quad\left(a_{1}, \ldots, a_{n-1}\right) \quad\left(a_{1}, \ldots, a_{n}\right)
\end{array} \\
& \left(a_{1}, a_{2}, \ldots, a_{n-1}\right)
\end{aligned}
$$

Niceidea: Fixng k, n, makea
digraph

KEY POINT:
Debmijn seguences §bijection
$\left\{\begin{array}{l}\text { dreded Euler } \\ \text { tours in } D_{k, n}\end{array}\right\}$

$$
\begin{aligned}
& \operatorname{eg} \cdot k=2, n=3 \\
& D_{2,3}, Q^{000}
\end{aligned}
$$

$$
\left.\begin{array}{lll}
1 & 0 & 0 \\
0 & & 0 \\
0 & 1 & 1
\end{array}\right)
$$

$$
k=3, n=2
$$

$D_{3,2}$

Math 4707 Od. 21,2020

THEOREM: DeBmijn sequences of order n on letters exist for all k, n since the digraph's Dk,n are
(a) connected

AND
(b) have in deg $D_{k, n}(v)=\operatorname{outdeg}_{p_{k, n}}(v) \quad \forall v \in l$ (infract, both equal $k)^{\text {kin }}$
proof: For (b) let's prove it by x rich

THEOREM: DeBmijn sequences of order n on k letters exist for all k, n since the digraph's $D_{k, n}$ are
(a) connected

AND
(b) have in deg $D_{k, n}(v)=\operatorname{outdeg}_{D_{k, n}}(v) \quad \forall v \in l$ (intact, both equal k) ${ }^{k, n}$
proof: For (a), any two vertices v, v^{\prime} have a path $v \rightarrow \ldots-. \rightarrow v^{\prime}$ with $\leq n-1$ steps: Proof by rich enough EXAMPLE $n=5$

Hamiltonian tours/cirmits and paths
DEVIN
walks from vertex to vertex M an undirected graph $G=(V, \epsilon)$ that visit every vertex $v \in V$ exactly once (but may miss some edges). A tour if start vertex $=$ end vertex path if not.
Sounds close to filer tours \& paths, but is not really.

Example

$$
K_{2,6}
$$

complete bipartite graph

has an Euler
tour (no gEnder path) (6) and has no Hamiltonian Hour, not Hituniam part
example
K_{4}
complete graph

No tuber bour, nor Euler path.
But has a Hamiltonian tour. (and Hamiltonian path)

Ifs hard to decide if a graph G has a Hamiltonian tour/pith. Too examples from book:

Hamilton's game: find such a tour!

Has a Hamilton path lat no Ham. circuit (notions)

There is no known algorithm for deciding. whether $G=(V, E)$ has a Hamittonion cimnit or path that does much better than checking all (\#V)! orderings of V to see it any of ene are a Hamiltonian circuit or pooh!
(well wame back to this when discuss lack of good algorithms for T. S. P. Pi bl

There do exist theorems giving

- sufficient conditions -for G to have such a circmit/path
- necessary conditions for having them
(see e.g. Bond \& Musty $\delta 4.2$)
Essentially the West $\$ 7.2$
Essentially the same holds for directed versions of Hamiltonian ciranitspath.

Chapter 8 Trees
DEFINITION: A graph $G=(V, \epsilon)$ with nocycles is called a forest; its connected components are called trees. That is, a free is a connected graph with no cycles.

not a forest, $\begin{aligned} & \text { is a forest, a bree } \\ & \text { but wot }\end{aligned}$ with 4 conveyed but a tree. components

$$
\begin{aligned}
& \text { components } \\
& C_{1}, C_{2}, C_{3}, C_{4}
\end{aligned}
$$

That is, a tree is a connected graph with no cycles. Another way to say it...

Proposition:
(u, E)
(a) Agraph G "is a forest (has no cycles)
$\Longleftrightarrow \frac{\exists \frac{\text { at most one } p a t h}{} \stackrel{\text { to }}{ } v^{\prime}}{\text { (possibly none) }} \quad \forall v, v^{\prime} \in V$
(possibly none)
(b) Agraph $G=(v, E)$ is a tree (connected, $\left.\begin{array}{c}\text { no uncles }\end{array}\right)$ $\Longleftrightarrow \exists$ exactly one path $v t_{0} v^{\prime} \forall v, v^{\prime} \in J$
proof: $(a)(\Leftarrow)$: If $\exists \leq \cap$ perth \vee to v^{\prime} in G, then G must have no cycles:
(b) Follows
from (a) since
conneded
means $\forall \geqslant 1$,
path v to $v^{\prime}$$\left(\begin{array}{l}\text { If } v, v \text { have two paths between } n \text { hem }\end{array}\right.$

Another way to characterize trees... PROPOSITION
$(a) G$ is a tree $\Leftrightarrow G$ is connected and removing any edge disconnects it.
(b) Wis a tree $\Leftrightarrow G$ has no cycles, but adding any edge creates a cycle

$$
T+e^{\prime} \text { between } \begin{gathered}
\left.i v, v^{\prime}\right] \\
\hline
\end{gathered}
$$

EXAM 1 stats
median 98
average 93
standard deviation 8
GUESSED GRADE: ≥ 90 predicts an A of some kind 80-90 predicts some of ind <80 Corbelow.

PROPOSITION
(a) G is a tree $\Leftrightarrow G$ is connected and removing any edge disconnects it.
(b) Wis a tree $\Leftrightarrow G$ has no cycles, but adding any edge creates a cycle
proof: (\rightarrow) : Ga tree implies it's connected, butalso if we remove any edge $\{v, v 1\}^{\prime}$ in G then

(\Longleftarrow) : if G is connected and removing any edge dis connects it, then it must have no coy cis because removing any edge on the cycle cannot dis connect 7 :

(b) Wis a bree \Leftrightarrow Ghas no cycles, but adding anyédge
creates a cycle creates a cycle
proof: (\Rightarrow) : Gatree implies it has no aycles but also, adding amyedge Say from v to v^{\prime} creates a cycle by

(ङ): Assuming G has no cycles, but adding any edge creates one, since G is a forest we need to know it is wnnected. So gNen $v, v^{\prime} \in V$ adding ed se \{v, v'\} ~ c r e a t e s ~ a ~ c y c l e ~

NEXT let＇s prove
proposition：Every finite tree with at least 2 vertices has at least 2 leaves（＝vertices of degree one）

leaves in red
proof：（NOTE：This tree 0 has no edge，no leaves （0－0）has two leaves

Start at any vertex $v_{0} \in V$ in the tree and walk along edges to new（unvisited） vertices until you gee stuck：then you are at a lead，v because if v has
 another cadge aside
from the one wonentered from some one Misted vertex， and this creates a cycle，or two paths v_{0} to v 国

To get at least two leaves, do the same argument starting from the leaf v that you just found.

Q: Why can't we find wore than 2 leaves by iterating this argument?
vo
COROLCARY: Any tree $T=(V, E)$ with $n=|V|$ has $|E|=n-1$ edges, and hence $\begin{aligned} \sum_{v \in V} \operatorname{deg}_{T}(v)=2|E| & =2(n-1) \\ & =2 n-2 .\end{aligned}$

$$
\begin{aligned}
& |V|=1 \mid \\
& |E|=10=|V|-1
\end{aligned}
$$

COROLCARY: Any tree $\tau=(V, E)$ with $n=|V|$ has $|E|=n-1$ edges, and hence $\begin{aligned} \sum_{v \in V} \operatorname{deg}_{T}(v)=2|E| & =2(n-1) \\ & =2 n-2 .\end{aligned}$

proof: Prove it by induction on $n=|V|$.
BASE CASE: $|V|=1$ has no edges

$$
\text { so }|E|=0=|v|-1 \text {. }
$$

INDUCTIVE STEP: Since we can assume $|V|=n \geqslant 2, \exists$ some leaf vertex v_{0} and we can remove it to get $T!=T-\left\{v_{0}\right\}$

Q: How many labeled and unlabeled trees are there on n vertices $\{1,3 \ldots, n\}$! "Labeled" means we distinguish $\{1,2 \rightarrow n\}$ from each other
"Unlabeled" means is omorphism classes of trees

are isomorphic graphs

Q: How many labeled and unlabeled tres are there on n vertices $\{1,2 \ldots, n\}$?

THEOREM (Cayley)
1890 ?
\# Cabeled trees on n verfices

$$
=n^{n-2}
$$

