

Math 4707 Oct. 28,2020
THEOREM (Cayley, Borchardt)

$$
\begin{aligned}
& 1860 \\
& 1889 \text {, onticecl }
\end{aligned}
$$

$\#\left\{\right.$ (cabled trees on $\sim_{\{1,2, \ldots, n\}}$ vertices $\}=n^{n-2}$
THEOREM

$$
\left.\begin{array}{l}
\text { THEOREM } \\
\frac{n^{n-2}}{n!} \leq \#\{\text { unlabeled trees } \\
\text { on } n \text { vertices }
\end{array}\right\} \leq 4^{n-1}
$$

\iint Stirling's approximation

$$
2^{n} \leq \frac{e^{n}}{\sqrt{2 \pi} \cdot n^{5 / 2}}
$$

Borchardt-Gayley Theorem is deep; every proof (and there are many) uses an interesting idea!
[A generating function in Wilfis book
on syllabus

Proof of Borchardt-Cayley theorem via Prüfer coding:
There's a bijection

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { labeled trees on vertices } \\
\{1,2, \ldots, n
\end{array}\right\} \xrightarrow{\begin{array}{l}
\text { primer } \\
\text { coding }
\end{array}}\left\{\begin{array}{l}
\text { sequences } \\
\left(c_{1}, c_{2}, \ldots, c_{n-2}\right)
\end{array}\right\} \\
& \underbrace{\text { with } c_{i} \in\{1,2, \ldots n\}}_{\text {this set has }} \\
& \text { size } n^{m-2} \\
& \text { via multiplicatom } \\
& \text { principle! }
\end{aligned}
$$

Algorithm:
Let $C_{1}:=$ label on the unique neighbor of the smallest leaf
Remove that leaf, and let $n=10{ }^{1^{\text {th }}} \int^{2} 4 / 7^{4^{\text {th }}} c_{2}:=$ label onumique neighbor of the smallest leaf left Repeat and stop when left with an edge.
egg.
Pilfer code

$$
\longmapsto \begin{aligned}
& \text { Puïfer code } \\
& \left(c_{1}, c_{2}, c_{3}, c_{4}, q, c_{6}, e_{7}, 8\right) \\
& = \\
& (9,9,5,9,3,2,5,3)
\end{aligned}
$$

How to reverse this (the muerse bijection)??

In particular, v is area $\Leftrightarrow v$ is not m the Pinter code at all.
Why the key observation?

Agosn'um for recovering T from $\left(c_{1}, c_{2}, c_{n-2}\right)$ is to create the leaf list and create an edge for the smallest of the leaves attached to c_{1}. Erase c, , erase that leaf, and repeat.
When a vertex v gets crossed off the Prier code the last time, it enters the lear -list!

Our randomly chosen Phiifer wide is...

$$
\begin{array}{ll}
\text { Our randomly chosen } \\
c_{1} c_{2} c_{3} c_{4} c_{5} c_{6} c_{7} c_{8} \\
((3), 6,6,9,3,1,5,4) & \text { leaf -list } \\
(2), 7,8,10
\end{array}
$$

$(6), 6,9,3,1,5,4)$
$(6,9,3,1,5,4)$

$$
\text { (7) } 8,10
$$

$(9,3,1,5,4)$

()

Why is the resulting graph connected?
Every vertex v has a pasts to the last two vertices in the leaf list, using reverse induction on the order in which v got crossed off the leat-list.

Why is the resulting graph acy clic (no cycles)?
Can.t create cycles working backwards (reverse order in which \checkmark gets crossed off leaf-list) be rance you always add an edge to a new vertex v that had no edges before.

Once youbelieve that any code $\left(a_{0} \rightarrow c_{n-2}\right)$ produces a tree T, its not hard to check the two algorithms give muerse bijections.

Lefts retum to ...
THEOROM: $T_{n}:=\#\left\{\begin{array}{l}\text { unlabeled trees } \\ \text { on n vertices }\end{array}\right\}$

$$
\left(2^{n} \leq\right) \frac{n^{n-2}}{n!} \leq T_{n} \leq 4_{(1)}^{n-1}
$$

proof:
To show (1), let's show

$$
\begin{aligned}
& \text { T: To show (1), let's } \\
& n!-T_{n} \geq n^{n-2} \text { Cavey-Borrhardt } \\
& \text { Stabled }\} \text { abeled }\}
\end{aligned}
$$

i.e.
via a suyjectve (onto) map

$$
\begin{aligned}
& \text { e.5. Tammilabeled tre on } n \text { verices }
\end{aligned}
$$

Once we know $\quad T_{n} \geqslant \frac{n^{n-2}}{n!} \approx \frac{n^{n-2}}{\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}}$ as $n \rightarrow \infty$

$$
\frac{e^{n}}{n^{5 / 2} \cdot \sqrt{2 \pi}} \geq 2^{n}
$$

To show $T_{n} \leq 4^{n-1}$,
lefisdo some encoding ot an unlabeled tree T by a sequence of letters of letters D, U of length $2(n-1)$:
(1) Start with any vertex v_{0} as root vertex
(2) Draw T in the plane with no crossings so that as you move away from v_{0} you move down the page:

(3) Traverse the outer bound any from v_{0}, returning to vo, withing $D_{2} u$ as you go down and up along edges. DDUDUUDDUDUDUU

$$
2(n-1)=2^{H E}
$$

Hence $T_{n} \leqslant$ \#sequences of D, U 's of length $2(n-1)$

$$
\begin{gathered}
=2^{2(n-1)}=4^{n-1} \\
\left(\text { intact }, \leq\binom{ 2(n-1)}{n-1} \approx 4^{n}\right)
\end{gathered}
$$

Math 4707 Nov 2, 2020
Counting spanning trees (not in our book) and then finding minimum-cost spanning trees (\$9.1)

DE'N: Given a graph $G=(v, E)$ with multiple edges and (cops allowed, then a spanning tree T in G is a subset $T \subset E$ such that (V, τ) is a tree.
e.g. Oe has 5 spanning trees:

e. 8 . Q^{e} has 5 spanning trees:

2 problems:
(1) How to count the number of spanning trees in G ?
(2) How to find the cheapest spanning tree if the edges have costs?

has cheapest spanning tree

$$
{\underset{5}{5}}_{3}^{3}=T_{4}
$$

DEFINTITON: Let $\tau(G):=$ \# of spanning trees in G

EXAMPLES:
(1)
(2)

(3) $\tau(\underset{P}{P})=\stackrel{R}{0}=0$

There is a recurve way to compute $\tau(G)$ (useful for HW; inefficient in general), uses the notion of deletion and contraction of an edge in G..

DEF' N : If e is a non-loup edge of G,

$$
\left\{\begin{array}{l}
\prime \prime \\
v_{1}^{\prime} v^{\prime}
\end{array}\right\}
$$

then $G \backslash e:=$ deletion of e in G

$$
=(V, E \backslash\{e\})
$$

$$
\begin{aligned}
G / e: & =\text { contraction of } e \text { in } G \\
& =(V / e, E \backslash\{e\}) \\
& \text { squeeze bobederer }
\end{aligned}
$$

PROPOSITION: One can compute $\tau(G)$ recursively by induction on $|E|$ via these mile:
(a) $\tau(0)=1 \quad\left[\tau=\phi\right.$ no edges is the $\left.\begin{array}{c}\text { no true spanning tree }\end{array}\right]$
(b) $\tau(G)=0$ if G is disconnected.
(c) $\tau(G)=\tau(G$ with all lops removed $)$
(d) if e is any non-loop edge of G, then $\tau(G)=\tau(G \backslash e)+\tau(G / e)$

PRoposition: One cal compute $\tau(G)$
recursively by induction on $|E|$ via these mils.
(a) $\tau(0)=1$

$$
[T=\phi \text { no edges is the } \text { gigue spanning bred }
$$

(b) $\tau(G)=0$ if G is dis connected.
(c) $\tau(G)=\tau$ (Gwithall lopes removed)
(d) if e is any non-loop edge of G,
then $\tau(G)=\tau(G-e)+\tau(G / e)$
ExAMPLE:

$$
\begin{aligned}
& \text { G }
\end{aligned}
$$

PROPOSTIION: One can compute $\tau(G)$
recursively by induction on $|E|$ via these mules.
(a) $\tau(0)=1 \quad\left[\tau=\varnothing\right.$ no edges is the $\begin{array}{l}\text { unique spanning tree }]\end{array}$
(b) $\tau(G)=0$ if G is disconnected.
(c) $\tau(G)=\tau$ (Gwithall lops removed)
(d) if e is any non-loop edge of G,
then $\tau(G)=\tau(G-e)+\tau(G / e)$
proof: If we believe (a), (b), (c), (d) hold, then it's easy to see how the algorithm works. Properties (a), (S), (c) don't need more prod. For (d), assuming e is a non-loop edge of G $\tau(G)=\#\{$ spanning trees $\cdot T$ in $G\}$
$=\#\left\{\begin{array}{l}\text { such } T \\ \text { that avoid } \\ \text { using }\end{array}\right\}+\#\left\{\begin{array}{l}\text { such } T \\ \text { that use e }\end{array}\right\}$ va v' G

Let's get a better method out of this.
DEFINTIION: Given $G=(U, E)$ (multiple edges OK; loops relevant, so remove them) define its $\# V x \# V$ Laplacian matrix $L(G)$ having vows \& columns index by V with

ExAMPLE

$$
\left.\left.G=a / \frac{d^{2}}{d}\right)^{b} \text { has } L(G)=\begin{array}{ccc}
1 & 2 & 3 \\
3 & 3 & -1
\end{array}\right)
$$

THEOROM (Kirchhoff's 1848 Matrix-Tree Tum $)$ For any vertex $v \in V$, Matrix-Tree Tum For any $v \in V$,

$$
\tau(G)=\operatorname{det} \underset{\substack{\text { reduced Laplacian } \\
\text { matin }}}{\widehat{(G G)^{v}}}=\operatorname{det}\left(L(G) \begin{array}{c}
\text { with row } \\
\text { and columiviv } \\
\text { semoneved }
\end{array}\right)
$$

ExAmple

Theorem (Kirchhoffis 1848 Matrix-Tree Tum) For any vertex $\underset{v \in V}{ }$ Matrix-Tree Tum) For any $v \in V$,

$$
\begin{aligned}
& \begin{aligned}
\operatorname{det}^{2}\left[\begin{array}{cc}
2 & 3 \\
2 & -1 \\
-1 & 3
\end{array}\right]=\begin{array}{l}
2 \cdot 3-(-1)(-1) \\
=6-1=5
\end{array}
\end{aligned} \\
& \text { 1邫 } 3
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\operatorname{det} \begin{array}{l}
1 \\
3
\end{array}\left[\begin{array}{cc}
1 & 3 \\
-2 & 3
\end{array}\right] & =3 \cdot 3-(-2)(-2) \\
& =9-4=5 V
\end{aligned}
\end{aligned}
$$

This is very useful both...

- computationally, because one can compute $n \times n$ determinants in $\leq C \cdot n^{3}$ steps for some constant C via Gaussian elimination sine...

THEOREM (Kirchhoff's 1848 Matrix-Tree Tum $)$ For any vertex $v \in V$,

$$
\tau(G)=\operatorname{det} \underbrace{\widehat{(G G)^{2}}}_{\begin{array}{c}
\text { reduced Laplacian } \\
\text { matrix }
\end{array}}=\operatorname{det}\left(L(G) \text { with row v } \begin{array}{c}
\text { and cohumnv} \\
\text { removed }
\end{array}\right)
$$

This is very useful both...

- compritationally, because one can compute $n \times n$ determinants in $\leq \mathrm{C} \cdot \mathrm{n}^{3}$ steps for some constant C via Gaussian elimination since $\operatorname{dat}(A)$ is - unchanged by add a multiple of a row to another
- negated by swapping rows
- scaled by scaling a vow.
- theoretically because some graphs (or families) have enough stmoture to compute $\operatorname{det}(G)^{v}$ via eigenvalues of $\overline{(G)}$?

EXAMPLE: Let's give a $2^{\text {nd }}$ proof of
Borchardt- Cayley theorem this way.

$$
\tau\left(K_{n}\right)=\#(\text { spanning trees on vertices })=n^{n-2}
$$

Borchardt- Cayley theorem

$$
\begin{aligned}
& L\left(K_{n}\right)=\begin{array}{cccc}
1 \\
2 \\
3 \\
\vdots & n & \left.\begin{array}{ccccc}
1 & 2 & 3 & \cdots & -1 \\
-1 & -1 & -1 & \cdots & -1 \\
-1 & -1 & n-1 & & -1 \\
\vdots & & \ddots & \vdots \\
-1 & \cdots & & -1 & n-1
\end{array}\right], ~
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hence Kirchhoff says }
\end{aligned}
$$

$$
\tau\left(K_{n}\right)=\operatorname{det}\left(n I_{n-1}-J_{n-1}\right)
$$

Hence Kirchhoff says

$$
\tau\left(K_{n}\right)=\operatorname{det}\left(n I_{n-1}-J_{n-1}\right) \quad \underset{J_{n-1}}{\text { where }}=\underbrace{\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & -1 \\
\vdots & \ddots \\
1 & n-1
\end{array}\right]}_{n-1}]_{n-1}
$$

We claim $v_{1}, v_{2}, \ldots, v_{n-2}$ are $n-1$ linearly n^{n-1}

$$
n-1\left\{\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0 \\
\vdots \\
0
\end{array}\right)\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
-1
\end{array}\right]\right.
$$ impendent eigenvectors for $n I_{n-1}-J_{n-1}$ with eigenvalue n

since $J_{n-1} v_{i}=\left[\begin{array}{l}0 \\ 0 \\ \vdots \\ 0\end{array}\right]=0 \cdot v_{i}$

$$
\begin{aligned}
& n I_{n-1} v_{i}=n \cdot v_{i} \\
& \left(n I_{n-1}-J_{n-1}\right) v_{i}=n \cdot v_{i}-v \cdot v_{i}=n \cdot v_{i}
\end{aligned}
$$

We also claim $\left[\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right]=v_{0}$ is an eigenvector for with eigenvalue 1, since $\delta_{n-1} v_{0}=\left[\begin{array}{c}n-1 \\ n-1 \\ i \\ n-1\end{array}\right]=(n-1) v_{0}$

$$
\left(n I_{n-1}-J_{n-1}\right) v_{0}=n \cdot v_{0}-(n-1) v_{0}=1 \cdot v_{0}
$$

So $n I_{n-1}$ - J_{n-1} has eigenvalues $(n, n, \ldots, n, 1)$ and $\operatorname{def}\left(n I_{n-1}-J_{n-1}\right)=n^{n-2}, 1=n^{n-2} \quad n-2$ times

