Math 4707 Nov. 4,2020
THEOREM (Kirchhoff $1848^{\prime \prime}$ Matrix-Tree Theorem")
For a graph $G=(V, E)$,
$\pi(G)=\operatorname{det}(\underbrace{\overline{L(G)}}{ }^{V})$ for any vertex $v \in V$
\#spanning trees in G
reduced Laplacian matrix

$$
L(G)-v_{\text {then eowiunn }}^{\text {th }}
$$

$$
\begin{aligned}
& e \bigcap_{d} \\
& a / /_{c} b \\
& 1=G
\end{aligned}
$$

$$
L(G)=1\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & -2 \\
3 & 2 & -1 \\
-2 & -1 & 3
\end{array}\right]
$$

$$
\text { Net } \begin{aligned}
{\left[(G)^{3}\right.} & =\operatorname{det}\left[\begin{array}{cc}
3 & -1 \\
-1 & 2
\end{array}\right] \\
& =3-2-(-1)(-1)=5 \\
& =\tau(G)
\end{aligned}
$$

Theoretical example:

$$
\begin{aligned}
& =\tau(G) \\
& \tau\left(K_{n}\right)=\operatorname{det}\left(\bar{L}\left(K_{n}\right)^{v}\right)=\text { product ot } \\
& \text { a Bordhardt- } \\
& \text { eigenvalues } \\
& \text { ot } L\left(K_{n}^{n}\right) \\
& n^{n-2} \text { corey } \\
& =\underbrace{n \cdot n \cdot-n \cdot 1}_{n-2}=n^{n-2}
\end{aligned}
$$

REMARK: There are many families of highly structured graphs G for which $\tau(G)=\operatorname{det}\left(L(G)^{v}\right)=$ product of eigenvalues is the easiest way to compute $\tau(G)$. e.g. n-dimensional arbegraphs Q_{n}

$$
\text { Q.g. } Q_{1} \rightarrow \mid Q_{2} \text {-dimensional and er }
$$

THeorem (Kirchhoff 1848 Matrix-Tree Theorem ${ }^{*}$)
For a graph $G=(V, E)$,
$\pi(G)=\operatorname{det}(\underbrace{\overline{L(G)}}{ }^{v})$ for any vertex $v \in V$
\# spanning trees in G reamed Laplacian matrix

$$
L(G)-v_{\text {ven evian }}^{\text {the }}
$$

$e \bigcap_{2}$

$$
\underbrace{a / C_{c}^{c} b}_{d}=G \quad L(G)=\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 3
\end{aligned}\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 2 & -1 \\
-2 & -1 & 3
\end{array}\right]
$$

proof: Lets induct on $\mid E l$.
BASE CASE: $1 E 1=0$

$$
\text { SUBCASE }(a): I V I=1
$$

$$
\begin{aligned}
& G=\stackrel{\sim}{G} \quad \begin{aligned}
& \\
& \operatorname{det}[(G)=\sim[0] \\
&=\operatorname{def}([[6]]) \\
&=\operatorname{det}([])=1 \\
&=\tau(G)
\end{aligned}
\end{aligned}
$$

$$
\text { SUBCASE }(6): \mid V(\geqslant 2
$$

$$
\begin{array}{cc}
B C A S E(6) & L(G)=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
000 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{array}
$$

THEOREM (Kirchhoff 1848 Matrix-Tree Theorem")
For a graph $G=(V, E)$,
$\pi(G)=\operatorname{det}(\underbrace{\overline{L(G)}}$) for any vertex $v \in V$
\# spanning trees in G

reanced Laplacian matrix

$$
L(G)-v_{\text {ven edumun }}^{\text {the }}
$$

$$
L(G)=1\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & -2 \\
3 & 2 & -1 \\
-2 & -1 & 3
\end{array}\right]
$$

proof (continued):
INDUCTIVE STEP:
SUBCASE (a): vEN is isolated in $\mathrm{I}_{12} \mathrm{G}_{\mathrm{a}}$

$$
\text { ed } 23 \quad y=v
$$

e.g. $a^{e}{ }^{2} 4=v$ has $L(G)=\begin{gathered}1 \\ 2 \\ 3 \\ v=4\end{gathered}\left[\begin{array}{ccc|c}3 & -1 & -2 & 0 \\ -1 & 2 & -1 & 0 \\ 2 & -1 & 3 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

$$
\overline{L(G)}^{2}=L\left(G \text { with vertex } v \text { removed }^{2}\right)
$$

$$
\operatorname{det}\left[(G)^{2}=\operatorname{det}\left[\begin{array}{lll}
3 & -1-2 \\
-1 & 2-1 \\
-2 & -1 & 3
\end{array}\right]=0=\tau(G)\right.
$$

since $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is in the mallspace
iP. any row of $L(G)$ say corresponding to a vertex vo has entries summing to zero. (Think it!)

THeorem (Kirchhoff 1848 Matrix-(ree Theorem i)
For a graph $G=(V, E)$, $\tau(G)=\operatorname{det}(\underbrace{\overline{L(G)}}{ }^{v})$ for any vertex $v \in V$
\#sparning trees in G

reanced Laplacian matrix

$$
\begin{aligned}
& L(G)-v_{\text {ven rows }} \\
& L(G)=\begin{array}{l}
1 \\
2 \\
2 \\
3
\end{array}\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 2 & -1 \\
-2 & -1 & 3
\end{array}\right]
\end{aligned}
$$

proof: INDUCTIVE STEP our case (b):
Our vertex $v \in V$ is not isolated in G, say some edge $e=\{v, w\}$ exists in G.
Recall $\tau(G)=\tau(G \backslash e)+\tau(G e)$
 to get $\operatorname{det} \overline{\left[(G)^{v}\right.}=\operatorname{det}\left[(G-1 e)^{v}+\operatorname{det}\left[(G / e)^{v}\right.\right.$
and then weir be done by induction on $\mid=1$, since

$$
\tau(G)=\tau(G / e)+\tau(G / e)
$$

Why is

$$
\operatorname{det}\left[(G)^{v}=\operatorname{det}\left[\left(G(e)^{2}+\operatorname{det}\left[(G / e)^{2} V_{0}\right.\right.\right.\right.
$$

Proof by example?

and hence by computing $\operatorname{det}\left[\bar{G}^{2}\right.$ by laplace expansion a (org last wow along lat or colum

$$
\begin{aligned}
& \text { and hence } \overline{\operatorname{lot}}^{v}=\operatorname{det} \overline{L(G l e)}^{v}+\operatorname{det} \overline{(G-)} \\
& \operatorname{det}
\end{aligned}
$$

because of the difference by 1 in the green circled entries on the diagonal at (ω, ω).

Minimum costspanning trees
If che edges of the graph G are assigned costs cost($e) \geq 0$, how wean find a subset ToE of edges that connect all the vertices $v \in V$ with minimum coot

$$
\cos t(T):=\sum_{e \in T} \operatorname{cost}(e)
$$

NOTE: T must be a spanning tree in G, but it might not be unique.

e. 9 .

have $\operatorname{cost}\left(T_{1}\right)$ $=\operatorname{cost}\left(T_{2}\right)=$ $1+2=3$

There is a surprisingly simple and fast greedy algorithm that always works:
Knustal's greedy a lgovithm:

- Start with an empty forest Fo having no edges
. At each step, add the cheapest edge e to F_{i} so that $F_{i+1}=F_{i} \cup\{e\}$ is still a forest, that is, no cycle is created.
- Stop when $\left|F_{i}\right|=|V|-1$, that is, $i=|V|-1$.

This gives $F_{|v|-1}=:$ Tgreedy a spanning tree.
EXAMPLE:
(1) $2 / 2$

	F_{0}	F_{1}	F_{2}
0	0	p_{2}	
0	0	0	0

(2)

Math 4707 Nov. 9,2020
THeorem: Kmuskal's algorithm for finding a minimum cost spanning tree T in $G=(V, \epsilon)$ (greedily add in cheapest edge that doesn't create a cycle at each step) always succeeds in finding a minimum- cost spanning tree.
proof: Let T greedy be (the, any) tree produced by Kunskal's algorithm from $G=(V, E)$ with edge costs cost (e).
Let M be any minimum cost spanning tree. Weill show $M=T_{\text {greedy. }}$
If $M \neq \tau_{\text {greedy, }}$, then find the earliest stage during Kunskal's algontrum where we we pick an edge e to add to F_{i} (in the in stage of building Tgreedy) to create $F_{i+1}=F^{\prime} \cup\{e\}$ but $e \notin M$.

So this means $F_{i} \subset M \cap T_{\text {greedy }}$.

Then adding e to M creates a unige cycle C in Muse]. Furthermore $C-\{e\}$ must contain an edge f of M not n Thready.
(since $e \in F_{i+1} \subset T_{\text {greedy }}$, so otherwise Tgreedy $\supset C$ not acyclic)

$$
\text { Now let } M^{\prime}:=(M-\{f\}) \cup\{e\}
$$

Now let $M^{\prime}:=(M-\{f\}) \cup\{e\}$
This M^{\prime} is still a spanning tree for $G($ Why? $)$

Think about
this a ait:

- Why a acyclic?
- Why conceding all vertices?

Also cost $(f) \geqslant \operatorname{cost}(e)$ since f cant form a cycle with F_{i} because $\underbrace{F_{l}}_{C M} u\{f\} c M$ a spanning tree.
So competed with e at in stage, and $\operatorname{cost}(e) \leq \operatorname{cost}(f)$.

Thus

$$
\begin{aligned}
\text { and } \operatorname{cost}(e) & \left.\begin{array}{rl}
\operatorname{cost}\left(\mu^{\prime}\right) & =\operatorname{cost}(\mu)-\cos (f)+\operatorname{cost}(e) \\
& =\operatorname{cost}(\mu)-(\underbrace{\operatorname{cost}(f)-\operatorname{cost}(e)}_{\geqslant 0})
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \operatorname{cost}(M) . \quad 0 \\
& =\operatorname{cost}(M) \text { since } \operatorname{cost}(M) \text { minimum. } 1 \text { more edge. }
\end{aligned}
$$

Hence $\operatorname{cost}(M 1)=\operatorname{cost}(M)$ since $\cot (M)$ more edos And M^{\prime} agrees with T greedy in 1 more edge.
\$9.2 Traveling Salesperson Problem (TSP)
This is a com mon optimization problem where weive given n points (vertices) and costs/distances/travel trines $d\left(v, v^{\prime}\right)$ for even pair v, v ' of vertices.
We want to find a closed tour C $v_{1}-v_{2}-v_{3}-\cdots-v_{n}-v_{n}^{v_{n}}$ visiting every vertex exactly once having $d(C):=\sum_{i=1}^{n} d\left(v_{i}, v_{i+1}\right)$ as small as possible.

EXAMPLES:
(1) Traveling salesperson needs to visit these towns in some order and retum howe:
 $d\left(v, v^{\prime}\right)$ might be - travel time

- Gravel cost
- distance
(2) (Fro mbook) An industrial dill must make holes at certain positions on a circuit board, over and over

Greedy algorithms con easily fail, e.s.

Q: Are there fast algorithms (like Kmoskal for minimum cost spanning tree) for solving large motances of TSPIs?
Probably not D If we had sudra an algorithm it would give a fast algorithm to decide if a graph $G=(V, E)$ has a Hamiltonian cycle (or many other problems)...

Given $G=(V, E)$, put distances

$$
d\left(v, v^{\prime}\right)= \begin{cases}1 & \text { if } \quad\left\{v, v^{\prime}\right\} \in E \\ 2 & \text { if } \quad\{v, v\} \notin E\end{cases}
$$

$$
\leadsto
$$

CLAIM: G has a Hamiltonian cycle \Leftrightarrow the graph on right with edge coots given has minimum cot TSP bour of cost $N l$.
Instead, people started looking for fast approximation algovitums, notrecessavily finding optimum, but guaranteed not too tar.

The "tree short-cutting" algorithm for TSP:
(1) Use the cost/distances $d\left(v, v^{\prime}\right)$ to find via Kmstal a minimum cost spanning tree Tgreedy connectrig the points egg.

Tgreedy

(2) Starting at any vertex v_{0} as root, walk around the perimeter, going over each edge twice, and return to vo, creating a bour Cwalkanound in:
$C_{\text {walkoround }}$

(3) Create $C_{\text {shorten }}$ by taking "shortunts" past the vertices that you already voted.

$C_{\text {shortest }}$ (s our approximation!

THEOREM: The tour Cshotut produced by tree shortuatting algorithm has

$$
\begin{aligned}
& \text { hortuating algorithm has } \\
& d\left(C_{\text {short ut }}\right) \leq 2 d\left(C_{\text {optimal }}\right)
\end{aligned}
$$

under the cosoumption that $d\left(v, v v^{\prime}\right), d\left(v, v^{\prime}\right) v^{\prime}$ Satisfy the triangle mequality:

$$
\begin{aligned}
& d\left(v, v^{\prime}\right) \leq d(v, u) \quad d(v, u) 0_{u} d\left(u, v^{\prime}\right) \\
& +d\left(u, v^{\prime}\right) \quad \forall u, r, v^{\prime} \in V
\end{aligned}
$$

THEOREM: The tour Cshortut produced by tree shortuitting algorithm has

$$
d\left(C_{\text {shortent }}\right) \leq 2 d\left(C_{\text {optimal }}\right)
$$

under the assumption that $d\left(v, v^{\prime}\right) \quad d\left(v, v^{\prime}\right) v^{\prime}$ Satiety the triangle mequality: $d(v, u) \quad 0_{u} d\left(u, v^{\prime}\right)$

$$
\begin{aligned}
& d\left(v, v^{\prime}\right) \leq d(v, u) \quad d(v, u) \quad \forall u d\left(u, v^{\prime}\right) \\
& +d\left(u, v^{\prime}\right) \quad \forall u, v_{1}, v^{\prime} \in V
\end{aligned}
$$

$$
\begin{aligned}
& \text { proof: } \\
& d\left(C_{\text {shortant }}\right) \leq d\left(C_{\text {walkcround }}\right) \leq 2 d\left(T_{\text {greedy }}\right) \\
& \text { hood triangle } \\
& \text { here! on the }
\end{aligned}
$$

need triangle here! on the
mequalioy mequality here, nose!
proof:

$$
\begin{aligned}
& \leq 2 d(\underbrace{(\underbrace{\text { ope }}_{\text {optimal }}}_{\begin{array}{c}
\text { because } \\
\text { trio is } \\
\text { spanning }
\end{array}} \underset{\substack{\text { any } \\
e d g}}{ }) \\
& \leq 2 d(\text { optimal })
\end{aligned}
$$

Math 4707 Nov. 11, 2020
Practice with
Tree shortarting algorithm for Traveling Salesperson Problem

(1) For the 15 points above, using Euclidean distance $d(u, v)$ as the coot for traveling between u and v, find a TSP tour $C_{\text {shortant }}$ via the tree-shortcutting algorithm.
(2) Find an optimal (shortest) Coptimal for these points, and prove its opomality.
(3) What was d(Cihoutant)/for your $\lambda\left(C_{\text {opomal }}\right)$ choice?

Chapter 10 Matching Theory
$D E^{-1} N: A$ matching M in a graph $G=(V, E)$ is a subset $M \subset E$ of the edges that shave no vertices. M is called max Mum (-sized) if \nexists a matching $M^{\prime} C E$ with $\# M^{\prime}>\# M$. H's called a perfect matching if every cortex $v \in V$ is matched in M, that is, every v is an endpoint of some e $\in M$. This requires $\# H=\frac{\# V}{2}$ so $\# V$ even

M
a matching, not maximum, not perfect'

a perfect matching, and maximum

a maximum matching, perfect

M

apertect

Q: How to find'maximen matching M MG, particularly if G is large?
A: We have good algorithms for any graph G, particularly fast and simple for bipartite graphs.

Not as fast or easy as Knuskal for spanning trees, i.e. not greedy.

not maximum
This local improvement in path tums out to be the key for the, algorithms.

DEFIN: If M is a matching in $G=(V, E)$ then an M-augmenting path P in G is a path like this:

The black edges are $M \in$.
$\left\{\begin{array}{l}\text { The red edges are in } M \text {. } \\ v_{1}, v_{m} \text { are } M \text {-u mm }\end{array}\right.$
If such an M-augmenting path P exists, create a matching M^{\prime} having $\# M^{\prime}=1+\# M$

e.g.

$$
P=\underset{v_{1}}{0} 0 v_{2} v_{3} v_{n} v_{3} v_{6}
$$

THEOREM: M is a maximum (-sized) matching in $G \longleftrightarrow$ F any M-augmenting path P in G.
proof: (\Rightarrow) follows from what we just obsewed: if such a P exist, augment M to show it was not max-sized.
(\Rightarrow) : If M is not maximum-sized, say $7 M^{\prime}$ a matching with \#M'>\#M, then well convince ourselves an M-angmenting pooh P exists, by showing P is one of the connected components of the (mult-graph ($V, M \cup M^{\prime}$).
egg.

$$
M
$$

What cos the connected component of ($V, M \omega M$ ') look like?

cycles \square M

(LEMMA: Agroph

$$
\left.\operatorname{deg}_{\in\{0,1,1}^{(v)} \leq 2\right\}
$$

has as connected component only poohs $\&$ cycles)

CCAIM: The green kind of connected component must appear in $U V, M, L^{\prime} M^{\prime}$) because, they're the only owes with strictly more M^{\prime} edges than Hedges, and $\# M^{\prime}>\# M$!

THEOREM: M is a maximum (-sized) matching in $G \longleftrightarrow$ \mathcal{F} any M-augmenting path P in G.
The max matching algorithms start with any matehing M in G and search for M-angmenting paths. If they find one, they augment along it. If they find none and can prove it, they stop with M provably nax-sized.
The algovinnm is easier (and faster) if M is bipartite, but still fast in general (called Edunonds's Blossom Algorithm in general).
The bipartite case is most important in applications

$$
V=X V Y^{\prime}
$$

egg.

How to find an M-angmenting path in a bipartite graph G

Make a digraph from G and M

Now look for any directed path P from a vertex in $X^{\prime}:=M$-unmatched vertices of X to $Y^{\prime}:=M$-umanatiched vertices of Y

This is the same (forgetting the arrows) as
aAm: an M-augmenting path P.

This then leads to the ffungarian algorithm for finding max matching in bipartite graphs
Start with $M_{0}=\varnothing$ (no edges)
Given M_{i}-ital i edges, build the digraph, check for M_{i}-augmenting paths, and either augment if they exist, or stop with M_{i} max-sized.

Example

A nontrivial wrollany...
THEOREM (Hall's Marriage Theory) In a bipartite graph $G=(\underbrace{X \mapsto Y}_{V}, t)$ there will be a matching M that matches all of $X \quad$ (i.e. $\# M=\# X$)

\forall subsets $x^{\prime} \subseteq x$

$$
\# \underbrace{\#\left(X^{\prime}\right)}_{\substack{\text { neighbors of } \\:=\\ \text { neighbors } \\ \text { of at least one } \\ x^{\prime} \in X^{\prime}}} \geqslant \# X^{\prime}
$$

poof: next time, using Hungarian algorithm...

