MATH 4707 Nov. 16,2020

A non-brival corollary...
THEOREM (Hall's Marriage Theorem) In a bipartite graph $G=(\underbrace{X \mapsto Y}_{V}, t)$ there will be a matching M that matches all of $X \quad$ (i.e. $\# M=\# X$)

$$
\Longleftrightarrow \forall \text { subsets } X^{\prime} \subseteq X
$$

proof: next time, using Hungarian algorithm ...
(tHeorem (Hall's Marriage Theorem)
In a bipartite graph $G=(\underbrace{X}_{V}, \epsilon)$
there will be a matching M that matches all of X (1. .e. $\# M=\# X$)
$\Leftrightarrow \forall$ subset $x^{\prime} \subseteq x$

$$
\begin{aligned}
& \# \underbrace{\# N\left(x^{\prime}\right)}_{\text {neigh hos ot } x^{\prime}} \# x^{\prime} \\
& \begin{array}{l}
\text { := neighbors } \\
\text { dat }
\end{array} \\
& \begin{array}{l}
=\text { of at leastone } \\
x^{\prime} \in X^{\prime}
\end{array}
\end{aligned}
$$

proof: (\Rightarrow) is easy enough: if we had a matching M that matched all of X, then $\forall X^{\prime} \subseteq X, M$ gives an injective map

$$
X^{\prime} \longrightarrow N\left(x^{\prime}\right)
$$

$(\Longleftarrow):$ Assume \mp a matching M of all of X. Use Hungavianal gorithm to find a max-sized matching M. There must be at least one vertex $X^{\prime} \in X$ unmatched in M.
(\rightleftharpoons) : Assume \nexists a matching Mot all of X. Use Hungariamalgorithm to find a max-sized matching M. There must be at leas one vertex $x^{\prime} \in X$ unmatched in M
Grenthis $x^{\prime} \in X$ unmatched in M, define $X^{\prime} L Y^{\prime}$ to be the vertices in G that have at least one directed path from X^{\prime} example

Goal: show $Y^{\prime} \frac{(b)}{(b)} N\left(X^{\prime}\right)$ and $\# Y^{\prime}<\# X^{\prime}$.
(a)

To show (a): Note Y^{\prime} only contains M-matched vertices from Y, because otherwise we would have an M-augmenting path.
But then, M gives an injective map from

$$
\begin{aligned}
& \text { then, } M \text { gives an } \\
& \Rightarrow Y^{\prime} \xrightarrow{\prime} X^{\prime}-\left\{x^{\prime}\right\} \text { since } x^{\prime} \text { is } \\
& M \text {-unmatched }
\end{aligned}
$$

Grenthis $x^{\prime} \in X$ unmatched in M, define $X^{\prime} L Y^{\prime}$ to be the vertices in G that have at least one directed path from X^{\prime} example

Goal: show $Y^{\prime}=N_{(b)}\left(X^{\prime}\right)$ and $\# Y^{\prime}<\# X^{\prime}$. (a)

To show (b): $Y^{\prime} \subseteq N\left(x^{\prime}\right)$ sure even $y^{\prime} \in Y^{\prime}$ had a path from x^{\prime} to y^{\prime}, and the $2^{\text {nd }}$-volost vertex on this path is a vertex in X^{\prime}.
Butalso any neighbor y^{\prime} of some $x^{\prime \prime} \in X^{\prime}$ has a path from x^{\prime} to $x^{\prime \prime}$ and then to y^{\prime}, so it lies in Y^{\prime}. Hence $N\left(x^{\prime}\right) \subseteq y^{\prime}$. Thus $Y^{\prime}=N\left(x^{\prime}\right)$.

COROLLARY: If in a bipartite graph $G=(X \cdot \cdot Y, E)$ has all vertices of same degree $d \geqslant 1$, then it has a perfect matching.
COROLARY to COROLLARY $\binom{D_{0}}{0}$: In the above setting, E is the disjoint union of d perfect matching $M_{1}, M_{2, \ldots} M_{d}$.

ExAMPLE:

$$
d=3
$$

$\# x=\# Y=5$

COROLARY to COROLARY ' $\left(\begin{array}{l}\left.D_{0}\right) \text { : }\end{array}\right.$
In the above setting, E is the disjoint union of d perfect matching $M_{1}, M_{2}, \ldots, M_{d}$

Example:

$$
\begin{gathered}
d=3 \\
\# X=\# y=5
\end{gathered}
$$

M, $\cdot \boldsymbol{H}$
M_{2} ن

$$
M_{3}=E
$$

proof of CDROLCARY:
Assume that $G=(x,-) Y, E)$ has $\left.\operatorname{deg}\left(x_{i}\right)=\operatorname{deg} y_{j}\right)=d$ $\forall x_{i} \in X$ $y_{i}^{\prime} \in Y$
and let's check Hall's wndition is satisfied: gwen $X^{\prime} \subseteq X$, consider the subgraph X on $X^{\prime} \cdot \square N\left(X^{\prime}\right)$ and the edges between them...
proof of CDROULARY:
Assume that $G=(X L-Y, E)$ has $\operatorname{deg}\left(x_{i}\right)=\operatorname{deg}\left(y_{j}\right)=d$ $\forall x_{i} \in X$ $y_{i} \in Y$
and let's check Hall's condition is satisfied: given $X^{\prime} \subseteq X$, consider the subgraph on $X^{\prime} \mapsto N\left(X^{\prime}\right)$ and the edges

Count in two ways the edges in this subgraph:
On one hand, it is exactly $\sum_{x \in X^{\prime}} \operatorname{deg}_{G}(x)=\left(\# X^{\prime}\right) \cdot d$
On the other hand, it is $\leq \sum_{y \in N\left(x^{\prime}\right)}^{x \in X^{\prime}} \operatorname{deg}_{G}(x)=\# N\left(x^{\prime}\right) \cdot d$
So $d\left(\# X^{\prime}\right) \leq d \cdot \# N\left(X^{\prime}\right)$. $\begin{gathered}y \in N(x) \\ \text { Cancel the } \\ d ' s\end{gathered}$

Similarly...
COROLLARY:
If a square matrix $A=\left(a_{i j}\right)_{\substack{i=y,-n \\ j=1, \rightarrow n}}^{\substack{ \\j}}$ $a_{i j} \geqslant 0$ and all row sums and columns are equal to $s>0$,
then (a) \exists a permutation σ of $\{1,2,-, n\}$ so that $a_{i, \sigma(i)}>0$ for $i=1,2,-, n$
(b) one can unite

$$
\begin{aligned}
& \text { one can unite } \\
& A=s_{1} P_{1}+s_{2} P+\ldots+s_{m} P_{m} \text { for some } s_{i} \geq 0 \\
& \text { with } s_{1}+\ldots+s_{m}=s
\end{aligned}
$$

$\left[\begin{array}{lll}0 & 1 & 0\end{array} 0\right]$ and P_{i} are each permutation matrices $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$ so they have exactly one non wen and contrumn, equal to 1
Compare with the book's'statem problem" $y_{1} y_{2} y_{3} y_{4}$

COROLlARY:
If a square matrix $A=\left(a_{i j}\right)_{\substack{i=1, \ldots n \\ j=1, n n}}$ has $a_{i} \geq 0$ and all row sums and damns are equal to $s>0$,
then (a) \exists apermutation σ of $\{1,2, \ldots, n\}$ so that $a_{i, \sigma(i)}>0$ for $i=1,2,-n$

proof of (a) :
Create from such a matrix A a bipartite $\operatorname{groph} G=\left(X_{\|}, Y_{n}, E\right)$ with edges
and letis check Hall's condition is satisfied:
Given $X^{\prime} \subseteq X$, consider the subnatix whose vows are mixed by X^{\prime} and columns are indexed by $N\left(x^{\prime}\right)$, e.g. $\quad \begin{array}{llll}x_{1} & {\left[\begin{array}{ccc}y_{1} & y_{2} & y_{3} \\ 2 & 1 & 1 \\ 2 & 1 & 1\end{array}\right]}\end{array}$
Compute in two ways the sum of all entries in this swbmatrix:
Suminingacross vows, it is s.\#X"
Sunning down columns, it is $\leq s$. \#N (X^{r})

$$
\text { So } s \cdot \# X^{\prime} \leq s \cdot \# N\left(X^{\prime}\right)
$$

and we cancel the to get $\# X^{\prime} \leq \# N\left(x^{\prime}\right)$.
(6) one can unite

$$
\begin{aligned}
& \text { one can unite } \\
& A=s_{1} P_{1}+s_{2} P_{+\ldots}+s_{m} P_{m} \text { for some } s_{i} \geq 0 \\
& \text { with } s_{1}+\ldots+s_{m}=5
\end{aligned}
$$

To prove (b), first find σ such that $a_{i, \sigma(i)}>0$ for each $i=1,2, \ldots, n$
so let $s_{1}:=\min \left\{a_{i, o(i)}\right\}_{i=1, \rightarrow n}$
and let $\hat{A}=A-s_{1} \cdot\binom{$ permutation }{ matrix for $\sigma}$

$$
\begin{aligned}
& A=\begin{array}{llll}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\left[\begin{array}{llll}
y_{1} & y_{2} & y_{3} & y_{y} \\
2 & 1 & 1 & 0 \\
2 & 1 & 1 & 0 \\
0 & 2 & 0 & 1 \\
0 & 0 & 1 & 3
\end{array}\right] \rightarrow \hat{A}=A-1 \cdot\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \\
& S_{1}=\min \{1,21,3\} \\
&=1
\end{aligned}
$$

has row sums, column sums all equal to $s-s_{1}$

$$
=4-1=3
$$

Repeat with \hat{A} replacing A,
which has strictly fewer nonzero entries. Induct on \# of nonzen entries to conclude the proof.

Chapter 12 Planargraphs
$D E F ' N: A$ graph $G=(U, E)$ is planar if it Cane be drawn in the plane \mathbb{R}^{2} with no edges crossing (or seff-intersecting)

Examples:
(1) $K_{n}=$ complete graph on n vertices
$K_{1}=$ - planar
$K_{2}=\cdots$ planer
$K_{3}=\varrho$ planar
$K_{4}=\Delta \Delta_{1}^{\text {planar }}$
$5 \cong$

(2) $K_{m, n}=$ complete biparfite grap ${ }_{x_{1}}$

$K_{\text {c, }}$ is
plamar
$\forall n$

$$
K_{2, n} \text { is }
$$ planar $\forall n$

$K_{3,3}$

suspect $K_{3,3}$ is not planar (and neither are

$$
K_{m, n} \text { for } m, n \geqslant 3 \text {) }
$$

We Shank planar graphs cont have boomany Tsuppect! edges compared to number of vertices?

Weill make this precise using Enters formula + some inequalities

REMARK: Note that multiple edges and self-loops do not affect

Enler's formula - is a relation befween the number of verfices v edges e
and regions f of a plamar or taces of
famons a polyhedron
e.s. polyhedra are

Platonic solids
tefrohedion ootahedron cube=hexahedion

tetrahedron ootahedwn cube $=$ herachection

Euler's formula: For 3-dimensional qolyhedra, $r-e+f=2$

EXAMPLES that are not regular, Platonic...

\checkmark
6
e
$f \quad 5$

5
8
5

Really, Enter's formula is more general, holding for planar graphs, if we count as faces the regions, including the unbounded region:

115

(EWer's) : In any connected planar graph G, one has $\begin{aligned} & v-e+f=2 \\ & v=\# V\end{aligned}$ where

$$
\begin{aligned}
& v=\# \sqrt{n} \\
& e=\# E \\
& f=\# \text { regions/faces, }
\end{aligned}
$$ including the unbounded face/region

egg. $G=$

> y

$$
\begin{aligned}
& v=18 \\
& e=25 \\
& f=9
\end{aligned}
$$

$$
v-e+f=18-25+9=2
$$

THEOREM: In any connected planar graph G,
one has $v-e+f=2$
where $v=\# V$
$e=\# E$
$f=$ \#regions/faces, including the unbounded face/region
proof:
One-by-one,
remove edges from G

flat do not disconnect it,
and rather separate one of its bounded faces from the unbounded face.

At the end, we have \# edges $=V-1$,

and we erased exactly $f-1$ edges, one for carly stop when we have, only one (m abounded) region, so left with a tree.
Hence $e=(f-1)+(v-1)=v+f-2$

Weill use
(Enter's)
THEOREM: In any connected planar graph G,
one has $r v-e+f=2$
to get an inequality for planar graphs relating e and v.
For $K_{5}, K_{3,3}$, which are simple graphs
connected) (no loops, multiple edges)
note that any graph G with no loops) no muitppe edges, and at least two edges, even face is bounded by (0) at least 3 edges:

CIROUARY: If G is planar, connected and has at least two edges, then

$$
2 e \geqslant 3 f
$$

and hence $e \leq 3 v-6$
© K_{s} fails this!
proof: Next time...

