MATH 4707 Nov. 16, 2020

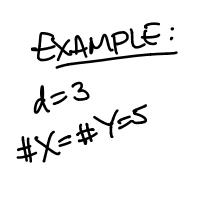
A non-birial corollary... THEOREM (Hall's Marriage Theorem) In a bipartile graph G= (XWY, E) chere will be a matching M that watches all of X (i.e. #M=#X) \iff \forall subsets $X' \subseteq X$ $\#N(x') \ge \#X'$ EXAMPLE: This Ghas <u>no</u> matching of all of X: nerghbors of X = neighbors of at least one x'eX' proof: next-fine, using Hungarian algorithm ...

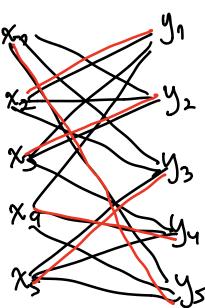
(HEDREM (Hall's Marriage Theorem)
In a bipartite graph
$$G = (X \sqcup Y, E)$$

there will be a matching M-that
matching all of X (i.e. #M=#X)
 \Leftrightarrow Y subsets X' \subseteq X
#N(X') \geq #X'
"respheres
 $f = Verpheres$
 f

(<): Assume Za matching Mot all of X. Use Hungarianal govitim to find a max-sized matching M. There must be at least one vertex $x' \in X$ unmatched in M. Grenchis x' EX unmatched in M, define X'LIY' to be the vertices in G that have at least one directed path from X' EXAMPLE Goal: Show $Y' = N_{b}(X')$ and #Y' < #X'. (b) (a) To show (a): Note Y' only contains M-matched vertices from Y, because otherwise we would have an M-augmenting path. But then, M gives an injective map from Y' -> X'-lex' Since x' is ++ Y' - ++-' A' M-wnmached ⇒#Y′<#X′

Grenchis x'EX unmatched in M, define X'LIY' to be the vertices in G that have at least one directed path from X' EXAMPLE Goal: Show Y' = N(X') and #Y' < #X'. (b) (a) To show (b): $Y' \subseteq N(X')$ since every $y' \in Y'$ had a path from x' to y', and the 2nd to last vertex on this path is a vertex in X'. But also any neighbor y' of some x" < X' has a path from x' to x" and then to y', so it lies in Y' Honce N(X') SY! Thus Y' = N(X').

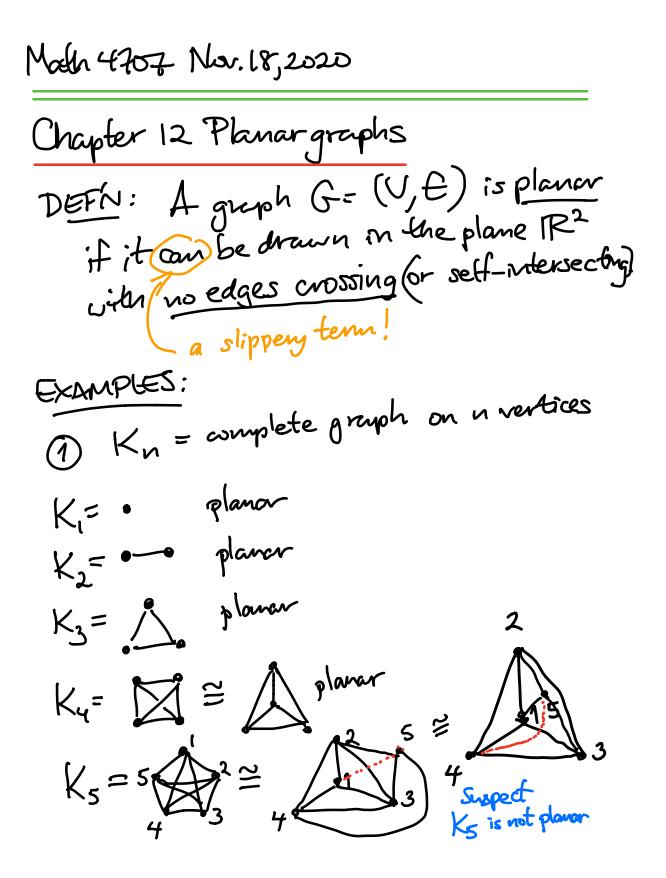


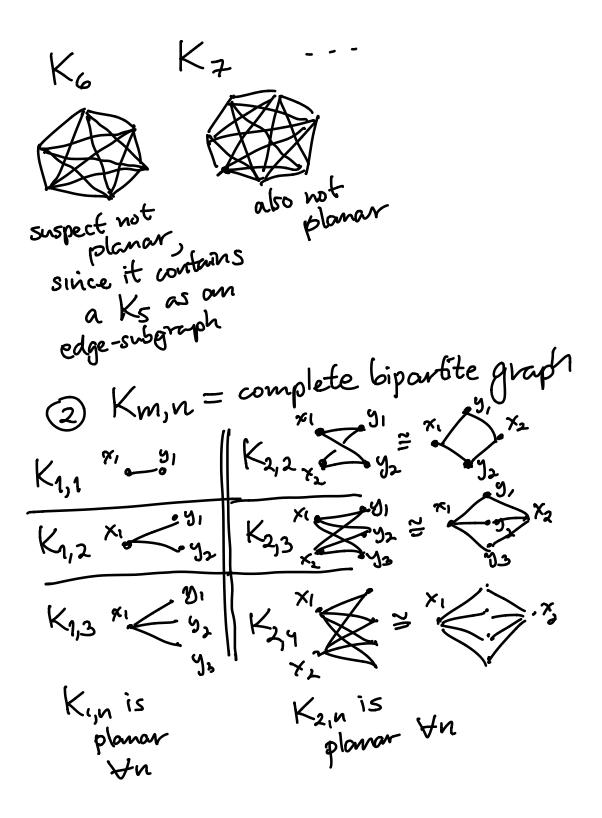


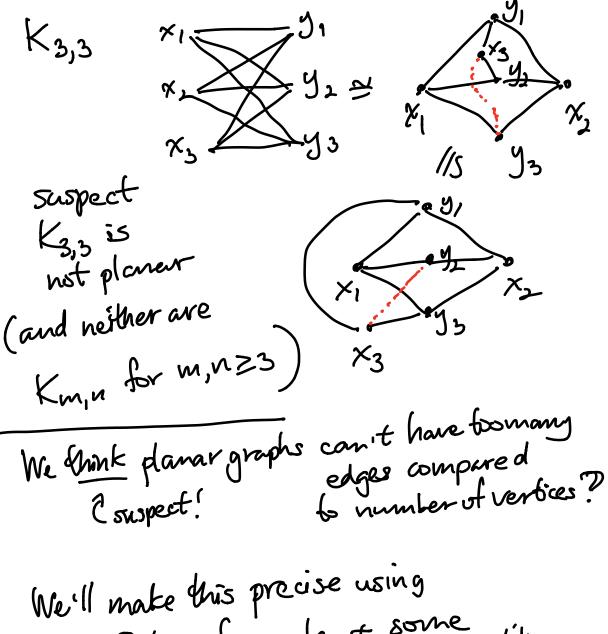
proof of CROULARY:
Assume that
$$G = (XL : Y, E)$$
 has deg $(x_i) = dg(y_i) = dg(y_i)$

Similarly...
COROLLARY:
If a square matrix
$$A = (a_{ij})_{i=1,-n}^{i=1,-n}$$
 has
 $a_{ij} \ge 0$ and all row sums and columns
are equal to $S \ge 0$,
then (a) \exists a permutation σ of $i(,2,-,n)$
so that $a_{i,\sigma(i)} \ge 0$ for $i=1,2,-,n$
(b) one can write
 $A = s_i P_1 + s_2 P + \dots + s_m P_m$ for some $s_{i\geq 0}$
with $s_{i+\dots} + s_m = s_m$
and P_i are each permutation matrices
 s_{i} they have exactly one nonzero entry
 n each vow and chumn, equal to
 m each vow and chumn, equal to
 m $2 + \frac{2}{n} + \frac{1}{2} +$

COROLLARY:
If a square matrix
$$A = (a_{ij})_{i \leq n-n}$$
 has
 $a_{ij} \geq 0$ and all new sound advances
then (a) \exists a point didicity of $d \uparrow i_{1,2,\dots,n}^{-1}$, $A = x_{ij} = 0$, $A = x_{ij} =$

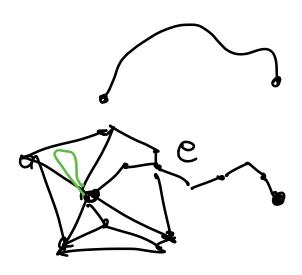


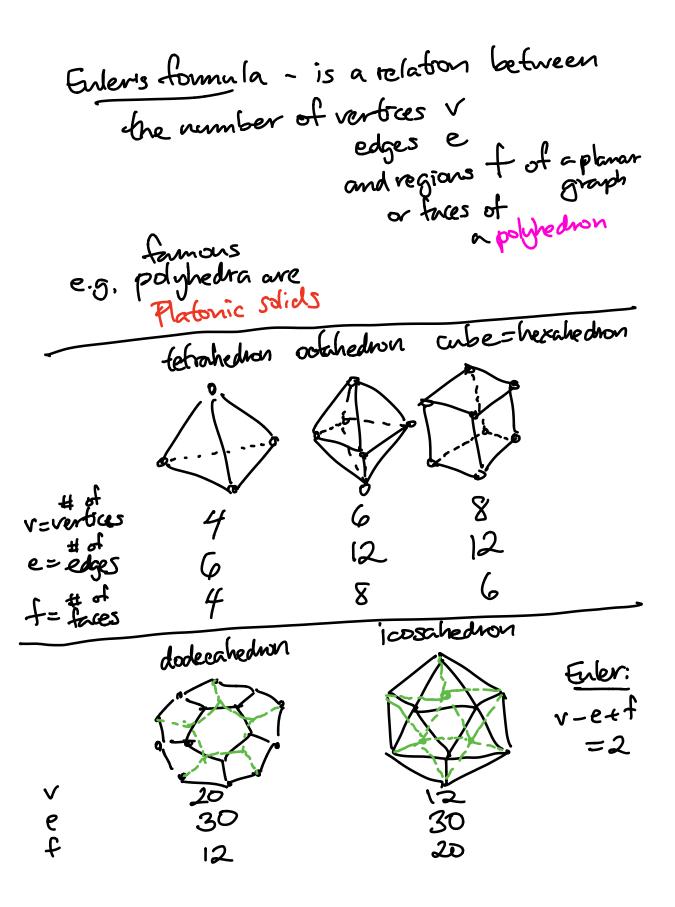


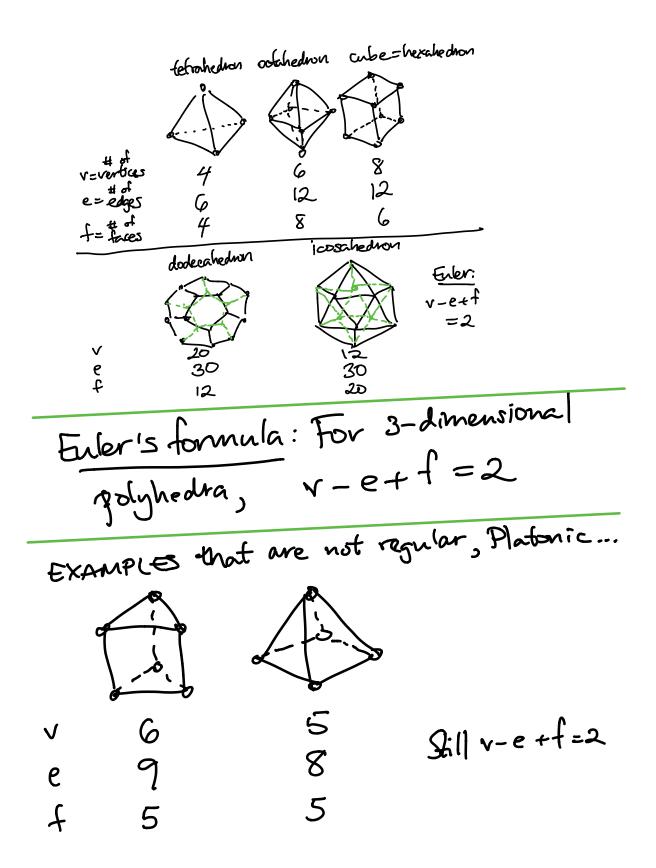


Evens formula + some megualities

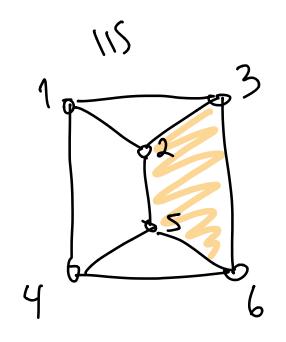
REMARK: Note that multiple edges and self-loops do not affect **•**4 plananity ple øð 2 5 (y 3 ١ 10 0

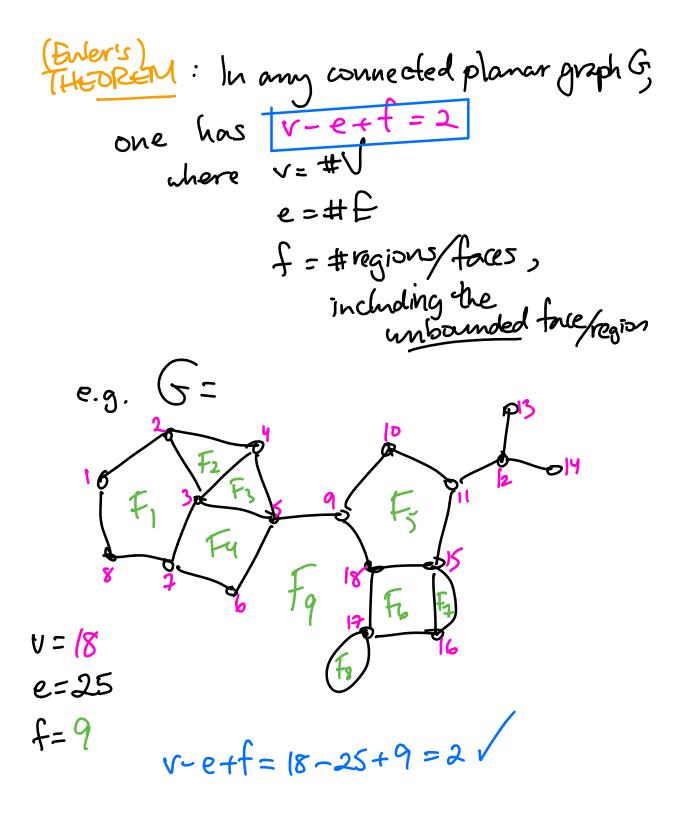






Really, Enter's formula is more general, holding for planar graphs, if we count as faces the regions, including the unbounded region: 6





We'll use FOREM : In any connected planar graph G one has v-e+f=2 to get an inequality for planar graphs relating e and v. For K5, K3,3, which are simple graphs note that any graph G with no loops, note that any graph G with no loops, no multiple edges, and at least two edges, every face is bounded by at least 3 edges: by 22 edges (?)