
 

COROLLARY If G is planar connected

and has at least
two edges then

2e Z Sf

and hence feE3v6J
Ks fails
this

proof Next time Since

ei
5

e ar 6
x x

10 3 5 6

15 6

9
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REMY If a issipmpakiijs.mn
ed

and Gasatleaotedge
then

2eZ

and hence feE3v6J
Ks fails
this

i vt

To show 2e Z Sf lets count the
number

of orangeedges segments
above in twoways

2 e orangesegments ze.se
fedgesbEmdng

F

O



startingwith 2eZ one has Feet

so fulet's formula
e t f 2

v e Ee 2

v f e 22

v 2 Z f e

3v6ZeJ D8

So we understand why Ks can it beplanar
and Ks Kt

but what about Ks

g
having v 6

e 3 3 9

which satisfies
es 3

6

3 6
9

12



Lets use the bipartiteness of Kz 3

PROPOSITION If G is a bipartite

simple graph
with at least 2 edges

1 Italy then l2eZ4I
Jd

leE2v4J
Kz 3 fails

this so is notplaner

e ar 4
K z G 4
9 3 3 4

12 4

poet In a bipartitegraph 8

every cycle has an even number ofedges

And it it's simple
it

go.to 7f
is at least y

2



So the faces regions in abipartite simple

planargraph with 72 edges are

quadrangles hexagons
octagons

having 24 edges bounding
them

h

i
2e EYE Effendi

24
so 2ez4f E z f

ThenEuler'sformula V et f 2

gives v et E ZZ
v ez 22
V 2 Z E
2v47eI



We we seen Ks Ks are not planar
and also any graph G having them

as an edge subgreph would
also notbe

planar L G C g
cu e Cv E

with V cu

E CE
is called an edge subgrap

h

i

p E
4 5

Note also that if G and G differby

an edgesubdivision
then Gis planar

G'isplanar

i f i Ed i



One can further subdivide edges and

call G an edge subdivision of G if

it is obtained by iterating
this process

O
es

m

nKs o

0 0

THEOREM Kuratowski 1930

Ga graph isplanar G contains no

edge subgraph
G

that is an

edgesubdivision

Notobvious quitesurprising
ot Ks or otKsis

Notso hard toprove a
little tedious

see Bondy a Marty Chapter
9

REMARK F fast algorithms running
E C V steps

totest if G is planar first came in
1979 by

HopCroft Tarr an



Platonicsolidsy 3 dimensional polyhedra
with every 2

dimensional face has the

same number p of
sides so is

a p gou
or p sidedpolygon

and every vertex
has same

degree or valence of

a Ei i
P 3 3 4 5 3

q
3 4 3 3 5

Why are these the only 5 Platonic
solids

Let's see why these
are the only Ep g

possible

Asbefore faces being p gars
f2e p

q

or

Longago we saw
2e degG q V qv

2eE tg Ee



2e p 2e

or'p
or qt

From Euler's
formula

v e tf L

f e 12
y
divideby
2e

Iet L let I

Lg
so gttf I

Conclusion
t and p qZ3

forces f I 2 I I s
i e qc6
qE 3,453

Similarly got I f zz f I
i e p

6

PEE 3,45
Note fp.gtC4ci C45 C5i4 L55 alldisobeytgttFoI

e s It L 4



This only leaves as possibilities
Cpg 3,3 13,4 143 5,5 5,3

and from each of
these one deduces

theurrique cake
of e from

qttpt
and then the unique

values of v f

from v f

Foreach of Cpg 3,3 G n 43

its not toohard

togwownsIEFit looks
like

4

but I personally
find it a lot more

tedious

to show Lp g
3,5 CJ 3

force K 7 EEII
but it can be done



Math 4707 Nor 25
2020

Rigidity of
bar node frameworks

QUESTION Which
of our 3 dimensional

polyhedra
are rigid when built

from nodes andbays
vertices edges

meaning that they
don't have

extra motions that
keep the

or collapsing
bars of the

sarnie

ei E i
ff

i
7

A non rigid
mo f the cube9



training
war

Anymore

Moreexamples

EE
rigid rigid non rigid rigid

non rigid

tot
o

1non rigid
non rigid rigid

The rigid ones seem to be the ones
whose

faces are all triangles

Lets understand why roughly



Remember we showed the vertices edges

of a polyhedron satisfy
e E 3 v 6

or lovey
IEEE

g
with
tyequal

with equality iffygdif
if and only if a all faces

affirmation

Lets re interpret 3 r e and the 6

in terms
of the informal notion

of

degreesoffreedom
d o f for

objects in 1123

n

of real number parameters
needed to specify the

object's exact
location

and configuration
in 1123



degreesoffreedom d o f for

objects in 1123

j n
of real number parameters
needed to specify the

object's exact location
and configuration in 1123

Z

EXAMPLES

A point in
423 has 3 d o f's 4

fertex
namely its

x y 2
coordinates in space

A robot and with
hingefixed on a table

but rotatable
has 2 d.o.FI

ftp.EEI p

a a

v vertices
in
1123 floating freely

have 3v dof's
2

tf
initseatal

x



v vertices
in
1123 floating freely

have 3v dof's
2

tf
initseatal

x

r vertices with
2 edgefbgradded

of d
a length

has 3v I d of's
o

2

vrmiceasddmedknageithe.ge
Z 3v e d o f s

0

notexactly 3v e necessarily since

sometimes bars impose
redundant

constraints

e s
addgngar

t



im
so

thebar12soowaisremamI
dimensional polyhedra

satisfied 3veZ6J
with

eqralityhhereyitaaeff.ggItreI

and have at least 3v
e d o f's

0 What is t of 6d.o.f.is



Rigid 3 dimensional objects

have exactly 6 d.o.I.is
iPhonemoretoe rotation

2 ipoint angle
around

I need to
toe

Ms reefs

is yawpitch roll

heel
Needed

gyu
with Gay z

X 6 Cx y z
coordinates dof s

So rigidity means having exaetybd.o.f.is

Polyhedra have
23 r e d o f's

and have 3v e 26 with equality
allfacestriangular

coN
N

in
1123

A convex polyhedron

cannot berigid
unless all

faces

are tegular



But it doesn't quite make it clear

that there is a converse

THEOREM Cauchy Steinitz 1928
I 813 Alexandrov 1950

incorrect concetproots

proof
ConIeepolyhedra

with all triangular

faces are rigid

first oneby
Connelly1977

EXAMPLE hookup flexibleP
Teipedid

There exist non
convex spheres

built from triangular
faces which mare

not convexhere
are non rigid

8 ED

son

Bi
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Planar duality hot
in book

There was a hidden symmetry
between

vertices

f faces region
in our discussion of Euler's formula

v e t f 2

proven e 1 Cf D e

and in our discussion
of regularpolyhedra

Cp g playedsymmetric
roles

9,3 53 x

is.si sgEe.anaiIEEh
3,4 35

t E



what is this symmetry
DEEN Given G CV E a planar

graph embedded
in the plane

create its planar dual graph GE Cvt
E

byletting
have a vertex v in the middle

ofeach face of G and an edge
e for

everyedge
e e E connecting y is

corresponding to thefaces F Fz
on the

two sides of e
ni G

Cx ES G

v is



G



ff e DforG



THEOREM The duality map

insisted I ignited
G G

has these properties

n G if we assume a bit
more about G

namely G is 3
connected

requires removing
3

vertices to
disconnectit

2 verticesof G faces of G

faces of G s verticesofG

3 spanningtrees
of G spanning

treesofE
T et e T

a E
f



4 For an edge EEG which
is neither a loop
nor a cut edgee

Gee E G e

EmeanissdffInnected

Gte G le

That is duality exchanges deletion
contraction

mais
ax

Gee

i ate



Chapter 13 Coloring maps graphs

DEEN Given G CV E a graph

a proper vertex g with k colors

is an assignment f V f k colors
e g 1,2 k

such that for everyedge e E E

its two endpoints v v Yu3

receive different colors
f a flu

Say G is kcolorablee if
it has a

propervertex
k coloring

and X G chw mat.cn erotG

man k G is k colorable

EXAMPLES
2 foreven

sized

X III cycles

X ffg
3 for odd sizegddes

needed a 3rdodor



ftp

3Id34fFHf4ltI

X Kmp L

and same for
a bipartite

iast
one edge



APPLICATIONS

Scheduling
tasks to be done
each taking 7 um of time

C pairs
u v of tasks that can't

be done at
the same time

proper
k coloring schedullingsusingketone units

5
6

time unit 1

a time units

a time unit 3

4
2

G X G minimum
of

time slots
needed

X G
3 to complete

the
tasks



Frequency assignments

cell phones
E pairs

u u ofphones that

are sometimes
close enough

to interfere

in i
with k
frequencies

X G minimumberof frequencies

Coloningneaps A mapwith
airinitted

countries needs to
be

adoredwith contrasting
colors alongeach

borderD
isms

sharinga
E

tE

xa
needed




