COROLARE: If G is planar, commented and has at least two edges, then

$$
2 e \geqslant 3 f
$$

and hence $e \leq 3 v-6$
© K_{s} fails this!
proof: Next time...

$$
\text { Math } 4707 \text { Nov. 23, } 2020
$$

simple (no loops, no muibible edges)
coroulte: if G is ${ }^{r}$ planar, commented and has at least two edges, then

$$
2 e \geqslant 3 f
$$

and hence $e \leq 3 v-6$
E K_{s} fails
proof:

To show $2 e \geqslant 3 f$, let's count the number of orange edges/ segments above in two ways:

Starting with $2 e \geq 3 f$, one has $\frac{2}{3} e \geq f$ so fuller's formula

$$
\begin{gathered}
\text { fuller's formula }=2 \\
\Rightarrow \quad v-e+f=2 \\
v-e+\frac{2}{3} e \geq 2 \\
v-\frac{1}{3} e \geqslant 2 \\
v-2 \geq \frac{1}{3} e \\
{\left[\begin{array}{c}
v-6
\end{array}\right.}
\end{gathered}
$$

So we understand why K_{5} can ct be planar $\left(\right.$ and $\left.k_{6}, k_{7}, \ldots\right)$
but what about K_{3}

having $v=6$

$$
e=3 \cdot 3=9
$$

which satisfies $e \leq 3 v-6$

$$
9 \begin{array}{ll}
11 & 3.6-6 \\
9 & 12
\end{array}
$$

$$
12
$$

Let's use the bipartiteness of $k_{3,3} \ldots$
proposition: If G is a bipartite, simple graph with at least edges, $\left(\begin{array}{l}\text { no loops } \\ \text { no multiple } \\ \text { edges }\end{array}\right)$ then $2 e \geq 4 f$ edges and $e \leq 2 v-4$
$\int_{3,3}$ fails this, so is not planar:

$$
\begin{aligned}
& \underset{\substack{\prime \prime \\
e=3}}{ } \neq 2 r-4 \\
& 9=3.3 \quad 2.6-4
\end{aligned}
$$

proof: In a biparbte graph, every cycle has an even number of edges:

And it 't's simple, it is at least 4 (not 2)

So the faces/regions in abipartite simple planar graph, with $\geqslant 2$ edges, are quadrangles, hexagons, octagons,... having $\geqslant 4$ edges bounding them:

Counting the orange segments in two ways gives

$$
\begin{aligned}
& 2 e=\underset{\text { Segnonts }}{\text { \#orange }}=\sum_{\text {faces } f} \underbrace{}_{\substack{\text { \#fedges } \\
\text { bounding }}}) \\
& \text { so } 2 e \geqslant 4 f \Rightarrow \frac{e}{2} \geqslant f
\end{aligned}
$$

Then Euler's formula $v-e+f=2$
gnus

$$
\begin{gathered}
v-e+\frac{e}{2} \geqslant 2 \\
v-\frac{e}{2} \geqslant 2 \\
v-2 \geqslant \frac{e}{2} \\
2 v-4 \geq e
\end{gathered}
$$

Weave seen $K_{5}, K_{3,3}$ are not planar, and also any graph G having them as an edge-sulograph would also not be planar.

$$
\begin{aligned}
& \uparrow \\
& G^{\prime} \subset G \\
& \left(v^{\prime}, \epsilon^{\prime}\right) \quad(v, E) \\
& \text { with } V^{\prime} \subset V \\
& E^{\prime} \subset E \\
& \text { is called an edge-subgraph } \\
& \text { ecg. }
\end{aligned}
$$

Note also, that if G and G^{\prime} differ by an edge-subdivision then G is planar
 $\Leftrightarrow G^{\prime}$ isplanar

One can further subdivide edges, and call G an edge-subdrision of G^{\prime} if it is obtained by iterating this process:
egg.

THeOREM (Kuratouski 1980):
Gagraph is planar $\Longleftrightarrow G$ contains no edge-subgraph G^{\prime} that is on edge-subdivision
Not obvious, quite surprising! of K_{5} or of $K_{5,3}$
Not so hard tusprove, a little tedious; see Bandy \& Murty Chapter 9.
REMARK: \exists fast algorithms naming $\leq C \cdot \# V$ steps to fest if G is planar; first came in 1979 by Hbpcrott Δ Taíjan

Platonic solids $=3$-dimensional polyhedra with - every 2-dimensional face has the same number p of sides, so is a p-gin or p-sided polygon and. every vertex has same degree or valence q

Why are these the only δ Platonic solids? let's see why these are the only (p, q) possible.
As before, faces being p-gowns $\Rightarrow 2 e=p \cdot f$ or $\frac{1}{p}=\frac{1}{2 R}$

Long ago ne saw

$$
2 e=\sum_{v_{j} \in V} \frac{\operatorname{deg}\left(v_{0}\right)=q \cdot \# V=q \cdot v}{\Rightarrow \frac{2 e=q^{v}}{o r} \frac{1}{q}=\frac{v}{2 e}}
$$

$$
\begin{aligned}
& 2 e=p \cdot f \\
& \text { or } \frac{1}{p}=\frac{1}{2 e}
\end{aligned}
$$

$$
\frac{2 e=q^{2}}{\text { or }} \frac{1}{q}=\frac{v}{2 e}
$$

From Euler's formula,

$$
\begin{aligned}
& v-e+f=2 \\
& v+f=e+2 \\
& \frac{v}{2 e}+\underbrace{\frac{f}{p}}_{\frac{f}{2 e}}=\frac{1}{2}+\frac{1}{e}>\frac{1}{2} \\
& \underbrace{\frac{1}{q}+\frac{1}{p}}_{\frac{1}{q}}=\frac{1}{2}+\frac{1}{e}
\end{aligned}
$$

Conclusion: $\frac{1}{q}+\frac{1}{p}>\frac{1}{2}$ and $p, q \geq 3$
forces $\frac{1}{q}>\frac{1}{2}-\frac{1}{p} \geq \frac{1}{2}-\frac{1}{3}=\frac{1}{6}$

$$
\begin{aligned}
& \text { ie. } q<6 \\
& a \in\{3,4,5\}
\end{aligned}
$$

$$
q \in\{3,4,5\}
$$

Similarly $\frac{1}{p} \geq \frac{1}{2}-\frac{1}{q} \geq \frac{1}{2}-\frac{1}{3}=\frac{1}{6}$
ie. $p<6$

$$
\begin{aligned}
& \text { Note }(p, q)=(4,4),(4,5),(5,4),(5,5) \text { all disobey } \frac{1}{8}+\frac{1}{p}>\{3,4,5\} \\
& \text { ecg. } \frac{1}{4}+\frac{1}{4}=\frac{1}{2} \ngtr \frac{1}{2}
\end{aligned}
$$

This only leaves as possibilities

$$
\begin{aligned}
& \text { his only leaves as possibilaes } \\
& (p, y)=(3,3),(3,4),(4,3),(3,5),(5,3)
\end{aligned}
$$

and from each of these, one deduces the unique calve of e from"

$$
\frac{1}{q}+\frac{1}{p}=\frac{1}{2}+\frac{1}{e}
$$

and then the unique values of v, f from $v=\frac{2 e}{q}, f=\frac{2 e}{p}$.
For each of $(p, g)=(3,3),(3,4),(4,3)$ its not too hard to convince yourself it looks lite

but I personally find it aloft more tedion to show $(p, q)=(3,5),(5,3)$
force

but 'tit can be done

Rigidity (of ber-node frameworks)
QUESTION: Which of our 3-dimensional polyhedra are rigid when built from nodes and bars
(vertices) (edges)'
meaning that they don't have extra motions that keep the (or collapsing) bars of the same length.
egg.

A non-rigid
$\frac{\text { non-rigid }}{\text { motion of the cube } \uparrow}$

More examples...

The rigid ones seem to be the ones whose faces are all triangles.
lets understand why, roughly.

Remember, weshowed the vertices, edges of a polighedion satisfy

Lets re-interpret $3 r-e$ and the 6 in terms of the (informal) notion of degrees of freedom (d.o.f.) for objects in \mathbb{R}^{3}
: \#EFIN of real number parameters needed to specify the object's exact location and configuration in \mathbb{R}^{3}
degrees of freedom (d.o.f.) for objects in \mathbb{R}^{3}
: $\overline{\text { DEFIN }}$ \#of real number parameters needed to specify the object's exact location and configuration in \mathbb{R}^{3}

vertex
namely its (x, y, z) coordinates in space
(2) A robot arm, with hinge fixed on a table,
 we need to angles (θ, φ) to specify it
(3) V vertices in \mathbb{R}^{3} floating freely
 have $3 v$ d.o.f.'s
(3) V vertices in \mathbb{R}^{3} floating freely
 have $3 v$ doff's
(4) \checkmark vertices with 1 edge/foar added of freed length
has $3 v-1$ d.o.f.'s
v vertices in \mathbb{R}^{3} with e edger/har
(5) added have

$$
\geqslant 3 v-e \text { d.o.f.'s }
$$

(not exadly $3 r-e$ necessarily, since someotmes bars impose redundant constraints
egg.

So our 3-dimensional polyhedra satisfied $3 v-e \geq 6$
with equality there if and only if all the faces are triangular
and have at least $3 v-e$ d.o.fi's
Q: What is this important \# of 6 d.o.f.i?
(6) Rigid 3-dimensional objects have exactly $6 \frac{\text { d.o.f.'s: }}{1 / 7 /}$

So rigidity means having exactly 6 d.o.f.'s
Polyhedral have $\geqslant 3 v-e$ d.o.f.'s
and have $3 v-e \geqslant 6$ with equality \Leftrightarrow all faces triangular.

CONCLUSION:
A convex polyhedron in \mathbb{R}^{3} cannot be rigid unless all faces are triangular.

But, it doesn't quite make it clear that there is a converse.
THEOREM (Cauchy; $\begin{array}{c}\text { Chi } \\ \text { incorrect }\end{array}$; Steinitz 1928; $\left.\begin{array}{c}\text { Alexandrov 1950) } \\ \text { cor ret pots }\end{array}\right)$
incorrect grot
Convex polyhedra with all triangular faces are rigid.
EXAMPLE (firs tone by Connell 1977) There exist non-convex spheres wilupela) built from triangular faces which are non-rigid

convex polygon

Math $4707 \mathrm{Nov.30,2020}$
Planar duality (not in book)
There was a hidden symmetry between
$v=$ \#vertices
$f=$ \#faces/region
in our discussion of Euler's formula

$$
v-e+f=2
$$

$$
\text { proven }(v-1)+(f-1)=e
$$

and in our discussion of regular polfhema (p, q) played symmetric odes

$(5,3)$

"duality"

$$
(3,5)
$$

What is this symmetry?
DEF IN: Given $G=(U, E)$ a planar graph embedded in the plane, create its planar dual graph $G^{*}=\left(V^{*}, E^{*}\right)$ by letting V^{*} have a vertex v^{*} in the middle of each face of G, and an edge e^{*} for every edge $e \in E$ connecting v_{1}^{*}, v_{2}^{*} corresponding to the faces F_{1}, F_{2} on the fur o sides of e in G.
Examples: G

THEOREM: The duality map

$$
\begin{aligned}
& M: \text { The duality map } \\
&\left\{\begin{array}{c}
\text { connected } \\
\text { planar } \\
\text { graphs } G
\end{array}\right\} \longrightarrow\left\{\begin{array}{c}
\text { connected } \\
\text { planar } \\
\text { graphs } 6^{*}
\end{array}\right\} \\
& G \longrightarrow G^{*}
\end{aligned}
$$

has these properties
(1) $\left(G^{*}\right)^{*}=G$ if we assume a bit more about G, namely G is 3 -connected (requires removing 3 vertices to dis connect't)
(2) vertices of $G \longleftrightarrow$ faces of G^{*}
faces of $G \longleftrightarrow$ vertices of G^{*}
(3) spanning trees of $G \longleftrightarrow$ spanning trees of G^{*}
G

G

$$
T^{*}=\left\{e^{*}: e \notin T\right\}
$$

$T^{*} G^{*}$
(4) For an edge $e \in G$ which is neither a loop, nor a cut-edge C means Gee

$$
\begin{aligned}
& (G \backslash e)^{*} \simeq G^{*} / e^{*} \\
& (G / e)^{*} \cong G^{*} \backslash e^{*}
\end{aligned}
$$

That is, duality exchanges deletion \& contraction!

Chapter 13 Coloring maps \& graphs
DEF'N: Given $G=(U, E)$ a graph a proper (vertex-) wowing with k colors is an assignment $f: V \longrightarrow\{k$ colors $\}$

$$
e . g .\{1,2, \ldots, k\}
$$

such that for every edge $e \in E$, its two endpoints $n, v^{\prime}\left\{v^{\prime \prime}, v^{\prime}\right\}$ receive different colors $f(v) \neq f(v)$.
Say G is $\frac{k \text {-colorable if it has } a}{}$ proper vertex k-coloring,
and $X(G)=$ chromatic number of G

$$
\begin{aligned}
& =\text { chromatic number colorable }\} \\
& :=\min \{k: G i s k \text {-col }
\end{aligned}
$$

ExAMPLES:
(1)

$$
\begin{aligned}
& \text { MOles: } \\
& X\left(\begin{array}{c}
\text { for even sized } \\
\text { cycles }
\end{array}\right. \\
& X\left(\begin{array}{c}
0
\end{array}\right)=3 \text { for odd sized } \\
& \text { cycles }
\end{aligned}
$$

(2) $x\left(K_{n}\right)=n$

n	K_{n}	$x\left(k_{n}\right)$
2	n	2
3	8	3
4	$8!$	4
5		5

(3) $\chi\left(K_{m, n}\right)=2$
$K_{4,3}$ and same for all biparty

APPLICATIONS:
(7) Scheduling-
$V=$ tasks to be done, each taking 1 mit of tome
$E=$ pairs $\{v, v \prime\}$ of tasks that can't be done at the same time
be done at
proper k-coloring $=s c h e d u l i n g s u s i n g ~$
k tome units

- = tome unit 1
- = the units
- = tome unit 3
$X(G)=$ minimum $\#$ of tine slots needed to complete the tasks
(2) Frequency assignments
$V=$ cell phones
- E = pairs $\left\{u, v^{\prime}\right\}$ of phones that are someterines close enough
$\therefore v_{2}, v_{4}$ are to mterfere

$$
\begin{aligned}
& {\left[\begin{array}{c}
\text { proper } k \text {-wlonings } \\
\text { of } G
\end{array}\right] \leftrightarrow} \\
& \{\text { frequency } \\
& \text { assignments } \\
& \text { with } k \\
& \text { frequencies? } \\
& X(G)=\text { minimumber of frequencies } \\
& \text { number of frequencies }
\end{aligned}
$$

(simply)
(3) Coloring maps - A map with complected countries needs bo be colored with contrasting colors along each border $V=$ countries

$$
\begin{aligned}
& V=\text { countries } \\
& E=\text { pairs }\left\{v, v, v^{\prime}\right. \\
& \text { sharing a }
\end{aligned}
$$ shaving a boundary

$$
X(G)=\min _{\substack{\text { co u } \\ \text { needed } \\ \text { not }}}
$$ needed.

