EXAMPLES
(1) Everyone above is a ving

$$Z_{,} \mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{F}_{2}^{,}$$
 as smalles,
 $\mathbb{R}[x], \mathbb{Q}[x], \mathbb{C}[x], \mathbb{F}_{2}[x]$
 $\mathbb{Q}: Who is -f(x) here?$
(2) Which of them are fields?
 $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{F}_{2}$
 $\mathbb{Q}: Who is \vec{z}' if z = x + iy \neq 0 in C?$
 $\vec{z}' = \frac{1}{z} = \frac{1}{x + iy}$
 $= \frac{1}{x + iy} \cdot \frac{x - iy}{x^{2} + y^{2}} = \frac{x}{x^{2} + y^{2}} i$
 $Why are bese denominabes
 $yot 0?$$

A new ring
$$\mathbb{Z}/m$$
 (§6.7)
DEF'N: $\mathbb{Z}/m = \mathbb{Z}/m\mathbb{Z} = integers \mod m$
 $= \{\overline{o}, \overline{1}, \overline{2}, ..., \overline{m-1}\}$
 $= residues \mod m$
in which t, x are done as usual in \mathbb{Z}
followed by taking remainder on division by m

EXAMPLES
(1)
$$\frac{2}{4}$$
 has t, x tables
 $\frac{+0}{0}\frac{1}{2}\frac{3}{3}$
 $\frac{1}{0}\frac{1}{2}\frac{3}{3}$
 $\frac{1}{1}\frac{2}{2}\frac{3}{3}\frac{0}{1}\frac{1}{2}$
 $\frac{1}{2}\frac{3}{3}\frac{0}{1}\frac{1}{2}$
(2) $F_{2} = \frac{2}{42} = \frac{1}{2} = \frac{1}{2$

X	0	ſ	2	3	
0	0	0	٥	δ	
7	0	J	2	3	
2	0	ス	0	2	
3	0	3	2	1	

(2)
$$\mathbb{F}_{1} = \frac{2}{2} = \begin{bmatrix} \overline{0} \\ \overline{1} \end{bmatrix}$$
 evens odds

DEF N: Fix the modulus
$$m=23...$$
 in Z.
Say $n \equiv n' \mod m$ if $m \lfloor n'-n$
This is an equivalence relation: $n \equiv n$
 $n \equiv n' \iff n' \equiv n$
Call the equivalence class of n by \overline{n} , and
let $\mathbb{Z}/m := \{ \text{the equivalence classes } \overline{n} : n \in \mathbb{Z} \}$

KEY PROPOSITION :

3: For which moduli m is Z/m a field, that is $\overline{a} \neq \overline{b}$ in \mathbb{Z}/m always has a multiplicative inverse $\overline{b} = \overline{a}^{-1}$ with $\overline{a} \cdot \overline{b} = \overline{1}$?

EXAMPLES			Us					746										
7/4			× ı			21	31	Ч	×	0	1	2	3	ч	5			
¥	0	1	2	5	-	0	,		0	0	0	Ð	D	٥	0	0	0	
0	0	0	2	2	-		•	,	2	4	1	0	ι	2	3	ч	5	
	0	-	12	2	/	0	Ľ	~	<i>•</i>	1	2	0	2	4	0	2	4	
2	0	4	12	K	2	0	2	4	Ľ		3	Ð	3	0	3	o	3	
3	0	3	12	11	3	0	3	1	4	2	4	0	4	2	ð	4	2	
not a field:				ч	0	14	3	2	11	S	0	5	4	3	2	1		
					a field:					not a field:								
31=3					<u> </u>													
but 2-1					$\overline{2}^{1}=\overline{3}$						5-1-5							
does not					31 = 2						but 2', 3', 4'							
$e^{x_1}st$ $\vec{4}^2 = \vec{4}$								do not exist										
The key is that 5 is prime, but 4,6 are not.																		
To understand this it helps to see a common																		

feature of the rings Z and R[x], F_[x].

DEF N: Let
$$m\mathbb{Z} := multiples of m m\mathbb{Z}$$

 $(e.g. 4\mathbb{Z} = i..., -s, -4, 0, 4, 8, 12, ... j)$
and let $m\mathbb{Z} + n\mathbb{Z} := \mathbb{Z} - |inear combinations of m, n$
 $= [am + bn : a, b \in \mathbb{Z}]$

EXAMPLE 472+672

PROP: For any
$$m, n \in \mathbb{Z}$$
, there is a unique $d \in \{0, 1, 3...\}$
called $d = GCD(m, n)$ with $m\mathbb{Z} + n\mathbb{Z} = d\mathbb{Z}$.

Thus
$$a = g \cdot d \in d\mathbb{Z}$$
.

For the remaining properties of
$$d$$
, note
(iii): $d\mathbb{Z} = m\mathbb{Z} + n\mathbb{Z} \implies d = d \cdot 1 \in m\mathbb{Z} + n\mathbb{Z}$
 $\implies d = am + bn \text{ for some } a, b \in \mathbb{Z}$

$$(i): m = m \cdot 1 + n \cdot 0] \Rightarrow m, n \in m / + n / = d / divides m, n = m \cdot 0 + n \cdot 1] \Rightarrow m, n \in m / + n / = \Rightarrow d divides m, n$$

$$\begin{array}{l} \underbrace{(\ddot{u})}_{i}: \ if \ e \ divides \ m, n \ then \\ m, n \ e \ e\mathbb{Z} \Rightarrow m\mathbb{Z} + n\mathbb{Z} \subseteq e\mathbb{Z} \\ & \mathbb{Z} \\ & \mathbb{Z} \\ & \Rightarrow \ d \ e \ e\mathbb{Z} \Rightarrow e \ d \ . \end{array}$$

COROLLARY:

$$\overline{n} \in \mathbb{Z}/m$$
 has a multiplicative inverse
 $\iff GCD(n,m)=1$
and hence \mathbb{Z}/m is a field
(i.e. every $\overline{n} \in \mathbb{Z}/m - \{o\}$ has a mult. inverse)
 $\iff m$ is a prime
One calls $\{\overline{n} \in \mathbb{Z}/m : gcd(n,m)=1\} = :(\mathbb{Z}/m)^{\times}$
and its size $P(m) := \#(\mathbb{Z}/m)^{\times}$ the Eder
phi function

EXAMPLES

$$(ZL/4)^{\times} = \{ 5, \overline{1}, \overline{2}, \overline{3} \}$$
 so $\Psi(4) = 2$
 $(\overline{ZL/5})^{\times} = \{ 5, \overline{1}, \overline{2}, \overline{3}, \overline{4} \}$ $\Psi(5) = 4$
 $(\overline{ZL/5})^{\times} = \{ 5, \overline{1}, \overline{2}, \overline{3}, \overline{4} \}$ $\Psi(5) = 4$
 $(\overline{1}, \overline{3}, \overline{2}, \overline{3}, \overline{4})$ $\Psi(6) = 2$
 $(\overline{1}, \overline{1}, \overline{2}, \overline{3}, \overline{1}, \overline{5})$ $\Psi(6) = 2$
 $(\overline{1}, \overline{1}, \overline{2}, \overline{3}, \overline{1}, \overline{5})$ $\Psi(6) = 2$

For m a prime, note any
$$FE_1, 2, ..., m-1$$

will have $d = GCD(r,m) = 1$
since $d|r \Rightarrow d \leq r \leq m-1$
 $d|m \Rightarrow d = 1 \text{ or } M$

For m not a prime, any proper
factorization
$$m=m, m_2$$
 with $m_1, m_2 \ge 2$
gives $\overline{m}_1, \overline{m}_2 \neq \overline{D}$ but $G(D(m_1, m) = m_1 \neq 1,$
so $\overline{m}_1^{-1}, \overline{m}_2^{-1}$ do not exist \blacksquare

Q: How to compute
$$\overline{n}'$$
 in \mathbb{Z}/m when $GOD(m,n)=1$?
Enclid gave us an algorithm that both computes
 $d = GOD(m,n)$ and in its extended version,
finds an expression $d = am + bn$.
So if $1 = d = am + bn$, then $\overline{b} = \overline{n}'$
since $\overline{b} \cdot \overline{n} = \overline{1}$ in \mathbb{Z}/m

EUCLID'S ALGORITHM for GCD(m,n)
If
$$m < n$$
, compute $m \int_{r}^{8}$ giving $n = q.m+r$,
 $\frac{1}{r}$ $0 \le r < m$.
When $r=0$, $m (n and GCD(m,n)=m$.
Otherwise, we claim one has
 $GCD(m,n) = GCD(r,m)$
proof: This happens $\iff m\mathbb{Z} + n\mathbb{Z} = r\mathbb{Z} + m\mathbb{Z}$
which occurs because
 $n = q.m+r$ shows \subseteq
 $r = n - q.m$ shows \supseteq \mathbb{Z}
and so you repeat, replacing (m,n) by (r,m) .
Working backward step-by-step, one can
find an expression $d = a m + bn$
using the various $r = n - q.m$ equations
from $m \frac{3}{n}$
 $\frac{1}{r}$

EXAMPLE
$$GCD(28, 92) = GCD(8, 28) = GCD(4, 8) = 4$$

 $28 \int \frac{3}{92}$
 $gcd(28, 92) = GCD(8, 28) = GCD(4, 8) = 4$
 $gcd(4, 8)$