$\mathbb{Z}, \mathbb{Z} / m$ and rings (Chops b89)
Important properties of numbers with t, x like $\mathbb{Z}, \mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{F}_{2}$
and polynomials like $\mathbb{R}[x], \mathbb{F}_{2}[x]$ abstract to rings and fields.
DEF'N: A ring (R, t, x) is a set R with 2 binary operations t, x safsfying familiar niles:

- t, x are associative and commutative:

$$
\begin{aligned}
& (a+b)+c=a+(b+c) \\
& (a b) c=a(b c)
\end{aligned}
$$

- X distributes over + :

$$
\begin{aligned}
a+b & =b+a \\
a b & =b a
\end{aligned}
$$

Actually Pis a

- There is an additive identity 0 , multiplicative identity, 1 , and

$$
0+a=a
$$

- there are additive inverses:

$$
\begin{aligned}
& \text { e are additive inverse: } \\
& \forall a \in R \quad \exists-a \in R \text { with } a+(-a)=0
\end{aligned}
$$

DEF'N: The ring R is called a field if additionally there are multiplicative inverses for $a \neq 0$: $\forall a \in R-\{0\} \quad \exists a^{-1} \in R$ with $a \cdot a^{-1}=1$.

Examples
(1) Everyone above is a ling

$$
\begin{aligned}
& \mathbb{Z}, \mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{F}_{2}, \\
& \mathbb{R}[x], Q[x], \mathbb{C}[x], \mathbb{F}_{2}[x] \\
& \text { Q: who is small as }-f(x) \text { here? }
\end{aligned}
$$

(2) Which of them are fields?

$$
\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{F}_{2}
$$

Q: Who is z^{-1} if $z=x+i y \neq 0$ in \mathbb{C} ?

$$
\begin{aligned}
& z^{-1}=\frac{1}{z}=\frac{1}{x+i y} \\
& =\frac{1}{x+i y} \cdot \frac{x-i y}{x-i y} \\
& =\frac{x-i y}{x^{2}+y^{2}}=\frac{x}{x^{2}+y^{2}}+\left(-\frac{y}{x^{2}+y^{2}}\right) i \\
& \text { Why are these denominators } \\
& \text { not } 0 \text { ? }
\end{aligned}
$$

A new ring $\mathbb{Z} / m \quad(\$ 6.7)$
DEE:

$$
\begin{aligned}
\mathbb{Z} / m & =\mathbb{Z} / m \mathbb{Z}=\text { integers }(\bmod \bmod (m) m \\
& =\{\overline{0}, \bar{\pi}, \bar{z}, \ldots, \overline{m-1}\} \\
& =\text { residues mod } m
\end{aligned}
$$

m which t, x are done as usual in \mathbb{Z} followed by taking remainder on division by m

EXAMPLES
(1) $\mathbb{Z} / 4$ has t, x tables

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

x	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

(2) $\mathbb{F}_{2}=\mathbb{U} / 2=\left\{\begin{array}{cc}\{\bar{\sigma}, & T \\ \text { evens }\end{array}\right\}$
we saw before
(3) We're somewhat familiar with + in

$$
\begin{aligned}
& \mathbb{Z} / 7=\left\{\begin{array}{l}
\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6} \\
{ }_{n}
\end{array}\right\} \\
& \text { sundays Mondays Welusdays Thursdays Firdays saberdays }
\end{aligned}
$$

(e.g. if today is Monday, what day is it 40 days from now?)
and $t i n$

$$
\begin{aligned}
& \text { nd } t \operatorname{m} \\
& \mathbb{Z} / 24 \mathbb{Z}=\{\overline{0}, T, \overline{2}, \ldots, \overline{12}, \overline{13}, \ldots, \overline{23}\}
\end{aligned}
$$

midnights noons 11 PMs
(e.g. if it's 4:30 pm, what time is it 30 hours from now?)
along with both x, t in

$$
\mathbb{Z} / 10 \mathbb{Z}=\{0, T, \overline{2}, \ldots, \overline{9}\}
$$

(e.g. what is the last digit of 797×1024 ?)

$$
\begin{aligned}
& \overline{797} \times \overline{1024}=\overline{797 \times 1024}=\overline{7} \times \overline{4}=\overline{28}=\overline{8}=\overline{-2} \\
&=\overline{72} \\
&=\overline{-3} \times \overline{4}
\end{aligned}
$$

We can safely be sloppy about doing the t, x operations before or after taking remainders.

$$
\text { Why } P_{0} ?
$$

DEF N : Fix the modulus $m=2,3, \ldots$ in \mathbb{Z}.
Say $n \equiv n^{\prime} \bmod m$ if $m \mid n^{\prime}-n$
This is on equivalence relation: $n \equiv n$

$$
\begin{gathered}
n \equiv n^{\prime} \Leftrightarrow n^{\prime} \equiv n \\
n \equiv n^{\prime}, n^{\prime} \equiv n^{\prime \prime} \Rightarrow n \equiv n^{\prime \prime}
\end{gathered}
$$

Call the equivalence class of n by \bar{n}, and let $\mathbb{Z} / m:=\{$ the equivalence classes $\bar{n}: n \in \mathbb{Z}\}$

KEY PROPOSITION:
(a) For $n \in \mathbb{Z}$, the quotient q, remainder r in $n=q \cdot m+r$ become unique if we insist $0 \leq r<m$
So $\bar{n}=\bar{r}$, and $\bar{n}=\overline{n^{\prime}} \Leftrightarrow$ they have same remainder r on division by m, and $\mathbb{Z} m \mathbb{Z}=\{\overline{0}, \bar{q}, \bar{z},, \overline{m-1}\}$ has exactly m element.
(b) Given $\bar{a}, \bar{T}_{0} \in \mathbb{Z} \mathrm{~m}$, one can pick any representatives $a, b \in \mathbb{Z}$ to compute $a+b, a \cdot b$, and the answers will be the same.
proof: (a) We could write down some megalibies, but hopefully this picture of an $m=5$ example makes the uniqueness clear enough:

$$
-n^{n}=\underbrace{(-2)}_{q} \cdot \underbrace{m}_{r}+\underbrace{3}_{r}
$$

We have $\bar{n}=\bar{r}$ since $n-r=q \cdot m$ is divisible by m. The last two asserbous in (a) follow from these.
(b) Suppose $\bar{a}=\bar{a}^{\prime}, \bar{b}=\bar{b}^{\prime}$, that is, $m \mid a^{\prime}-a, b^{\prime}-b$.

Then $\overline{a+b}=a^{r}+b^{\prime}$ follows because

$$
\begin{aligned}
\left(a^{\prime}+b^{\prime}\right)-(a+b) & =\underbrace{\left(b^{\prime}-b\right)}_{\substack{\text { d, visible } \\
b_{y} m \\
a^{\prime}-a}}+\underbrace{\left(b^{\prime}\right)}_{\text {divisible }} \\
& \Rightarrow \text { divisible by }
\end{aligned}
$$

Similarly $\overline{a \cdot b}=\overline{a^{\prime} \cdot b^{\prime}}$ because

$$
\begin{aligned}
a^{\prime} b^{\prime}-a b & =a^{\prime} b^{\prime}-a^{\prime} b+a^{\prime} b-a b \\
& =\underbrace{}_{\begin{array}{c}
\left.a^{\prime}+b^{\prime}-b\right) \\
\text { dibble } \\
\text { by } m \\
b^{\prime} \\
\left.a^{\prime}-a\right) b \\
\text { isis }
\end{array}} \\
& \Rightarrow \text { divisible by }
\end{aligned}
$$

Q: For which moduli m is \mathbb{Z} / m a field, that is $\bar{a} \neq \overline{0}$ in \mathbb{Z} / m always has a multiplicative inverse $\bar{b}=\bar{a}^{-1}$ a th $\bar{a} \cdot \bar{b}=T$?

Examples

not a field:
$\overline{4}^{-1}=\overline{4}$

x	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

not a field:

$$
\begin{aligned}
& T^{-1}=T \\
& \bar{S}^{-1}=\overline{5} \\
& \text { but } \overline{2}^{-1}, \overline{3}^{-1}, \overline{4}^{-1} \\
& \text { do not exist }
\end{aligned}
$$

The key is that 5 is prime, but 4,6 are not.
To understand this it helps to see acommon feature of the rings \mathbb{Z} and $\mathbb{R}[x], \mathbb{F}_{2}[x]$.

Division and Euclidean Algorithm ($\$ 6.5$)
DEF'N: Let $m \mathbb{Z}:=$ multiples of $m \backsim \mathbb{Z}$

$$
(\text { e.g. } 4 \mathbb{Z}=\{\ldots,-8,-4,0,4,8,12, \ldots\})
$$

and let $m \mathbb{Z}+n \mathbb{Z}=\mathbb{Z}$-linear combinations $d_{m, n}$

$$
=\{a m+b n: a, b \in \mathbb{Z}\}
$$

EXAMPLE $4 \mathbb{Z}+6 \mathbb{Z}$

In fact, $\quad 4 \mathbb{Z}+6 \mathbb{Z}=2 \mathbb{Z}$. This always happens...
PROP: For any $m, n \in \mathbb{Z}$, there is a unique $d \in\{0,1,3 \ldots\}$ called $d=\operatorname{GCD}(m, n)$ with $m \mathbb{Z}+n \mathbb{Z}=d \mathbb{C}$.

It has these properties:
greatest $\left\{\begin{array}{l}(i) d \mid m, n\end{array}\right.$
common divisor $\{$ (ii) any e with e|m,n has eld
(iii) $\exists a, b \in \mathbb{Z}$ with $d=a m+b n$
proof: If we're in the degenerate case $m=n=0$ then $m \mathbb{Z}+n \mathbb{Z}=\{0\}=0 \cdot \mathbb{Z}, s_{0} d=0$.
Otherwise, $m \mathbb{Z}+n \mathbb{Z}$ contains some non-zero elements, and let d be the smallest positive one.

We claim $d \mathbb{Z}=m \mathbb{Z}+n \mathbb{Z}$: any posture ones?
To see $d \mathbb{Z} \subseteq m \mathbb{Z}+n \mathbb{Z}$, note $d \in m \mathbb{Z}+n \mathbb{Z}$ so $d \mathbb{Z} \subseteq m \mathbb{Z}+n \mathbb{Z}$.
To see $d \mathbb{Z} \supseteq m \mathbb{Z}+n \mathbb{Z}$, given any $a \in m \mathbb{Z}+n \mathbb{Z}$ one can divide it by d to get

$$
a=q \cdot d+r \text { win } q_{0} r \in \mathbb{Z}, 0 \leq r<d
$$

$$
\text { and note that } r=\underbrace{\underbrace{}_{i n}-\underbrace{}_{i n} m+n \mathbb{Z} x+n \mathbb{Z}}_{\substack{i_{n} \\ a}+n \mathbb{Z}}
$$

Hence $0 \leqslant r<d$ and $r \in m \mathbb{Z}+n \mathbb{Z}$
forces $r=0$ because d was smallest in $m \mathbb{Z}+n \mathbb{Z}-\{0\}$.
Thus $a=q^{-d} \in d \mathbb{Z}$.

For the remaining properties of d, note
(iii): $d \mathbb{Z}=m \mathbb{Z}+n \mathbb{Z} \Rightarrow d=d-1 \in m \mathbb{Z}+n \mathbb{Z}$

$$
\Rightarrow d=a m+b n \text { for some } a, b \in \mathbb{Z}
$$

(i):

$$
\left.\begin{array}{rl}
m=m \cdot 1+n \cdot 0 \\
n & =m \cdot 0+n \cdot 1
\end{array}\right\} \Rightarrow m, n \in m \mathbb{Z}+n \mathbb{Z}=d \mathbb{Z}, ~ 子 d \text { divides } m, n
$$

(ii): if e divides m, n then

$$
\begin{aligned}
m, n \in e \mathbb{Z} \Rightarrow & m \mathbb{Z}+n \mathbb{Z} \subseteq e \mathbb{Z} \\
& d \mathbb{Z} \\
\Rightarrow & d \in e \mathbb{Z} \Rightarrow e \mid d
\end{aligned}
$$

COROLLARY:
$\bar{n} \in \mathbb{Z} / m$ has a multiplicative inverse

$$
\Leftrightarrow \operatorname{GCD}(n, m)=1
$$

and hence \mathbb{Z} / m is a field
(i.e. every $\bar{n} \in \mathbb{Z} / m-\{0\}$ has a multi. inverse)
$\Leftrightarrow m$ is a prime
One calls $\left\{\bar{n} \in \mathbb{Z}(m: \operatorname{gcd}(n, m)=1\}=:(\mathbb{Z} / m)^{x}\right.$ and its size $\varphi(m):=\#(\mathbb{Z} / m)^{x}$ the tuber

EXAMPLES

$$
\begin{aligned}
& (\mathbb{Z} / 4)^{x}=\left\{0, T, \frac{1}{2}, \overline{3}\right\} \text { so } \varphi(4)=2 \\
& (\Downarrow / 5)^{x}=\{\rho, 9,2,3, \overline{4}\} \quad \varphi(5)=4 \\
& \begin{array}{lll}
14 \\
i^{-1} & \frac{11}{3^{-1}} & \frac{11}{2} \\
\Sigma^{-1} & \frac{11}{4}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& T^{-1} \\
& 5^{-1}
\end{aligned}
$$

proof of wROLLARY:
$\bar{n} \in \mathbb{Z} m$ has a mu't. inverse \bar{b}
$\Leftrightarrow \exists b \in \mathbb{Z}$ with $\bar{b} \cdot \bar{n}=T$ in \mathbb{Z} / m
ie. $b_{n} \equiv 1 \bmod m$
ie. $b_{n}=1+a m$ for some $a \in \mathbb{Z}$
$\Leftrightarrow \exists a, b \in \mathbb{Z}$ with $1=-a m+b n$

$$
\begin{aligned}
\Longleftrightarrow & 1 \in m \mathbb{Z}+n \mathbb{Z} \\
\Leftrightarrow & 1 \cdot \mathbb{C}=m \mathbb{Z}+n \mathbb{Z} \\
& \text { i.e. } G C D(m, n)=1 .
\end{aligned}
$$

For m a prime, note any $\bar{F} \in\{\overline{1}, \overline{2}, \ldots, \overline{m-1}\}$ will have $d=\operatorname{GCD}(r, m)=1$
since $d \mid r \Rightarrow d \leq r \leq m-1$

$$
d \mid m \Rightarrow d=1 \text { or work ign. }
$$

For m not a prime, any proper factorization $m=m_{1} m_{2}$ with $m_{1}, m_{2} \geqslant 2$ gives $\bar{m}_{1}, \bar{m}_{2} \neq \overline{0}$ but $G C D\left(m_{i}, m\right)=m_{i} \neq 1$, so $\bar{m}_{1}^{-1}, \bar{m}_{2}^{-1}$ do not exist

Q: How to compute \bar{n}^{-1} i \mathbb{Z} / m when $G(D(m, n)=1$?
Euclid gave us an algorithm that both computes $d=G C D(m, n)$ and in its extended version, finds an expression $d=a m+b n$.
So if $1=d=a m+b n$, then $\bar{b}=\bar{n}^{-1}$
since $\bar{b} \cdot \bar{n}=\overline{1}$ in \mathbb{Z} / m

EUCLD'S ALGORITHM for $\operatorname{GCD}(m, n)$ If $m<n$, compute $m \frac{q}{\frac{q}{\frac{i}{r}}}$ giving $\begin{array}{r}n=q \cdot m+r, \\ 0 \leqslant r<m .\end{array}$

When $r=0, m(n$ and $\operatorname{GCD}(m, n)=m$.
Othemise, we claim one has

$$
\operatorname{GCD}(m, n)=\operatorname{GCD}(r, m)
$$

proof: This happens $\Leftrightarrow m \mathbb{Z}+n \mathbb{Z}=r \mathbb{Z}+m \mathbb{Z}$ which occurs because $n=q \cdot m+r$ shows \subseteq $r=n-q \cdot m$ shows \geq and so you repeat, replacing (m, n) by (r, m).
Working backward step-by-step, one can find an expression $d=a m+b n$ using the various $r=n-q \cdot m$ equations from $m \frac{q}{\frac{n}{r}}$

$$
\begin{aligned}
& \text { EXAMPLE } \operatorname{GCD}(28,92)=\operatorname{GCD}(8,28)=\operatorname{GCD}(4,8)=4 \\
& \begin{array}{l}
3 \\
2 8 \longdiv { 9 2 }
\end{array} \quad 92=3.28+8
\end{aligned}
$$

$$
\begin{array}{r}
3 \\
2 8 \longdiv { 9 2 } \\
\frac{84}{8}
\end{array}
$$

Try to express $d=4$ as $0.28+6.92$:

$$
8 \longdiv { 2 8 } \begin{array} { l }
{ \frac { 3 } { 2 4 } } \\
{ \frac { 2 4 } { 4 } }
\end{array}
$$

$$
\begin{aligned}
4 & =28-3 \cdot 8 \\
& =(1)(28)+(-3)(8) \\
& =(n)(28)+(-3)(92-3.28) \\
4 & =(10)(28)+(-3)(92) \\
d & =(a) m+b n
\end{aligned}
$$

EXAMPLE $p=23$ is prime, so $\mathbb{Z} / 23$ is a field.
What is $\overline{7}^{-1}$ in $\mathbb{L} / 23$?
Need $1=a .7+6.23$ from extended Euclid

$$
\begin{aligned}
& \operatorname{GCD}(7,23)=\operatorname{GCD}(2,7)=\operatorname{GCD}(1,2)=1 \\
& \begin{array}{lll}
3 & & 1 \\
7 \begin{array}{l}
23 \\
21 \\
2
\end{array} & 23=3 \cdot 7+2 & 7=3 \cdot 2+1 \\
2=23-3 \cdot 7 & 1=7-3 \cdot 2
\end{array} \\
& \frac{21}{2} \\
& \begin{array}{r}
3 \\
2 \longdiv { 7 } \\
\hline 6 \\
\hline 1
\end{array} \\
& 1=7-3 \cdot 2 \\
& =(1)(7)+(-3)(2) \\
& =(1)(7)+(-3)(23-3.7) \\
& \begin{aligned}
& =(1)(7)+(-3)(23-3 \cdot 7) \\
1 & =(10)(7)+\underbrace{(-3)(23)} \Rightarrow \overline{7}^{-1}=\bar{a}=\overline{10}
\end{aligned} \\
& \text { Check: } \overline{7 \cdot 10}=\overline{70}=\overline{1} \\
& \text { in } \mathbb{Z} / 23
\end{aligned}
$$

