Generating functions, UMN Math 4707, Spr. 2020

Sam Hopkins

February 9, 2020
Let $F_{0}=0, F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, \ldots$ with $F_{n}=F_{n-1}+F_{n-2}$ be the Fibonacci number sequence. We saw that the generating function $F(x):=\sum_{n=0}^{\infty} F_{0} x^{n}$ for the Fibonacci numbers is $F(x)=\frac{x}{1-x-x^{2}}$ and, via partial fraction decomposition, $F(x)=\frac{1 / \sqrt{5}}{1-x(1+\sqrt{5}) / 2}-\frac{1 / \sqrt{5}}{1-x(1-\sqrt{5}) / 2}$. Using the geometric series $\frac{1}{1-r}=\sum_{n=0}^{\infty} r^{n}$, we got $F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$ and thus $F_{n} \approx \frac{1}{\sqrt{5}} \phi^{n}$ where $\phi=\left(\frac{1+\sqrt{5}}{2}\right) \approx 1.618 \ldots$ is the golden ratio.

1. Consider the sequence $J_{0}=0, J_{1}=1, J_{2}=1, J_{3}=3, J_{4}=5, \ldots$ with $J_{n}=J_{n-1}+2 J_{n-2}$. Form the generating function $J(x):=\sum_{n=0}^{\infty} J_{n} x^{n}$. Show that $J(x)=\frac{x}{1-x-2 x^{2}}$.
2. Use partial fractions to show that $J(x)=\frac{1 / 3}{1-2 x}-\frac{1 / 3}{1+x}$.
3. Conclude that $J_{n}=\frac{2^{n}-(-1)^{n}}{3}$, so that $J_{n} \approx \frac{1}{3} 2^{n}$.

For $n \in \mathbb{N}$, the generating function for the binomial coefficients $\binom{n}{k}$ is $\sum_{k=0}^{n}\binom{n}{k} x^{k}=(1+x)^{n}$ (by the binomial theorem). Generalizing this, for any real number $n \in \mathbb{R}$, define $\binom{n}{k}:=\frac{n(n-1)(n-2) \ldots(n-(k-1))}{k!}$. The generalized binomial theorem says that for any $n \in \mathbb{R}$ we have $\sum_{k=0}^{\infty}\binom{n}{k} x^{k}=(1+x)^{n}$.
4. Show that $(1+x)^{-4}=\sum_{k=0}^{\infty}(-1)^{k}\binom{4+k-1}{k} x^{k}$ and thus that $\left(\frac{1}{1-x}\right)^{4}=$ $\sum_{k=0}^{\infty}\binom{4+k-1}{k} x^{k}$.
5. Explain how the previous result relates to the "giving pennies to kids" / "choosing bagels" problem (hint: this case $=4$ flavors of bagels).
6. Show that $(1+x)^{-1 / 2}=\sum_{k=0}^{\infty}(-1)^{k} \frac{1 \cdot 3 \cdot 5 \cdots(2 k-1)}{2^{k} k!} x^{k}$ and thus that $\frac{1}{\sqrt{1-4 x}}=$ $\sum_{k=0}^{\infty}\binom{2 k}{k} x^{k}$ is the central binomial coefficient generating function.
7. Use the previous result to show that for all $k \in \mathbb{N}, 4^{k}=\sum_{j=0}^{k}\binom{2 j}{j}\binom{2(k-j)}{k-j}$.

