Coherence of f-Monotone Paths on Zonotopes.

Robert Edman

May 15, 2015
An Analogy: The Secondary Polytope

Definition (Polytope)

A polytope is a convex hull of finitely many points in \(\mathbb{R}^d \). *Combinatorially a polytope can be defined by its face lattice.*

Definition (Polyhedral Subdivision)

A polyhedral subdivision is a decomposition of \(P \) *into subpolytopes. A subdivision is a triangulation when each subpolytope is a simplex.*
Remark

Subdivisions of \(P \) form a poset called the refinement poset of \(P \).
Remark

In this example, the refinement poset is the face lattice of a polytope.
Some bad triangulations are not regular or are incoherent.

Coherence is a linear inequality condition.

\(\Sigma(P) \) is an example of a *Fiber Polytope*.

Theorem (GKZ)

The refinement poset of all regular subdivisions of \(P \) is the face lattice of a polytope \(\Sigma(P) \).
Our Work: Monotone Paths

Our version of triangulations are \(f \)-monotone edge paths of \(P \).

\(f \) must be generic, non-constant on each edge of \(P \).

The refinement poset consists of cellular strings.

Definition

An \(f \)-monotone edge path is a path from the \(f \)-minimal vertex \(-z \) to the \(f \)-maximal vertex \(z \) along the edges of \(P \).
Definition

- The vertices graph $G_2(P, f)$ is formed from all elements on the bottom level levels of the refinement poset.

- In this example every f-monotone path is coherent.
Question

When does P have incoherent f-monotone paths?
Definition (Coherent)

An \(f \)-monotone path \(\gamma \) is coherent if there exists \(g \in (\mathbb{R}^d)^* \) making \(\gamma \) the lower face of the polytope \(P = \text{Conv} \{(f(p_i), g(p_i))\} \subset \mathbb{R}^2 \).

Remark

The refinement poset of coherent cellular strings is the fiber polytope \(\Sigma(P, f) \).
Theorem (Billera & Sturmfels)

Every f-monotone path of a cube is coherent.
Definition

- A zonotope is the image of the n-cube in \mathbb{R}^d under a projection $A : C_n \to \mathbb{R}^d$ specified by a $d \times n$ matrix $A = \begin{pmatrix} a_1 & a_2 & \ldots & a_n \end{pmatrix}$.

- The zonotope $Z(A) = \sum[-a_i, +a_i]$ is the Minkowski of the columns of A.

- The vertices of $Z(A)$ are sign vectors.
Proposition

- Every f-monotone path of $Z(A)$ is of length n.
- The function f is generic when $f(a_i) > 0$ for all i.
- The choice of f corresponds to the choice of a f-minimal vertex z.
- But not all vertices are symmetric, so we will have to consider multiple options for z.
- The corank of Z is $n - d$.
Proposition

A \(f \)-monotone path \(\gamma \) is coherent if there exists a \(g \in (\mathbb{R}^d)^* \) so that:

\[
\frac{g_{\gamma(1)}}{f_{\gamma(1)}} < \frac{g_{\gamma(2)}}{f_{\gamma(2)}} < \ldots < \frac{g_{\gamma(n)}}{f_{\gamma(n)}}
\]
Corank 1

\[Z(4, 3) = \begin{bmatrix}
 1 & 1 & 1 & 1 \\
 1 & 2 & 3 & 4 \\
 1 & 4 & 9 & 16
\end{bmatrix} \]

Remark

- Every \(f \)-monotone path is coherent for \(- + ++\).
- \(+ ++ +\) has an incoherent \(f \)-monotone path for every \(f \).
Corank 2 (cyclic)

\[
Z(5, 3) = \begin{pmatrix}
a_1 & a_2 & a_3 & a_4 & a_5 \\
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 9 & 16 & 25
\end{pmatrix}
\]

Remark

- Has incoherent \(f \)-monotone path for every \(f \).
- \(+ + + + +\) is an important geometric counterexample.
Definition (Pointed hyperplane arrangement)

The normal fan of the zonotope, is a hyperplane arrangement,
\(\mathcal{A} = \{ a_i^\perp, \ldots, a_n^\perp \} \). The choice of a chamber \(c \) of \(\mathcal{A} \) corresponds to the choice of \(f \).

- Easy to draw under stereographic projection
- \(k \)-faces of \(Z \) \(\Longleftrightarrow d - k \) intersections of hyperplanes.
- \(L_2(\mathcal{A}) \) are the codimension 2 intersections of hyperplanes.
Reflection Arrangements

Remark

- Does not depend on the choice of a base chamber c.
- Paths corresponds to reduced words.
- Dual hyperplane configuration is a \((n - d) \times n\) matrix.
- Functions on \(\mathcal{A}\) correspond to dependencies of \(\mathcal{A}^*\).
- When \(n - d\) is small, this makes things easy.

\[
\begin{pmatrix}
a_1 & a_2 & a_3 & a_4 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 \\
1 \\
1 \\
-1 \\
\end{pmatrix}
= 0 \quad \mathcal{A}^* = \begin{pmatrix}
a_1^* & a_2^* & a_3^* & a_4^* \\
1 & 1 & 1 & -1 \\
\end{pmatrix}
\]

Example

+	+	+	+	\(f(x, y, z) = x + y + z\)	\(a_1^* + a_2^* + a_3^* + 3a_4^* = 0\)
-	+	+	+	\(f(x, y, z) = -x + y + z\)	\(-a_1^* + a_2^* + a_3^* + a_4^* = 0\)
+	+	+	-	?	?

Affine Gale duals replace \((\mathcal{A}, f)\) with a picture.
Proposition

- Extensions preserve dimension.
- Liftings preserve corank; if f is generic on A then there exists \hat{f} is generic on \hat{A}.
Proposition

If \(\gamma \) is an \(f \)-monotone path of \(A \) and \(\hat{A} \) a single-element lifting of \(A \), then any \(\hat{\gamma} \) with \(\hat{\gamma}/(n+1) = \gamma \) is an \(\hat{f} \)-monotone path of \(\hat{A} \).
Proposition

If A^+ is a single-element extension of A, and γ^+ is an f-monotone path of A^+ then any $\gamma \setminus (n + 1)$ is an f-monotone path of A.
Findings: Reflection Arrangements

| \(\mathcal{A} \) | \(|\Gamma(\mathcal{A})| \) |
|-----------------|------------------|
| \(H_3 \) | 152 |
| \(D_4 \) | 2316 |
| \(D_5 \) | 12985968 |
| \(D_6 \) | 3705762080 |
| \(F_4 \) | 2144892 |

Proposition

\(H_3 \) has exactly 4 \(L_2 \)-accessible nodes.
Findings: Diameter

There is an \((\mathcal{A}, f)\) pair with no \(L_2\)-accessible nodes.

Example

\(Z(8, 4)\), cyclic arrangement of 8 vectors in \(\mathbb{R}^4\) has \(\text{Diam } G_2(\mathcal{A}, c) = 30\) but \(|L_2| = 28\) for \(c = (-)^4(+)^4\).

Theorem

When \(n - d = 1\) \(G_2(\mathcal{A}, f)\) has diameter \(|L_2|\) and always has an \(L_2\)-accessible node.
Findings: Classification of \((\mathcal{A}, f)\) in corank 1.

- The purple \((\mathcal{A}, f)\) pair is a \textit{minimal obstruction}, all other \((\mathcal{A}, f)\) containing incoherent \(f\)-monotone paths are liftings of it.

- Really remarkable: Coherence depends only on the oriented matroid structure, not on the particular \(f\).

\textbf{Theorem}

\textit{When} \(n - d = 1\) \textit{there is a unique family of all-coherent} \((\mathcal{A}, f)\) \textit{pairs and all other} \((\mathcal{A}, f)\) \textit{pairs have incoherent paths.}
Findings: Classification of \((\mathcal{A}, f)\) in corank 2.

Theorem

When \(n - d = 2\) there are two all-coherent families and 9 minimal obstructions. Of the 9 minimal obstructions 8 are single-element lifting of the corank 1 minimal obstruction.
Findings: Minimal obstructions for Cyclic Zonotopes

\[A(n, d) = \begin{pmatrix}
a_1 & a_2 & \cdots & a_n \\
1 & 1 & \cdots & 1 \\
t_1 & t_2 & \cdots & t_n \\
\vdots & \vdots & & \vdots \\
t_1^{d-1} & t_2^{d-1} & \cdots & t_n^{d-1}
\end{pmatrix}, \]

Theorem

When \(d > 2 \) and *f* realizing *c*, the monotone path graph

- *When* \(n - d = 1 \), every *f*-monotone path of \((A(n, d), f)\) is coherent when *c* is a reorientation of a certain hyperplane arrangement, and has incoherence *f*-monotone paths for all other *c*.

- *When* \(n - d \geq 2 \), \((A(n, d), f)\) has incoherent galleries for every *f*.
Lemma (4.17)

Suppose $\mathcal{A}^+ = \{a_i, \ldots, a_{n+1}\}$ is a single-element extension of \mathcal{A} and f is a generic function on both $Z(\mathcal{A})$ and $Z(\mathcal{A}^+)$. If γ^+ is a coherent f-monotone path of (\mathcal{A}^+, f) then $\gamma = \gamma^+ \setminus (n + 1)$ is a coherent f-monotone path of (\mathcal{A}, f).

Lemma (4.22)

Let \mathcal{A} be a hyperplane arrangement and $\hat{\mathcal{A}}$ a single element lifting of \mathcal{A}. Suppose

\[
\hat{\gamma}_g = (n + 1, 1, 2, \ldots, n) \\
\hat{\gamma}_h = (1, 2, \ldots, n, n + 1)
\]

are coherent \hat{f}-monotone paths of $(Z(\hat{\mathcal{A}}), \hat{f})$ for some \hat{f}. Then there is a generic functional f on $Z(\mathcal{A})$ for which γ is a coherent f-monotone path.
Questions?
Thank You.

Committee Members

<table>
<thead>
<tr>
<th>Victor Reiner</th>
<th>Alexander Voronov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavlo Pylyavskyy</td>
<td>Kevin Leder</td>
</tr>
</tbody>
</table>