The Critical Group of a Line Graph: The Bipartite Case

John M. Machacek

University of Minnesota - Twin Cities

machae052@umn.edu

December 14, 2011
Overview

Give a graph $G = (V, E)$ the critical group $K(G)$ is a finite abelian group whose order is $\kappa(G)$, the number of spanning forests of the graph. Here G is an undirected graph without self loops, though multiple edges are allowed. There is a known relationship between the critical group of G and the critical group of the line graph $\text{line} \ G$ when G is nonbipartite. Our task is to explore the relationship when G is bipartite.
On Dr. Vic Reiner’s web page www.math.umn.edu/~reiner/:

- REU
- math latin honors theses
- “The Critical Group of a Line Graph” (Berget, Manion, Maxwell, Potechin, and Reiner)
Definition

Let $G = (V, E)$ be finite graph without self loops. The graph Laplacian $L(G)$ is the singular positive semidefinite $|V| \times |V|$ matrix given by

$$L(G)_{i,j} = \begin{cases} \deg_G(i) & \text{if } i = j \\ -m_{i,j} & \text{otherwise}, \end{cases}$$

where $m_{i,j}$ is the multiplicity of the edge $\{i, j\}$ in E.

Note $L(G) = D - A$ where D is the degree matrix and A is the adjacency matrix.
Kirchhoff’s Matrix Tree Theorem

We notice the rank of $L(G)$ is $|V| - c$ if G has c connected components. Assuming G is connected denote the eigenvalues of $L(G)$ by $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{n-1} > \lambda_n = 0$ where $|V| = n$. Also let $L(G)^{i,j}$ be the reduced graph Laplacian obtained from $L(G)$ by striking out row i and column j.

Theorem (Kirchhoff’s Matrix Tree Theorem)

$$\kappa(G) = \frac{\lambda_1 \lambda_2 \cdots \lambda_{n-1}}{n}$$

$$= (-1)^{i+j} \det L(G)^{i,j}$$
The critical group $K(G)$ of a graph G is a finite abelian group whose order is $\kappa(G)$ the number of spanning forests of the graph. If G has c connected components then

$$\mathbb{Z}^{|V|}/\text{im } L(G) \cong \mathbb{Z}^c \oplus K(G).$$

If G is connected, then we have

$$\mathbb{Z}^{|V|-1}/\text{im } L(G)^{i,j} \cong K(G).$$

Remark

The *Smith normal form* of $L(G)$ gives us $K(G)$.
We have the following alternative presentation of critical group

\[K(G) \cong \mathbb{Z}^E / (B \oplus Z). \]

Where \(B \) is the bond lattice and \(Z \) is the cycle lattice.

Remark

Here we fix an arbitrary orientation of the edges and the edge set \(E \) becomes a basis for \(\mathbb{R}^E \cong \mathbb{R}^m \) where \(|E| = m \).
Remark

The single vertex cuts like the one of the right give a spanning set for B.

Example Bonds
Example Cycle

Remark
Recall all cycles in bipartite graphs have even length.
The Edge Subdivision Graph

Definition

The *edge subdivision graph* for G denoted $\text{sd} \ G$ is obtained by placing a new vertex at the midpoint of every edge in G.

Figure: G
Figure: $\text{sd} \, G$
The line graph for G denoted $\text{line } G = (V_{\text{line } G}, E_{\text{line } G})$ is defined by $V_{\text{line } G} = E$ where there is an edge in $E_{\text{line } G}$ corresponding to each pair of edges in E incident on a vertex in V.
Let $\beta(G)$ be the number of independent cycles in G. It is known the number of generators of $K(G)$ is bounded by $\beta(G)$. We also have the following simple relationship between G and $sd\ G$.

Theorem (Lorenzini)

$$K(G) = \bigoplus_{i=1}^{\beta(G)} \mathbb{Z}_{d_i}$$

$$K(sd\ G) = \bigoplus_{i=1}^{\beta(G)} \mathbb{Z}_{2d_i}$$
Theorem (Sachs)

If G is d-regular, then

$$\kappa(\text{line } G) = d^{\beta(G)} - 2^{\beta(G)} \kappa(G)$$

$$= d^{\beta(G)} - 2 \kappa(\text{sd } G).$$

Theorem (Berget et al.)

If a simple graph G is 2-edge-connected, then the critical group $K(\text{line } G)$ can be generated by $\beta(G)$ elements.

Question

Can we say anything about the relationship between $K(G)$ and $K(\text{line } G)$?
A Homomorphism

Theorem (Berget et al.)

For any connected d-regular simple graph G with $d \geq 3$ there is a natural group homomorphism $f : K(\text{line } G) \rightarrow K(\text{sd } G)$ whose kernel-cokernel exact sequence takes the form

$$0 \rightarrow \mathbb{Z}_d^{\beta(G) - 2} \oplus C \rightarrow K(\text{line } G) \xrightarrow{f} K(\text{sd } G) \rightarrow C \rightarrow 0$$

in which the cokernel C is the following cyclic d-torsion group:

$$C = \begin{cases}
0 & \text{if } G \text{ non-bipartite and } d \text{ is odd} \\
\mathbb{Z}_2 & \text{if } G \text{ non-bipartite and } d \text{ is even} \\
\mathbb{Z}_d & \text{if } G \text{ bipartite}
\end{cases}$$
Corollary (Berget et al.)

For G a simple, connected, d-regular graph with $d \geq 3$ which is nonbipartite, after uniquely expressing

$$K(G) \cong \bigoplus_{i=1}^{\beta(G)} \mathbb{Z}_{d_i}$$

with d_i dividing d_{i+1}, one has

$$K(\text{line } G) \cong \bigoplus_{i=1}^{\beta(G)-2} \mathbb{Z}_{2dd_i} \oplus \begin{cases} \mathbb{Z}_{2d\beta(G)-1} \oplus \mathbb{Z}_{2d\beta(G)} & \text{if } |V| \text{ even} \\ \mathbb{Z}_{4d\beta(G)-1} \oplus \mathbb{Z}_{d\beta(G)} & \text{if } |V| \text{ odd} \end{cases}$$

Proof.

Follow from previous theorem on exact sequence and a technical lemma on the p-primary component.
An Example

Let $G = K_4$, then $\beta(G) = 3$, $d = 3$, and $|V|$ is even and we have

$$K(G) \cong \mathbb{Z}_1 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4$$

$$K(\text{line } G) \cong \mathbb{Z}_6 \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_8 \cong \mathbb{Z}_2 \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_{24}$$
The goal in this thesis was to collect data from various infinite families of regular bipartite graphs G on the relation between $K(G)$ and $K(\text{line } G)$, in the hope that they might lead us to some conjecture(s) as precise as the previous corollary.
The Complete Bipartite Graph

Theorem (Lorenzini, Berget)

Let \(G = K_{n,n} \), then

\[
\begin{align*}
K(G) &\cong \mathbb{Z}_n^{2n-4} \oplus \mathbb{Z}_{n^2} \\
K(\text{line } G) &\cong \mathbb{Z}_{2n}^{(n-2)^2+1} \oplus \mathbb{Z}_{2n^2}^{2n-4}.
\end{align*}
\]
Almost Complete Bipartite Graph

Theorem

Let \(G = K_{n,n} - M \) where \(M \) is a complete matching and \(n \geq 4 \), then

\[
K(G) \cong \mathbb{Z}_{n-2} \oplus \mathbb{Z}_{n(n-2)}^{n-3} \oplus \mathbb{Z}_{n(n-1)(n-2)}
\]

\[
K(\text{line } G) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_{2(n-1)}^{(n-2)^2-3} \oplus \mathbb{Z}_{2(n-1)(n-2)} \oplus \mathbb{Z}_{2n(n-1)(n-2)}^{n-2}
\]

Proof.

- Use Smith Normal Form reduction to obtain \(K(G) \).
- Use known relationships to obtain \(K(\text{line } G) \).
Circulant Graphs

We denote circulant graphs by $C_n(a_1, a_2, \ldots, a_m)$. We note that a circulant graph is always regular, and it is bipartite if and only if n is even and a_i is odd for each i.

Figure: $C_8(1, 3)$
A Bipartite Circulant Graph

Conjecture

Let $G = C_{2(2l+1)}(1, 2l+1)$ where $2l + 1 = 3^k m$ with $\gcd(3, m) = 1$, then we have

$$K(G) \cong \mathbb{Z}_{3^k} \oplus \mathbb{Z}_{3^k d_1} \oplus \mathbb{Z}_{3^k d_2}$$

$$K(\text{line } G) \cong \mathbb{Z}_{6^{2l-1}} \oplus \mathbb{Z}_{2 \cdot 3^k} \oplus \mathbb{Z}_{2 \cdot 3^k d_1} \oplus \mathbb{Z}_{2 \cdot 3^k d_2}$$

where 3 does not divide d_1 or d_2.
Another Bipartite Circulant Graph

Conjecture

Let $G = C_{2.2l}(1, 2l - 1)$, then we have

$$K(G) \cong \begin{cases} \mathbb{Z}_4 \oplus \mathbb{Z}_8^{2l-4} \oplus \mathbb{Z}_{8l} & \text{if } l \text{ is even} \\ \mathbb{Z}_2 \oplus \mathbb{Z}_8^{2l-2} \oplus \mathbb{Z}_{8l} & \text{if } l \text{ is odd} \end{cases}$$

$$K(\text{line } G) \cong \mathbb{Z}_4 \oplus \mathbb{Z}_8^{2l} \oplus \mathbb{Z}_{16}^2 \oplus \mathbb{Z}_{64}^{2l-3} \oplus \mathbb{Z}_{64l} \quad \text{if } l \text{ is odd.}$$
The relationship between $K(G)$ and $K(\text{line } G)$ is known for G regular and nonbipartite. Both $K(G)$ and $K(\text{line } G)$ have been explicitly computed for the special cases $K_{n,n}$ and $K_{n,n} - M$. We have conjectures for $K(G)$ and $K(\text{line } G)$ in other cases, but nothing conclusive has emerged yet.
Recall the following corollary:

Corollary (Berget et al.)

For G a simple, connected, d-regular graph with $d \geq 3$ which is nonbipartite, after uniquely expressing

\[
K(G) \cong \bigoplus_{i=1}^{\beta(G)} \mathbb{Z}_{d_i}
\]

with d_i dividing d_{i+1}, one has

\[
K(\text{line } G) \cong \bigoplus_{i=1}^{\beta(G)-2} \mathbb{Z}_{2dd_i} \oplus \begin{cases}
\mathbb{Z}_{2d_{\beta(G)-1}} \oplus \mathbb{Z}_{2d_{\beta(G)}} & \text{if } |V| \text{ even} \\
\mathbb{Z}_{4d_{\beta(G)-1}} \oplus \mathbb{Z}_{d_{\beta(G)}} & \text{if } |V| \text{ odd}
\end{cases}
\]
The Bipartite Relationship?

Let $G = K_{n,n}$, then

$$K(G) \cong \mathbb{Z}_n \oplus \mathbb{Z}^{2n-5}_n \oplus \mathbb{Z}_{n^2}$$

$$K(sd\ G) \cong \mathbb{Z}_2^{(n-2)^2} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}^{2n-5}_2 \oplus \mathbb{Z}_{2n^2}$$

$$K(line\ G) \cong \mathbb{Z}_2^{(n-2)^2} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}^{2n-5}_2 \oplus \mathbb{Z}_{2n^2}$$

Let $G = K_{n,n} - M$, then

$$K(G) \cong \mathbb{Z}(n-2) \oplus \mathbb{Z}^{n-3}_{n(n-2)} \oplus \mathbb{Z}_{n(n-1)(n-2)}$$

$$K(sd\ G) \cong \mathbb{Z}_2 \oplus \mathbb{Z}^{n^2-4n+1}_2 \oplus \mathbb{Z}_{2(n-2)} \oplus \mathbb{Z}^{n-3}_{2n(n-2)} \oplus \mathbb{Z}_{2n(n-1)(n-2)}$$

$$K(line\ G) \cong \mathbb{Z}_2 \oplus \mathbb{Z}^{n^2-4n+1}_2 \oplus \mathbb{Z}_{2(n-1)(n-2)} \oplus \mathbb{Z}^{n-3}_{2n(n-1)(n-2)} \oplus \mathbb{Z}_{2n(n-1)(n-2)}$$
Let $G = C_{2 \cdot 2^l}(1, 2^l - 1)$ for l odd, then conjecturally

$$K(G) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_8^{2^l - 3} \oplus \mathbb{Z}_8^l$$

$$K(\text{sd } G) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2^{2^l - 1} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_{16} \oplus \mathbb{Z}_{16}^{2^l - 3} \oplus \mathbb{Z}_{16}^l$$

$$K(\text{lineG}) \cong \mathbb{Z}_4 \oplus \mathbb{Z}_8^{2^l - 1} \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_{16} \oplus \mathbb{Z}_{16} \oplus \mathbb{Z}_{64}^{2^l - 3} \oplus \mathbb{Z}_{64}^l$$